Через что питаются растения
Через что питаются растения
Питанием растений называется поглощение минеральных веществ, содержащихся в почве, корневой системой и дальнейшее усвоение их самим растением. Для нормального прохождения процессов поглощения минеральных элементов растению необходимы дыхание корневой системы, подходящие температура окружающей среды, кислотность почвы, концентрация и состав питательных растворов. Важнейшими элементами для питания растений являются: фосфор, калий, азот, железо, кальций, магний, и бор. Все элементы, входящие в состав растений, выполняют определенные функции. Роль минеральных веществ в процессе роста растений очень разнообразна. Кроме кислорода, углерода и водорода (органогенов) всем растениям требуется фосфор, сера, азот, магний, кальций и железо. В результате различных исследований было открыто, что для оптимального роста и развития растений обязателен целый набор веществ, находящихся в почве в микроскопических количествах. Помимо железа, усваиваемого растением, ему необходимы также медь, цинк, бор, кобальт, марганец и молибден.
Все вышеназванные элементы, используемые в питательных растворах, по характеру потребления разделены на три группы:
Растение для своего нормального развития должно получать все необходимые ему минеральные вещества в нужных концентрациях в растворенном виде. Если растение не получает нужного количества какого-то элемента, то проявляются признаки голодания. При добавлении этого элемента эти признаки устраняются. Если же растение получает какой-либо микроэлемент в избытке, то получается отравление растения. Бор и медь, например, при концентрациях свыше 1 мг на 1 килограмм почвы затормаживают рост у многих растений. Если концентрация становится ниже 0,5 мг на 1 килограмм, то начинается голодание. Это можно объяснить тем, что эти минеральные элементы участвуют в процессе построения клеточных органоидов и протоплазмы. Кроме того, они обеспечивают определенную структуру биоколлоидов живого вещества, без которых жизненные процессы не могут протекать.
Фосфор содержится в почве в органической и в минеральной форме. Минеральные формы фосфора преобладают в подзолистых и кислых почвах. Поэтому известкование таких почв повышает для растений доступность фосфоросодержащих веществ. Если наступает фосфорное голодание, листья растений становятся зелено-желтыми, задерживается процесс закладки цветочных почек и начало цветения растений, ухудшается и качество цветов.
Азот необходим для нормального развития растений. При недостатке этого элемента листья растения становятся бледными желто-зелеными с красноватыми пятнышками. В случае азотного голодания листья становятся более тонкими. Обычно азот в плодородном слое почвы содержится в форме, которая растениям недоступна. Однако в результате микробиологических процессов азот из недоступных форм преобразуется в усвояемую растениями форму. В почве присутствуют некоторые микроорганизмы, которые усваивают азот из воздуха и делают его доступным для растений. Тем не менее, подкормка растений азотистыми удобрениями в большинстве случаев необходима, так как почвы этим элементом бедны.
Кальций присутствует в почве в виде фосфатов, карбонатов и других солей. Наличие кальция в почве улучшает ее свойства. Однако, для питания растений этот элемент идет в небольшом количестве. Кальций вносят в почву с целью нормализации ее кислотности.
Железо поддерживает нормальное развитие хлорофилла и хлоропластов в растениях. Если в почве недостаточно железа, то листья приобретают мраморность, цвет их становится неровным, наступает хлороз и старение листьев, так как разрушается хлорофилл, содержащийся в них.
Кобальт также увеличивает устойчивость хлорофилла в растениях.
Цинк нормализует дыхание растений.
Бор необходим для хлоропластов. Недостаточное количество этого элемента в почвах приводит к дегенерации хлоропластов растений.
Медь отвечает за окислительно-восстановительные реакции, протекающие в клетках растений.
Для корневой подкормки в одном 10-литровом ведре растворяют 3 таких таблетки. Для опрыскивания листьев 1 таблетка растворяется в 1 л воды. Опрыскивание производят перед цветением растений и через месяц после него.
Высшие растения являются автотрофными организмами, т. е они сами синтезируют органические вещества за счет минеральных соединений, в то время как для животных и подавляющего большинства микроорганизмов характерен гетеротрофный тип питания — использование органических веществ, ранее синтезированных другими организмами. Накопление сухого вещества растений происходит благодаря усвоению углекислого газа через листья (так называемое «воздушное питание»), а воды, азота и зольных элементов — из почвы через корни («корневое питание»).
