Чип в электронике что

Что такое компьютерный чип?

Мы не знали бы ни персональных компьютеров, ни мобильных телефонов размером со спичечный коробок, ни игровых приставок, да и множества других электронных устройств, широко применяемых в быту, науке и промышленности.

Именно из кремния делаются так называемые микрочипы (или, говоря по-научному, интегральные микросхемы ), которые позволяют в доли секунды проводить сложнейшие вычисления и обрабатывать огромные объемы информации, записанной в виде цифрового кода.

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Что такое компьютерный чип?

Как Вы знаете, современный компьютер работает с двоичным кодом – с информацией, записанной в виде всего лишь двух цифр – единицы и нуля. Поэтому вычислительная машина представляет собой очень сложную комбинацию множества простейших элементов – переключателей, каждый из которых может занимать всего лишь два положения: «1″ и «0″.

Вакуумные электронные лампы

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Вакуумные электронные лампы.

Транзистор

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Что из себя представляет транзистор? Это соединение трех кусочков материалов с особенными свойствами электропроводимости. Такие материалы называются полупроводниками.

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Интегральные микросхемы

Технология создания микрочипов зародилась в 50-е годы 20 века, но промышленное производство микросхем началось в 70-е годы. С тех пор чипы становились все совершеннее и сегодня уже невозможно представить себе электронику без маленьких тоненьких кремниевых пластинок с огромными возможностями.

Как производят кремниевые чипы?

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Производство чистого кремния.

С помощью сверхпрочной алмазной пилы кремниевый цилиндр распиливается на тончайшие (не более четверти миллиметра) кружочки. По-английски их называют «вэйферами», что можно перевести на русский язык как «вафелька».

Чистый кремний не пропускает ток, но если на него напылить микроскопические частички металла, то отдельные его области приобретут свойства полупроводника и вокруг этих областей можно построить микроскопические транзисторы. То, что происходит с «вафелькой» далее больше напоминает не сборку электронной аппаратуры, а засветку и проявку фотобумаги.

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Чип готов? Ничего подобного! Для того, чтобы кремениевая пластина превратилась наконец в настоящую электронную схему, в которой были бы соединены друг с другом тысячи и миллионы электронных компонентов, всю описанную выше операцию придется повторить много раз: новый слой эмульсии, новая схема-«маска», новое засвечивание ультрафиолетом и новое напыление. Так, слой за слоем формируется электронный чип.

Обычно на одном круглом «вэйфере» напыляются сразу много будущих чипов, имеющих квадратную форму. Когда все готово, «Вафельку» разрезают алмазной пилой. К каждой из полученных кремниевых пластинок приваривают ножки-контакты, и заключают получившийся чип в пластиковый корпус. Теперь осталось смонтировать его на печатной плате устройства, для которого чип предназначен, и – в работу.

Источник

Как работает микрочип

Игорь Гладкобородов

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Микрочип состоит из транзисторов. Транзистор — это такой полупроводниковый электроприбор, у которого три электрода, от первого ко второму идет ток в зависимости от того, какое напряжение на третьем.

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Вот откуда взялись все эти зеленые нолики и единички в фильмах о компьютерах. Из-за того, что транзисторы работают только с двумя состояниями 0 или 1, все данные в компьютере хранятся в двоичном виде. Мы привыкли к десятичным числам, состоящих из цифр от 0 до 9, а в двоичных числах цифр всего две — 0 и 1. И сосчитать до пяти в двоичных числах можно вот так: 1, 10, 11, 100, 101.

Это чем-то похоже на водопроводный кран: вода течет в зависимости от того, открыта или закрыта заслонка – только вместо воды у транзисторов напряжение, и состояния может быть два — есть напряжение или нет, 0 или 1.

Транзисторы бывают разных типов и используются они в электронике для того, чтобы реализовывать логические операции с ноликами и единичками.

Если мы подключим последовательно два крана к одной трубе, вода потечет только если оба крана включены, получится «логическое И»:

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

А если подключить два крана параллельно, то вода потечет, если хоть один кран включен, это называется «логическое ИЛИ»:

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Транзисторы соединяют друг с другом в разной последовательности для того, чтобы реализовать разные логические операции: И, ИЛИ, НЕ, Исключающее ИЛИ и так далее. Для каждой такой функции придуманы специальные обозначения:

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

А вот, например, схема устройства, которое складывает два двузначных числа: AB + CD = XYZ

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

То есть, если на A и на D подать напряжение, то на выходе будет напряжение у Z и Y, а на X напряжения не будет:
AB + CD = XYZ
10 + 01 = 011

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Те же самые вычисления можно производить не только на полупроводниковых транзисторах. В огромных шкафах старых аналоговых телефонных станций происходило то же самое, что и в микросхемах, только вместо транзисторов там были обычные электрические реле. А первые компьютеры были вообще механическими и сложные вычисления производились при помощи шестеренок еще в античные времена.

Если к контактам X, Y и Z мы подключим по светодиоду, а к контактам A, B, C и D подключим выключатели, то у нас получится простейший электронный калькулятор.

Микрочип состоит из сотен, тысяч и миллионов таких вот транзисторов, соединенных в одну сеть, потому что есть задачи посложнее, чем сложить два числа: калькулятор, флешка, управление кассовым аппаратом, ядерной электростанцией.

Центральный процессор в компьютере — тоже микрочип, только невероятно сложный. Я пишу этот текст на компьютере под упралением центрального процессора, состоящего из 1,17 миллиарда транзисторов. На этой картинке его увеличенное изображение. Для того, чтобы каждый транзистор в нем был размером хотя бы в один пиксель, надо увеличить ее примерно в 200 раз.

Источник

25 микрочипов, потрясших мир

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

В разработке микрочипов, как и в жизни, мелочи иногда складываются в значительные явления. Выдумайте хитрую микросхему, создайте её из полоски кремния, и ваше маленькое создание может привести к технологической революции. Так произошло с микропроцессором Intel 8088. И с Mostek MK4096 4-килобитной DRAM. И с Texas Instruments TMS32010 цифровым процессором сигналов.

Среди множества отличных чипов, появившихся на фабриках за пятьдесят лет царствования интегральных схем, выделяется одна небольшая группа. Их схемы оказались настолько передовыми, настолько необычными, так опередили своё время, что у нас уже не осталось технологических клише для их описания. Достаточно сказать, что они дали нам технологию, сделавшую наше мимолётное и обычно скучное существование в этой вселенной сносным.

Мы подготовили список из 25 ИС, заслуживающих, по нашему мнению, почётное место на каминной полке дома, который построили Джек Килби и Роберт Нойс [изобретатели интегральной схемы – прим. перев.]. Некоторые из них превратились в долгоиграющую икону поклонения любителей чипов: к примеру, таймер Signetics 555. Другие, например, операционный усилитель Fairchild 741, стали азбучными примерами схем. Некоторые, к примеру, микроконтроллеры PIC от Microchip Technology, продавались миллиардами, и до сих пор продаются. Несколько особых чипов, таких, как флэш-память от Toshiba, создали новые рынки. А по меньшей мере один стал символом гиков в поп-культуре. Вопрос: на каком процессоре работает Бендер, алкоголик, курильщик и достойный порицания робот из «Футурамы»? Ответ: MOS Technology 6502.

Объединяет все эти чипы то, что частично и из-за них тоже инженеры редко выходят гулять на улицу.

Конечно, подобные списки довольно спорные. Кто-то может обвинить нас в капризах и в том, что мы что-то пропустили. Почему мы выбрали Intel 8088, а не первый, 4004? Где устойчивый к радиации военный процессор армейского класса RCA 1802, бывший мозгом множества космических кораблей?

Если вам требуется один итог введения, то пусть он будет таким: наш список – это то, что осталось после множества недель споров до хрипоты между автором, его доверенными источниками и несколькими редакторами IEEE Spectrum. Мы не пытались создать исчерпывающее перечисление каждого чипа, ставшего технологическим прорывом или познавшего коммерческий успех. Мы также не включали в список чипы, величайшие по сути, но настолько неизвестные, что о них помнит только пяток инженеров, их разработавших. Мы сконцентрировались на чипах, ставших уникальными, интересными, потрясающими. Мы выбирали чипы разных типов, от больших и малых компаний, созданные давно и недавно. Более всего мы подбирали ИС, повлиявшие на жизнь множества людей – чипы, ставшие частью потрясших мир гаджетов, символизировавших технологические тренды, или просто обрадовавшие людей.

К каждому чипу прилагается описание того, как он появился, почему был инновационным, даются комментарии инженеров и директоров, причастных к разработке. Эта подборка не для исторического архива, поэтому мы не выстраивали их в хронологическом порядке, или по типу, или по важности. Мы случайным образом разместили их в статье так, чтобы её было интересно читать. Ведь история, по сути, довольно неряшлива.