Фотосинтез является основным процессом, приводящим к образованию органических веществ в растениях. При фотосинтезе солнечная энергия в зеленых частях растений, содержащих хлорофилл, превращается в химическую энергию, которая используется на синтез углеводов из углекислого газа и воды. На световой стадии процесса фотосинтеза происходит реакция разложения воды с выделением кислорода и образованием богатого энергией соединения (АТФ) и восстановленных продуктов. Эти соединения участвуют на следующей темновой стадии в синтезе углеводов и других органических соединений из СО2.
При образовании в качестве продукта простых углеводов (гексоз) суммарное уравнение фотосинтеза выглядит следующим образом:
С6 Н12 O6 +6 O2 ® 6 СО2+6Н2О+ 2874 кДж
Путем дальнейших превращений из простых углеводов в растениях образуются более сложные углеводы, а также другие безазотистые органические соединения. Синтез аминокислот, белка и других органических азотсодержащих соединений в растениях осуществляется за счет минеральных соединений азота (а также фосфора и серы) и промежуточных продуктов обмена — синтеза и разложения — углеводов. На образование разнообразных сложных органических веществ, входящих в состав растений, затрачивается энергия, аккумулированная в виде макроэргических фосфатных связей АТФ (и других макроэргических соединений) при фотосинтезе и выделяемая при окислении — в процессе дыхания — ранее образованных органических соединений. Интенсивность фотосинтеза и накопление сухого вещества зависят от освещения, содержания углекислого газа в воздухе, обеспеченности растений водой и элементами минерального питания. При фотосинтезе растения усваивают углекислоту, поступившую через листья из атмосферы. Лишь небольшая часть СО2. (до 5% общего потребления) может поглощаться растениями через корни. Через листья растения могут усваивать серу в виде SО2. из атмосферы, а также азот и зольные элементы из водных растворов при некорневых подкормках растений. Однако в естественных условиях через листья осуществляется главным образом углеродное питание, а основным путем поступления в растения воды, азота и зольных элементов является корневое питание.
Растения усваивают ионы не только из почвенного раствора, но и ионы, поглощенные коллоидами. Более того, растения активно (благодаря растворяющей способности корневых выделений, включающих угольную кислоту, органические кислоты и аминокислоты) воздействуют на твердую фазу почвы, переводя необходимые питательные вещества в доступную форму.
Корневая система растений и ее поглотительная способность
Мощность корневой системы, ее строение и характер распределения в почве у разных видов растений резко различаются. Для примера достаточно сравнить известные всем слаборазвитые корешки салата с корневой системой капусты, картофеля или томатов, сопоставить объемы почвы, которые охватывают корни таких корнеплодов, как редис и сахарная свекла. Активная часть корней, благодаря которой происходит поглощение элементов минерального питания из почвы, представлена молодыми растущими корешками. По мере нарастания каждого отдельного корешка верхняя его часть утолщается, покрывается снаружи опробковевшей тканью и теряет способность к поглощению питательных веществ. Рост корня происходит у самого его кончика, защищенного корневым чехликом. В непосредственной близости к окончанию корешков располагается зона делящихся меристематических клеток. Выше ее находится зона растяжения, в которой наряду с увеличением объема клеток и образованием в них центральной вакуоли начинается дифференциация тканей с формированием флоэмы — нисходящей части сосудисто-проводящей системы растений, по которой происходит передвижение органически веществ из надземных органов в корень. На расстоянии 1—3 мм от кончика растущего корня находится зона образования корневых волосков, В этой зоне завершается формирование и восходящей части проводящей системы — ксилемы, по которой осуществляется передвижение воды (а также части поглощенных ионов и синтезированных в корнях органических соединений) от корня в надземную часть растений. Корневые волоски представляют собой топкие выросты наружных клеток с диаметром 5—72 мкм и длиной от 80 до 1500 мкм. Число корневых волосков достигает несколько сотен на каждый миллиметр поверхности корня в этой зоне. За счет образования корневых волосков резко, в десятки раз, возрастает деятельная, способная к поглощению питательных веществ поверхность корневой системы, находящаяся в контакте с почвой. Влияние корневой системы распространяется на большой объем почвы благодаря постоянному росту корней и возобновлению корневых волосков. Старые корневые волоски (продолжительность жизни каждого корневого