Signetics NE555 Timer (1971)

И он справился. И изобрёл один из величайших чипов всех времён. 555 был простой ИС, способной работать в качестве таймера или осциллятора. Он станет самым продаваемым среди аналоговых полупроводниковых схем, появится в кухонной технике, игрушках, космических аппаратах и тысячах других вещей.

«А его ведь чуть не раздумали делать», – вспоминает Каменцинд, который в свои 75 продолжает разрабатывать чипы, хотя делает это уже очень далеко от любого китайского ресторана.

Идея 555-го пришла к нему во время работы над цепью фазовой синхронизации. С небольшими исправлениями схема могла работать как простой таймер. Вы приводите его в действие, и он работает определённый период времени. Звучит просто, но тогда ничего подобного не было.

Поначалу инженерный отдел Signetics отверг эту идею. Компания уже продавала компоненты, из которых клиенты могли делать таймеры. Всё могло закончиться на этом, но Каменцинд настаивал. Он пошёл на приём к Арту Фьюри, менеджеру по маркетингу компании. Фьюри идея понравилась.

Каменцинд почти год тестировал прототипы на досках для прототипирования, рисовал компоненты на бумаге и плёночных фотошаблонах Rubylith. «Всё это делалось вручную, безо всяких компьютеров», – говорит он. В итоговой схеме оказалось 23 транзистора, 16 резисторов и 2 диода.

Выйдя на рынок в 1971 году, чип 555 стал сенсацией. В 1975-м Signetics поглотила Philips Semiconductors, ныне известная, как NXP, утверждающая, что продажи исчислялись миллиардами. Инженеры до сих пор используют 555 для создания полезных электронных модулей, а также таких менее полезных штук, как подсветка радиаторных решёток автомобилей в стиле «Рыцаря дорог».

Texas Instruments TMC0281 Speech Synthesizer (1978)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоЕсли бы не TMC0281, E.T. никогда не смог бы «позвонить домой». Это потому, что TMC0281, первый синтезатор речи на одном чипе, был сердцем (или, наверное, ртом?) обучающей игрушки Speak & Spell от Texas Instruments. В фильме Стивена Спилберга плоскоголовый пришелец использует её для постройки межпланетного коммуникатора (если быть точным, кроме этого он использует вешалку, банку из-под кофе и циркулярку).

MOS Technology 6502 Microprocessor (1975)

Прорывом, как говорит Билл Менщ, создавший 6502 совместно с Педдлом, стал минимальный набор инструкций и новый процесс производства, «выдававший в 10 раз больше пригодных чипов, чем у конкурентов». 6502 почти в одиночку заставил упасть стоимость процессоров, что помогло начать революцию персональных компьютеров. Некоторые встроенные системы до сих пор его используют. Интересно, что 6502 также служит электронным мозгом Бендера, робота из «Футурамы», что следует из эпизода от 1999 года.

Texas Instruments TMS32010 Digital Signal Processor (1983)

Microchip Technology PIC 16C84 Microcontroller (1993)

Fairchild Semiconductor μA741 Op-Amp (1968)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоОперационный усилитель – это нарезанный хлеб аналоговой разработки. Вам всегда пригодится пара штучек, а ещё их можно объединить с чем угодно и получить что-нибудь съедобное. Разработчики с их помощью делают предусилители аудио и видео, компараторы напряжения, точные выпрямители и многие другие системы, включённые в повседневную электронику.

А пока менеджеры Fairchild волновались по поводу внезапно возникшей конкуренции, в их лаборатории недавно нанятый Дэвид Фуллагар внимательно изучал LM101. Он понял, что у чипа, пусть и гениально созданного, была парочка недостатков. Во избежание частотных искажений инженерам пришлось приделать к нему внешний конденсатор. Кроме того, входная часть ИС, т.н. фронт-энд, у некоторых чипов был слишком чувствителен к шуму из-за непостоянного качества изготовления полупроводников.

«Фронт-энд выглядел сделанным наспех», – говорит он.

Фуллагар занялся собственной разработкой. Он расширил ограничения полупроводникового производства, внедрив в чип конденсатор на 30 пФ. А как же улучшить фронт-энд? Решение было простым: «меня просто вдруг озарило, когда я вёл машину» – и состояло из парочки дополнительных транзисторов. Они сделали усилитель более плавным, а качество производства – более постоянным.

Intersil ICL8038 Waveform Generator (около 1983)

Критики насмехались над ограниченной производительностью ICL8038 и его склонностью к нестабильному поведению. Этот чип, генератор синусоидальных, прямоугольных, треугольных, и прочих волн, действительно вёл себя несколько капризно. Но инженеры вскоре научились надёжно его использовать, и 8038 стал хитом, который в результате продавали сотнями миллионов, нашедшим бесчисленное количество применений – например, синтезаторы Муга и «синие коробочки», которыми фрикеры пользовались для взлома телефонных компаний в 1980-х. Компонент был настолько популярным, что компания выпустила документ под названием «Всё, что вы всегда хотели узнать об ICL8038». Пример вопроса оттуда: «Почему после соединения 7 и 8 контактов ИС лучше всего работает в условиях изменения температуры?» Intersil прекратили выпуск 8038 в 2002 году, но любители до сих пор разыскивают их и делают домашние функциональные преобразователи и терменвоксы.

Western Digital WD1402A UART (1971)

Гордон Белл известен серией миникомпьютеров PDP, запущенной в 1960-х в Digital Equipment Corp. Он также изобрёл менее известный, но не менее важный чип: универсальный асинхронный приёмник/передатчик, UART. Беллу нужны были схемы для соединения Teletype и PDP-1, а для этого требовалось преобразование параллельных сигналов в последовательные, и наоборот. В его реализацию входило 50 отдельных компонентов. Western Digital, небольшая компания, производившая чипы для калькуляторов, предложила сделать UART на одном чипе. Основатель компании, Эл Филлипс, до сих пор вспоминает, как его вице-президент по разработке показал ему листы плёнки со схемой, готовые к производству. «Я поглядел на них с минуту и обнаружил незамкнутый контур, – говорит Филлипс. – У вице-президента случилась истерика». Western Digital представила WD1402A примерно в 1971, и вскоре за ним последовали другие варианты. Сейчас UART широко используются в модемах, компьютерной периферии и другом оборудовании.

Acorn Computers ARM1 Processor (1985)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоВ начале 1980-х Acorn Computers была мелкой компанией с крупным продуктом. Расположенная в Кембридже, в Англии, фирма продала более 1,5 млн микро-десктопов BBC. Пришло время разработать новую модель, и инженеры решили самостоятельно сделать 32-битный микропроцессор. Они назвали его Acorn RISC Machine, или ARM. Инженеры знали, что задача будет нелёгкой. Они были почти готовы к тому, что непреодолимые проблемы заставят их отказаться от проекта. «Команда была настолько маленькой, что каждое решение приходилось применять, отдавая приоритет простоте – или мы никогда его не закончим!» – говорит один из разработчиков Стив Фёрбер, сейчас профессор в Манчестерском университете. В итоге простота и стала главной особенностью продукта. ARM был небольшим, потреблял мало, программировать для него было легко. Софи Уилсон, разработавшая набор инструкций, всё ещё помнит, как они впервые проверяли чип на компьютере. «Мы написали ‘PRINT PI’, и он выдал правильный ответ, – говорит она. – Мы открыли шампанское». В 1990-м Acorn выделила ARM в отдельное подразделение, и архитектура стала доминировать в области встроенных 32-битных процессоров. Более 10 млрд ядер ARM было использовано во всяких гаджетах, включая один из самых позорных провалов Apple, наладонник Newton, и один из самых оглушительных её успехов, iPhone.

Kodak KAF-1300 Image Sensor (1986)

IBM Deep Blue 2 Chess Chip (1997)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоС одной стороны доски – полтора кило серого вещества. С другой – 480 шахматных чипов. Люди в итоге проиграли компьютерам в 1997, когда играющий в шахматы компьютер от IBM Deep Blue победил тогдашнего чемпиона мира, Гарри Каспарова. Каждый из чипов Deep Blue состоял из 1,5 млн транзисторов, расположенных в логическом массиве, просчитывавшем ходы – а также из RAM и ROM. Все вместе чипы могли обрабатывать по 200 млн шахматных позиций в секунду. Эта грубая сила, скомбинированная с хитрыми функциями оценки игры, и выдавала ходы, названные Каспаровым «некомпьютерными». «Они оказывали серьёзное психологическое давление», – вспоминает главный автор Deep Blue, Фэн Сюн Сю, работающий сегодня в Microsoft.