волоска составляет несколько суток) отмирают, а новые непрерывно образуются уже на других участках растущего корешка. На том участке корня, где корневые волоски отмерли, кожица пробковеет, поступление воды и поглощение питательных веществ из почвы через нее ограничивается. Скорость роста корней у однолетних полевых культур может достигать 1 см в сутки. Растущие молодые корешки извлекают необходимые ионы из почвенного раствора на расстоянии от себя до 20 мм, а поглощенные почвой ионы —-до 2—8 мм. По мере нарастания корня происходит, следовательно, непрерывное пространственное перемещение зоны активного поглощения в почве. При этом наблюдается явление хемотропизма, сущность которого заключается в том, что корневая система растений усиленно растет в направлении расположения доступных питательных веществ (положительный хемотропизм) либо ее рост тормозится в зоне высокой, неблагоприятной для растений концентрации солей (отрицательный хемотропизм). Недостаток элементов питания растений в доступной форме вызывает, как правило, образование относительно большей массы корней, чем при высоком уровне минерального питания. Наиболее интенсивно поглощение ионов осуществляется в зоне образования корневых волосков, и поступившие ионы передвигаются отсюда в надземные органы растений. Необходимо отметить, что корень является не только органом поглощения, но и синтеза отдельных органических соединений, в том числе аминокислот и белков. Последние используются для обеспечения жизнедеятельности и процессов роста самой корневой системы, а также частично транспортируются в надземные органы.
Поглощение питательных веществ растениями через корни
Росянка поймала добычу.mp4
За счет сосущей силы, возникающей при испарении влаги через устьица листьев, и нагнетающего действия корней находящиеся в почвенном растворе ионы минеральных солей вместе стоком воды могут поступать сначала в полые межклетники и поры клеточных оболочек молодых корешков, а затем транспортироваться в надземную часть растений по ксилеме — восходящей части сосудисто-проводящей системы, состоящей из омертвевших клеток без перегородок, лишенных живого содержимого. Однако внутрь живых клеток корня (как и надземных органов), имеющих наружную полупроницаемую цитоплазматическую мембрану, поглощенные и транспортируемые с водой ионы могут проникать «пассивно» — без дополнительной затраты энергии — только по градиенту концентрации — от большей к меньшей за счет процесса диффузии либо при наличии соответствующего электрического потенциала (для катионов — отрицательного, а анионов — положительного) на внутренней поверхности мембраны по отношению к наружному раствору.
В то же время хорошо известно, что концентрация отдельных ионов в клеточном соке, как и в пасоке растений (транспортируемой по ксилеме из корней в надземные органы) чаще всего значительно выше, чем в почвенном растворе. В этом случае поглощение питательных веществ растениями должно происходить против градиента концентрации и невозможно за счет диффузии.
Одностороннее преобладание (высокая концентрация) в растворе одной соли, особенно избыток какого-либо одновалентного катиона, оказывает вредное действие на растение Развитие корней происходит лучше в многосолевом растворе. В нем проявляется антагонизм ионов, каждый ион взаимно препятствует избыточному поступлению другого иона в клетки корня Например, Са3+ в высоких концентрациях тормозит избыточное поступление K+, Na+ Mg2+ и наоборот Такие же антагонистические отношения существуют и для ионов K+ и Na +, K+ и NH4+, K+ и Mg2+, NO3- и H2PO4, Cl- и H2PO4- и др.
Физиологическая уравновешенное IB легче всего восстанавливается при введении в раствор солей кальция При наличии кальция в растворе создаются нормальные условия для развития корневой системы, поэтому в искусственных питательных смесях Са2+ должен преобладать над другими ионами. Особенно сильно ухудшается развитие корней и поступление в них питательных веществ при высокой концентрации ионов водорода, т е при повышенной кислотности раствора Высокая концентрация в растворе ионов водорода оказывает отрицательное влияние на физико-химическое состояние цитоплазмы клеток корпя Наружные клетки корня ослизняются, нарушается их нормальная проницаемость, ухудшается рост корней и поглощение ими питательных веществ. Отрицательное действие кислой реакции сильнее проявляется при отсутствии или недостатке других катионов, особенно кальция, в растворе Кальций тормозит поступление ионов H+,, поэтому при повышенном количестве кальция растения способны переносить более кислую реакцию, чем без кальция
Реакция раствора оказывает влияние на интенсивность поступления отдельных ионов в растение и обмен веществ.