Transmeta Corp. Crusoe Processor (2000)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоБольшие возможности подразумевают большие радиаторы. И мало живущую батарейку. И безумное энергопотребление. Поэтому целью Transmeta была разработка процессора с низким потреблением энергии, обставившего бы прожорливые аналоги от Intel и AMD. По плану, ПО должно переводить инструкции x86 на лету в машинный код Crusoe, а его эффективный параллелизм экономил бы время и энергию. Его рекламировали, как величайшее достижение со времён создания кремниевых подложек, и одно время так и было. «Инженеры-волшебники вызвали золото процессоров» – так было написано на обложке IEEE Spectrum от мая 2000 года. Crusoe и его преемник, Efficeon, «доказали, что динамическая двоичная трансляция может быть коммерчески успешной», – говорит Дэвид Дитцель, сооснователь Transmeta, сегодня работающий в Intel. К сожалению, добавляет он, чипы появились за несколько лет до активного развития рынка компьютеров с малым энергопотреблением. И, хотя Transmeta не выполнила своих обещаний, при помощи лицензий и судебных исков она заставила Intel и AMD охладить их пыл.

Texas Instruments Digital Micromirror Device (1987)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что18 июня 1999 Ларри Хорнбек повёл свою жену Лору на свидание. Они пошли смотреть «Звёздные войны, эпизод 1» в кинотеатре Бёрбанка, Калифорния. Седеющий инженер не был ярым фанатом джедаев. Они пошли туда из-за проектора. В нём использовался чип – цифровое микрозеркальное устройство – изобретённое Хорнбеком для Texas Instruments. Чип использует миллионы поворотных микроскопических зеркал, чтобы направлять свет через линзу проектора. Этот просмотр был «первой цифровой демонстрацией крупной кинокартины», – говорит Хорнбек. Сегодня кинопроекторы использующие технологию DLP работают в тысячах кинотеатров. Они также используются в проекторных телевизорах, офисных проекторах и крохотных проекторах сотовых телефонов. «Перефразируя Гудини, – говорит Хорнбек, – микрозеркала, джентльмены. Эффект создаётся при помощи микрозеркал».

Intel 8088 Microprocessor (1979)

Был ли какой-то единственный чип, затащивший Intel в список Fortune 500? Компания говорит, что был: 8088. Это был 16-битный ЦП, который IBM выбрала для своей первоначальной линейки ПК, пришедшей к доминированию на рынке настольных компьютеров.

По странной превратности судьбы, название чипа, ставшего известным поддержкой архитектуры x86, не оканчивалось на «86». 8088-й был небольшой переделкой 8086-го, первого 16-битного чипа Intel. Или, как сказал инженер Intel Стивен Морс, 8088 был «кастрированной версией 8086». Это потому, что основной инновацией нового чипа был не шаг вперёд: 8088 обрабатывал данные 16-битными словами, используя при этом 8-битную внешнюю шину данных.

Менеджеры Intel не раскрывали детали проекта 8088 до тех пор, пока дизайн 8086 не был почти закончен. «Управление не хотело задерживать 8086 даже на день, сообщая нам, что раздумывают над 8088», – говорит Питер Столл, ведущий инженер проекта 8086, работавший немного и над 8088.

Только после появления первого рабочего 8086 Intel передала чертежи и документацию в отдел разработки в Хайфе, Израиль, где два инженера, Рафи Реттер и Дэни Стар, изменили чип для работы на 8-битной шине.

Такая модификация оказалось одним из лучших решений компании. ЦП 8088 с 29000 транзисторов требовало меньшее количество вспомогательных чипов, которые могли быть дешевле, и «был полностью совместим с 8-битным железом, а также работал быстрее и помогал организации плавного перехода на 16-битные процессоры», как писали Роберт Нойс и Тэд Хофф из Intel в статье для журнала IEEE Micro magazine в 1981 году.

Micronas Semiconductor MAS3507 MP3 Decoder (1997)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоДо iPod был ещё Diamond Rio PMP300. Вряд ли вы его вспомните. Он появился в 1998 и сразу стал хитом, но затем шумиха утихла быстрее, чем Milli Vanilli. Но одной интересной особенностью плеера было то, что он работал на MP3-декодере MAS3507 – цифровом процессоре сигналов RISC, с набором инструкций, оптимизированным для сжатия и распаковки данных. Чип, разработанный Micronas, позволял Rio запихнуть чуть больше десятка песен во флэш-память – сегодня это смешно, но в то время он мог соревноваться с портативными CD-проигрывателями. Как очаровательно старомодно, не правда ли? Rio и последователи проложили дорогу для iPod, а теперь вы можете носить с собой в кармане тысячи песен – и все альбомы и клипы Milli Vanilli.

Mostek MK4096 4-Kilobit DRAM (1973)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоMostek не был первым DRAM. Но её 4-килобитный DRAM содержал ключевую инновацию – трюк с уплотнением адресов, придуманный сооснователем компании Бобом Пробстингом. По сути, чип использовал те же самые контакты для доступа к столбцам и строкам памяти, уплотняя адресные сигналы. В результате с увеличением объёма памяти чипу не нужно было увеличивать количество контактов, и его можно было сделать дешевле. Оставалась только небольшая проблема с совместимостью. 4096 использовал 16 контактов, а память, изготовляемая Texas Instruments, Intel и Motorola, работала с 22 контактами. В результате произошла одна из самых эпических конфронтаций в истории DRAM. Mostek, поставив своё будущее на этот чип, пыталась обратить в свою веру пользователей, партнёров, прессу и даже своих сотрудников. Фред Бехузен, который, как недавно пришедший в компанию сотрудник, должен был протестировать устройства 4096, вспоминает, как Пробстинг и генеральный директор Севин пришли к нему в его ночное дежурство и провели небольшую конференцию – в 2 часа ночи. «Они смело предсказывали, что через шесть месяцев никому не будет никакого дела до 22-контактной DRAM», – говорит Бехузен. Они были правы. 4096 и его последователи на годы стали основным трендом на рынке DRAM.

Xilinx XC2064 FPGA (1985)

В начале 1980-х разработчики чипов пытались выжать всё возможное из каждого транзистора в схеме. Но затем у Росса Фримена родилась радикальная идея. Он придумал чип, забитый транзисторами, формировавшими не очень строго организованные логические блоки, которые можно было настраивать при помощи софта. Иногда группу транзисторов можно было и не использовать – вот ересь! – но Фриман считал, что закон Мура в итоге сделает транзисторы очень дешёвыми. Так и вышло. Для вывода на рынок чипа, названного программируемая пользователем вентильная матрица FPGA, Фриман стал сооснователем Xilinx. (Странная концепция для компании со странным именем). Когда её первый продукт вышел в 1985 году, сотрудникам дали задание: им нужно было нарисовать вручную пример схемы, использующей логические блоки XC2064, как это сделали бы клиенты компании. Билл Картер, бывший технический директор, вспоминает, как к нему подошёл генеральный директор Берни Вондершмитт, с жалобой на то, что ему «немного не удаётся домашнее задание». Картер с радостью помог боссу. «И вот мы, вооружившись бумагой и цветными карандашами, работали над заданием Берни!» Сегодня FPGA-чипы, продаваемые Xilinx и другими компаниями, используются в таком огромном списке вещей, что его здесь тяжело будет приводить. Вот такая получилась конфигурация!

Zilog Z80 Microprocessor (1976)

Федериго Фаггин хорошо знал, сколько средств и человеко-часов необходимо потратить на вывод микропроцессора на рынок. Работая в Intel, он участвовал в разработке двух плодотворных представителей этого рода: самого первого, 4004, и 8080 из рода Altair. Основав совместно с бывшим коллегой из Intel, Ральфом Унгерманом, компанию Zilog, они решили начать с чего-то попроще: микроконтроллера на одном чипе.

Фаггин и Ангерман сняли офис в пригороде Лос-Альтоса в Калифорнии, накидали бизнес-план и отправились на поиски венчурного капитала. Обедали они в ближайшем супермаркете Safeway – «Сыр камамбер и крекеры», как он вспоминает.

Но вскоре инженеры поняли, что рынок микроконтроллеров и так наводнён очень хорошими чипами. Даже если бы их чип был лучше других, они получили бы очнь небольшую прибыль, и продолжали бы питаться сыром с крекерами. Zilog необходимо было взять прицел повыше в пищевой цепочке – так и родился проект микропроцессора Z80.

Их целью было обойти по производительности 8080 и предложить полную совместимость для программ для 8080, чтобы увести пользователей от Intel. Месяцами Фаггин, Унгерман и Масатоши Шима, ещё один бывший инженер из Intel, работали по 80 часов в неделю, сгорбившись над столами и рисуя схемы Z80. Фаггин вскоре понял, что хоть небольшой размер и может быть красивым [«малое – это красиво» – собрание эссе популярного экономиста Е. Ф. Шумахера / прим. перев.], но глаза от него сильно устают.

«К концу работы мне пришлось купить очки, – говорит он. – Я стал близоруким».

Команда пахала весь 1975 год и вошла в 1976-й. К марту у них, наконец, был прототип чипа. Z80 был современником MOS Technology’s 6502, и как и тот, выделялся не только элегантной схемой, но и низкой ценой ($25). Но чтобы начать его производить, потребовалось потратить много сил на убеждения. «Просто время было насыщенное», – говорит Фаггин, заработавший себе ещё и язву [по современным представлениям, язва – заболевание инфекционное, а не нервное / прим. перев.].