Влияние СаСl2 на рост корней пшеницы при различной кислотности раствора
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Приложения для Android
Питание растений
Питание растений — процесс поглощения из внешней среды, передвижения, накопления и трансформации питательных веществ, необходимых для жизни растений. В ходе этого процесса происходит обмен веществ между растениями и окружающей средой. Неорганические вещества, находящиеся в почве, атмосфере и вода поступают в растение, и используются для синтеза сложных органических соединений, часть веществ может выводится из растительного организма в окружающую среду.
Зеленые растения под действием солнечного света в процессе фотосинтеза из углекислого газа, воды и простых минеральных солей синтезируют органические вещества, которые в свою очередь обеспечивают пищей человека и животных. В результате этого процесса вся зеленая растительность в дневное время выделяет большое количества кислорода, которым дышат живые организмы. Поэтому жизнь на Земле обусловлена работой высших и низших растений. О масштабе и значимости этого процесса в природе можно судить по следующим данным: зеленые растения ежегодно образуют в пересчете на глюкозу до 400 млрд т органических веществ, из которых 115 млрд т — на суше, связывается до 170 млрд т углекислого газа и разлагается при фотолизе в растениях 130 млрд т воды с выделением 115 млрд т кислорода.
Для синтеза органических веществ растения в мировом масштабе используют до 2 млрд т азота и 6 млрд т зольных элементов. Запасы азота в атмосфере составляют 4·10 15 т, однако они не определяют обеспеченность культур азотом, так как растения используют этот элемент из почвы, а не атмосферы.
Растение через листья получает более 95% углекислого газа и может усваивать путем некорневого питания из водных растворов зольные элементы и азот. Однако основное количество азота, воды и зольных питательных веществ поступает из почвы через корневую систему.
Вода потребляется растением и используется в процессе питания фотолиза и в значительно большем количестве испаряется листьями. Для образовании 1 кг сухой массы урожая культуры испаряют 300-400 кг воды. В неблагоприятных условиях расход воды возрастает в 1,5-2 раза, тогда как в оптимальных условиях расход воды снижается на 15-20%.
Из-за взаимосвязи с погодно-климатическими условиями регулирование и оптимизация процесса питания растений и обмена веществ не всегда возможна. От этих условий зависит и содержание питательных веществ в почве в доступной для растений форме. Мобилизация или иммобилизация отдельных питательных веществ в почве также определяется активностью и направленностью химических, физико-химических и микробиологических процессов, биологическими свойствами самого растения, динамикой поглощения отдельных катионов и анионов в процессе вегетации.
На процессы, определяющие рост и развитие растений, сильное влияние оказывают удобрения. Они изменяют содержание солей в почве, интенсивность и направленность химических, физико-химических и биологических процессов, реакцию и буферность почвы, поглотительную способность.
Типы питания растений
Автотрофный тип питания — самостоятельное обеспечение растением своих потребностей в питательных веществах, посредством поглощения неорганических веществ из почвы и углекислого газа из атмосферы. Характерен для большинства растений. К организмам с автотрофным типом питания относятся также некоторые бактерии, способные фотосинтетически или хемисинтетически усваивать углекислый газ.
Симбиотрофный тип питания — обеспечение растением своих потребностей в питательных веществ за счет других организмов (симбионтов). Симбиоз в ходе эволюционных процессов развился как полезная для растений форма отношений. При симбиотрофном типе питания отмечается взаимное использование продуктов обмена веществ для питания. Границы симбиоза не всегда могут быть точно определены, так как трудно определить пользу или вред, приносимые одним организмом другому.
Бактериотрофный тип питания — симбиоз высших растений с бактериями. Наиболее яркий пример — симбиоз клубеньковых бактерий с бобовыми растениями. В условиях интенсификации, химизации и экологизации земледелия возрастает значение способности бобовых растений и микроорганизмов связывать молекулярный азот атмосферы. Ежегодно в результате симбиоза бактерий с бобовыми растениями фиксируется 40-106 т азота.
Условия питания растений
Обеспечение оптимальных условий питания за счет использования удобрений позволяет более экономно расходовать влагу на создание единицы урожая. Коэффициент транспирации при этом может снижаться на 15-20%. С другой стороны, экономическая эффективность удобрений дополнительным урожаем возрастает при условии хорошего водоснабжения растений. Отмечены многочисленные случаи отсутствия положительного эффекта удобрений на кислых и солонцовых почвах.
Для правильной оценки эффективности применения удобрений необходимо правильно оценивать все факторы, лимитирующие урожайность. Например, в северных районах в условиях достаточного увлажнения, большее значение приобретают факторы тепла и обеспеченности почв питательными веществами.
В южных районах, особенно на обыкновенных южных чернозёмах и каштановых почвах, характеризующихся высоким потенциальным плодородием, лимитирующим фактором чаще является недостаток влаги.
Виды питания растений
Воздушное питание растений — углеродное питание растений, осуществляемое за счет ассимиляции углекислого газа атмосферы зелеными листьями в процессе фотосинтеза.
Некорневое питание растений — процесс поступление питательных веществ в растения через надземные органы. Открытие этого процесса послужило развитию применения некорневых подкормок, которые позволяют повысить урожай и его качество.
Корневое питание растений — поглощение из почвы воды и минеральных солей, а также в незначительных количествах некоторых органических веществ.
Согласно исследованиям, деление на корневое и воздушное питание условно, так как одни и те же вещества могут поглощаться как корнями, так и листьями. Так, углекислота поступает в растение через корни в той же мере, что и через листья. Сера поступает в растение через корни в виде сульфатов. Позже благодаря применению радиоизотопа серы была показана способность растений усваивать оксиды серы из воздуха через листья.
Корневое и некорневое питание растений взаимосвязаны. Так, недостаток питательных веществ в почве приводит к задержке образования органических соединений в листьях, что, в свою очередь, тормозит развитие растений.
Питание растений в разные периоды вегетации
Поглощение элементов питания в онтогенезе, то есть в течение вегетации, происходит неравномерно, поэтому система удобрения должна учитывать потребности растений в разные периоды жизненного цикла. Недостаточное обеспечение питания в различные периоды жизни растений приводит к снижению урожайности и ухудшению качества растительной продукции.
Особенно важно обеспечить питательными веществами растения в критический период, когда недостаток питания в это время резко ухудшает рост и развитие. То же относится и к периоду максимального поглощения.
Высокая чувствительность к недостатку и к избытку минерального питания отмечается у растений в начальный период роста.
Таблица. Влияние питания растений фосфором на урожайность ячменя 1
Условия питания | Урожайность, % | |
---|---|---|
общая | зерно | |
Нормальное питание фосфором постоянно | 100 | 100 |
Без фосфора первые 15 дней | 17,4 | 0 |
Без фосфора от 45 до 60 дней | 102 | 104 |
Высокая потребность молодых растений в минеральном питании объясняется высокой интенсивностью синтетических процессов при слаборазвитой корневой системе. Так, у зерновых злаков закладка и дифференциация репродуктивных органов начинается в период развертывания первых трех-четырех листочков. Недостаток азота в этот период приводит к сокращению числа колосков и снижению урожая. Последующее нормальное питание не компенсирует дефицит питательных веществ на начальных этапах развития.
Интенсивность потребления питательных веществ у разных культур меняется в зависимости от периода развития. Например, растения сахарной свеклы в первый месяц потребляют азота, фосфора и калия по 2 кг/га, а во второй — N 96 кг/га, Р2O5 34 кг/га и К2O 133 кг/га.
Таблица. Питание азотом и урожай ячменя, г на сосуд 2
Условия питания | Солома | Зерно |
---|---|---|
Азот на протяжении всего периода вегетации | 26,1 | 6,4 |
Без азота первые 15 дней | 4,5 | 0 |
Без азота от 15 до 30 дней | 19,4 | 4,2 |
Без азота от 30 до 40 дней | 29,1 | 8,7 |
Без азота от 45 до 60 дней | 29,4 | 7,7 |
Без азота после колошения | 18,6 | 3,8 |
Наибольшее количество элементов минерального питания яровые зерновые потребляют в период от выхода в трубку до колошения. В период колошения пшеница потребляет азота, фосфора и калия около 76% от максимального, ячмень — около 67% и овес — 47%.
Таблица. Потребление питательных веществ яровыми зерновыми культурами, % от максимального 3
Фаза роста | Пшеница | Ячмень | Овес | ||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
Колошение | 71 | 68 | 88 | 71 | 56 | 73 | 51 | 36 | 54 |
Цветение | 97 | 100 | 100 | 96 | 74 | 100 | 82 | 71 | 100 |
Полная спелость | 90 | 93 | 67 | 100 | 100 | 64 | 100 | 100 | 83 |
Злаковые культуры наиболее требовательны к азотному питанию в период образования ассимиляционного аппарата и в период дифференциации репродуктивных органов. Сахарная свекла нуждается в достаточном обеспечении калием во время сахаронакопления.
Таблица. Динамика потребления питательных элементов капустой, % от максимального 4
Фаза роста | От начала вегетации | ||
---|---|---|---|
N | P2O5 | K2O | |
Рассада (10.06) | 0,17 | 0,14 | 0,12 |
Формирование кочана (27.07) | 30,5 | 21,8 | 24,2 |
Рыхлый кочан (7.09) | 96,4 | 100 | 96,6 |
Хозяйственная спелость | 100 | 90,5 | 100 |
Лен чувствителен к недостатку азотного питания в период от елочки до бутонизации, к уровню калийного питания — в период от бутонизации до цветения.
Условия питания | Масса растений, % |
---|---|
Полное питание весь период | 100 |
Без азота от «елочки» до бутонизации | 38,3 |
Без азота от бутонизации до уборки | 99,0 |
Условия питания | Число коробочек на одно растение |
---|---|
Полное питание весь период вегетации | 42 |
Без калия первые 22 дня | 43 |
Без калия от бутонизации до уборки | 9 |
Огурец требователен к азотному питанию в период формирования ассимиляционного аппарата, к фосфорному — перед цветением. В период плодоношения огурец предъявляет повышенные требования к обеспечению азотом и калием.
Усиление азотного и частично фосфорного питания в период бутонизации и цветения приводит к увеличению урожая зерновых. Повышенное питание азотом в период образования листовой массы и улучшение фосфорно-калийного питания в дальнейшем повышает урожайность корне- и клубнеплодов.
Потребность большинства культур в азотном питании уменьшается к началу плодообразования, роль фосфора и калия, наоборот, возрастает. В целом, период плодообразования отличается снижением потребления питательных веществ, а процессы жизнедеятельности в растениях к концу вегетации осуществляются преимущественно за счет реутилизации накопленных питательных веществ.
В системе удобрения основное удобрение должно обеспечивать питание растений на протяжении всего вегетационного периода, поэтому до посева вносят все органические и большую часть минеральных удобрений. Для обеспечения растений питательными веществами в начальный период вносят припосевное удобрение.
Количество и качество урожая можно регулировать подкормками в разные периоды вегетации. Подкормки улучшают питание растений в наиболее ответственные периоды или при выявлении дефицита какого-либо элемента питания.
Потребность в питательных веществах изменяется также в течение суток. Суточная периодичность отмечена почти для всех жизненных процессов растений.
В условиях искусственного питания (на питательных средах) имеют значение состав, концентрация питательного раствора, режим его использования в течение вегетации. Например, временным дефицитом питательных веществ во внешней среде в определенные периоды вегетации можно усилить развитие корневой системы, а заменой питательного раствора на воду вызвать временное голодание, стимулировав этим клубнеобразование у картофеля, завязей плодов у томата и добиться таким приемом скороспелости.
Суточная периодичность поглощения питательных веществ проявляется при переменных и постоянных условиях среды и носит характер внутреннего эндогенного ритма. Такая регулируемая суточная периодичность процессов позволяет растениям приспосабливаться к изменяющимся условиям внешней среды. Эндогенные суточные и околосуточные (циркадные) ритмы в постоянных искусственных условиях имеют тенденцию к затуханию, но восстанавливаются при меняющихся условиях. Способность растений менять циркадный ритм позволяет повысить их выживаемость.
Ритмы у растений бывают годовые, сезонные и суточные. Также отмечаются ритмы импульсного характера, с периодами от нескольких секунд до часов. Например, такие ритмы короткой активности отмечены в поглощающей и выделительной деятельности корней.
В условиях искусственного выращивания культур, представляет интерес метод периодического питания, так как позволяет без увеличения расходов повысить продуктивность растений.