Sun Microsystems SPARC Processor (1987)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Давным-давно, в начале 1980-х, люди носили тёплые гетры неоновых цветов и смотрели «Даллас» [мыльная опера из 13 сезонов про коварного нефтяного магната / прим. перев.], а разработчики микропроцессоров пытались увеличить сложность инструкций ЦП, чтобы за один цикл вычислений можно было выполнять больше действий. Но затем группа из Калифорнийского университета в Беркли, известного своими пристрастиями к контркультуре, предложила противоположный выход: упростите набор инструкций, и обрабатывайте их так быстро, что в результате компенсируете то, что за один цикл выполняется меньше. Группа из Беркли, которую вёл Дэвид Паттерсон, назвала этот подход RISC — reduced instruction set computer [компьютер с сокращённым набором команд].

И если этого было недостаточно, то многие эксперты сомневались, что у компании получится завершить этот проект. Что ещё хуже, у команды маркетинга случилось неприятное озарение: SPARC наоборот будет CRAPS! [азартная игра в кости, или дерьмо во множественном числе – прим. перев.] Членам команды пришлось поклясться, что они не проронят ни звука об этом даже среди сотрудников компании – не говоря уж о том, чтобы эти слухи дошли до их главного конкурента MIPS Technologies, также изучавшего концепцию RISC.

Первая версия минималистического SPARC состояла из «процессора-матрицы на 20000 вентилей, у которого даже не было инструкций для целочисленного умножения и деления», – говорит Роберт Гарнер, ведущий архитектор SPARC, сегодня работающий в IBM. Но при скорости в 10 млн инструкций в секунду он работал в три раза быстрее, чем процессоры с набором сложных инструкций (CISC) того времени.

Sun будет использовать SPARC для работы в прибыльных рабочих станциях и серверах много лет. Первым продуктом на базе SPARC, появившимся в 1987 году, была линейка рабочих станций Sun-4, которая быстро захватила рынок и помогла раскрутить выручку компании за миллиардный рубеж – как и предсказывал Макили.

Tripath Technology TA2020 AudioAmplifier (1998)

Amati Communications Overture ADSL Chip Set (1994)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоПомните, когда вышли DSL-модемы, и вы выкинули тот жалкий модем на 56,6 кбит/с в мусор? Вам, и двум третям всех использующих DSL-технологию людей стоит сказать „спасибо“ Amati Communications, стартапу из Стэнфордского университета. В начале 1990-х они придумали DSL-модуляцию под названием дискретная мультитональная модуляция, DMT. По сути, она позволяет превратить одну телефонную линию в сотни каналов и улучшить передачу данных методом, обратным схеме работы Робина Гуда. „Биты крадут у самых бедных каналов и отдают самым богатым“, – говорит Джон Кьоффи, сооснователь Amati, сейчас – профессор в Стэнфорде. DMT победила конкурентов – включая и предложения от гиганта AT&T – и стала глобальным стандартом для DSL. В середине 1990-х набор микросхем для DSL от Amati, одна аналоговая и две цифровых, продавались не очень активно, но к 2000 объёмы продаж выросли до миллионов. В начале 2000-х продаже превысили 100 млн чипов в год. Texas Instruments купила Amati в 1997.

Motorola MC68000 Microprocessor (1979)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоMotorola опоздала на вечеринку 16-битных процессоров, поэтому решила появиться стильно. Гибридный 16-bit/32-bit MC68000 содержал 68 000 транзисторов, более чем в два раза больше, чем в Intel 8086. У него были внутренние 32-битные регистры, но 32-битная шина сделала бы его слишком дорогим, поэтому 68000-й использовал 24-битную адресацию и 16-битные каналы данных. Это, вероятно, был последний из крупных процессоров, разработанных вручную при помощи карандаша и бумаги. „Я передавал уменьшенные копии чертежей блок-схем, ресурсов исполнительных блоков, декодеров и контрольной логики другим членам проекта“, – говорит Ник Треденик, разрабатывавший логику 68000-го. Копии были мелкие и их было трудно читать, и в итоге его коллеги с усталыми глазами доходчиво сообщили ему об этом. „Однажды я пришёл в офис, и обнаружил на столе копию моих блок-схем размером с кредитку“, – вспоминает Треденик. 68000-й появился во всех ранних макинтошах, а также в Amiga и Atari ST. Серьёзные продажи пошли благодаря встраиванию чипа в лазерные принтеры, аркадные автоматы и индустриальные контроллеры. 68000-й стал также одним из величайших промахов, почти попавших в цель, в одном ряду с Питом Бестом, ушедшим с поста ударника в Beatles. IBM хотела использовать чип в своей линейке ПК, но вместо этого остановилась на Intel 8080, потому что, кроме прочего, 68000 был относительно редким. Как позже заметил один наблюдатель, если бы победила Motorola, то дуополия Windows-Intel, которую называют Wintel, могли бы называть Winola.

Chips & Technologies AT Chip Set (1985)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике чтоК 1984 году, когда IBM представила линейку ПК на базе 80286 AT, компания уже становилась явным лидером в мире настольных компьютеров, и собиралась доминировать там и дальше. Но планы Голубого Гиганта расстроила крохотная фирмочка Chips & Technologies из Сан-Хосе. C&T разработала пять чипов, дублировавших функциональность материнской платы AT, использовавшей 100 чипов. Чтобы убедиться, что набор чипов был совместим с IBM PC, инженеры C&T поняли, что у них есть только один выход. „У нас была мучительная, но, конечно, развлекательная задача – неделями играть в игры“, – говорит Рави Бхатнагар, ведущий дизайнер набора чипов, сейчас – вице-президент Altierre Corp. Чипы C&T позволили таким производителям, как тайваньский Acer делать более дешёвые ПК и запустить вторжение клонов PC. Intel купила C&T в 1997-м.

Computer Cowboys Sh-Boom Processor (1988)

Toshiba NAND Flash Memory (1989)

Чип в электронике что. Смотреть фото Чип в электронике что. Смотреть картинку Чип в электронике что. Картинка про Чип в электронике что. Фото Чип в электронике что

Сага изобретения флэш-памяти началась, когда управляющий фабрикой Toshiba по имени Фуджио Масуока решил переизобрести полупроводниковую память. Но сначала – немного истории.

До появления флэш-памяти единственным способом хранения того, что в то время считалось большими объёмами памяти, были магнитные ленты, флоппи-диски и жёсткие диски. Многие компании пытались создавать полупроводниковые альтернативы, но доступные варианты, такие как EPROM, требовавший ультрафиолета для стирания данных, и EEPROM, работавший без ультрафиолета, были экономически невыгодны.

Входит Масуока-сан из Toshiba. В 1980-м он нанял четырёх инженеров для работы над полусекретным проектом разработки чипа памяти, способного хранить большой объём данных за небольшие деньги. Их стратегия была простой. „Мы знали, что стоимость чипа будет падать, пока размер транзисторов будет уменьшаться“, – говорит Масуока, сейчас работающий техническим директором в Unisantis Electronics в Токио.

Команда Масуока придумала вариант EEPROM, в котором ячейка памяти состояла из одного транзистора. В то время обычным EEPROM требовалось по два транзистора на ячейку. Казалось бы, разница была небольшой, но на стоимость она повлияла сильно.

В поисках запоминающегося имени они остановились на „флэш“, из-за очень большой скорости стирания. Но если вы думаете, что после этого Toshiba бросилась внедрять память в производство и наблюдать, как им капают денежки – вы не знаете, как обычно крупные корпорации относятся к внутренним идеям. Оказывается, что боссы Масуока повелели ему, в общем-то, стереть эту идею.

Он, естественно, не стал этого делать. В 1984 году он представил работу по разработке памяти на конференции IEEE International Electron Devices Meeting. Это побудило Intel к разработке типа флэш-памяти на основе логических вентилей NOR. В 1988 компания представила чип на 256 кбит, нашедший применение в транспорте, компьютерах и других распространённых устройствах, что открыло для Intel неплохую нишу.

Этого хватило, чтобы Toshiba, наконец, решила выводить на рынок изобретение Масуока. Его флэш-чип был основан на технологии NAND, с большой плотностью записи, но сложный в производстве. Успех пришёл в 1989 году, когда первая NAND flash появилась на рынке. Как и предсказывал Масуока, цены продолжали падать.

В конце 1990-х популярности флэш способствовала цифровая фотография, и Toshiba стала одним из крупнейших игроков на многомиллиардном рынке. В то самое время отношения Масуока с другими директорами испортились, и он покинул компанию. Позднее он подал в суд иск с требованием отстегнуть ему часть прибыли, и выиграл.

Теперь NAND flash – ключевой компонент любого гаджета: сотовых телефонов, камер, плееров, и, конечно, USB-флэшек, которые технари так любят носить на шее. „Моя была на 4 гигабайта“, – говорит Масуока.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *