Что больше int в с
Целочисленные типы (справочник по C#)
Целочисленные типы представляют целые числа. Все целочисленные типы являются типами значений. Они также представляют собой простые типы и могут быть инициализированы литералами. Все целочисленные типы поддерживают арифметические операторы, побитовые логические операторы, операторы сравнения и равенства.
Характеристики целочисленных типов
C# поддерживает следующие предварительно определенные целочисленные типы:
Используйте структуру System.Numerics.BigInteger, чтобы представить целое число со знаком без верхней и нижней границ.
Целочисленные литералы
Целочисленные литералы могут быть:
В приведенном ниже коде показан пример каждого из них.
В предыдущем примере также показано использование _ в качестве цифрового разделителя, который поддерживается, начиная с версии C# 7.0. Цифровой разделитель можно использовать со всеми видами числовых литералов.
Тип целочисленного литерала определяется его суффиксом следующим образом:
Если значение, представленное целочисленным литералом, превышает UInt64.MaxValue, происходит ошибка компиляции CS1021.
Как показано в предыдущем примере, если значение литерала выходит за пределы диапазона целевого типа, возникает ошибка компилятора CS0031.
Можно также использовать приведение для преобразования значения, представленного целочисленным литералом, в тип, отличный от определенного типа литерала:
Преобразования
Любой целочисленный тип можно преобразовать в любой другой целочисленный тип. Если целевой тип может хранить все значения исходного типа, преобразование является неявным. В противном случае необходимо использовать выражение приведения для выполнения явного преобразования. Для получения дополнительной информации см. статью Встроенные числовые преобразования.
Спецификация языка C#
Дополнительные сведения см. в следующих разделах статьи Спецификация языка C#:
Урок №31. Целочисленные типы данных: short, int и long
Обновл. 11 Сен 2021 |
На этом уроке мы рассмотрим целочисленные типы данных в языке С++, их диапазоны значений, операцию деления, а также переполнение (что это такое и примеры).
Целочисленные типы данных
Тип | Минимальный размер | |
Символьный тип данных | char | 1 байт |
Целочисленный тип данных | short | 2 байта |
int | 2 байта (но чаще всего 4 байта) | |
long | 4 байта | |
long long | 8 байт |
Примечание: Тип char — это особый случай: он является как целочисленным, так и символьным типом данных. Об этом детально мы поговорим на одном из следующих уроков.
Основным различием между целочисленными типами, перечисленными выше, является их размер, чем он больше, тем больше значений сможет хранить переменная этого типа.
Объявление целочисленных переменных
Объявление происходит следующим образом:
Диапазоны значений и знак целочисленных типов данных
Как вы уже знаете из предыдущего урока, переменная с n-ным количеством бит может хранить 2 n возможных значений. Но что это за значения? Это значения, которые находятся в диапазоне. Диапазон — это значения от и до, которые может хранить определенный тип данных. Диапазон целочисленной переменной определяется двумя факторами: её размером (измеряется в битах) и её знаком (который может быть signed или unsigned).
Целочисленный тип signed (со знаком) означает, что переменная может содержать как положительные, так и отрицательные числа. Чтобы объявить переменную как signed, используйте ключевое слово signed :
По умолчанию, ключевое слово signed пишется перед типом данных.
В некоторых случаях мы можем заранее знать, что отрицательные числа в программе использоваться не будут. Это очень часто встречается при использовании переменных для хранения количества или размера чего-либо (например, ваш рост или вес не может быть отрицательным).
Целочисленный тип unsigned (без знака) может содержать только положительные числа. Чтобы объявить переменную как unsigned, используйте ключевое слово unsigned :
1-байтовая целочисленная переменная без знака (unsigned) имеет диапазон значений от 0 до 255.
Обратите внимание, объявление переменной как unsigned означает, что она не сможет содержать отрицательные числа (только положительные).
Теперь, когда вы поняли разницу между signed и unsigned, давайте рассмотрим диапазоны значений разных типов данных:
Для нематематиков: Используем таблицу 🙂
Начинающие программисты иногда путаются между signed и unsigned переменными. Но есть простой способ запомнить их различия. Чем отличается отрицательное число от положительного? Правильно! Минусом спереди. Если минуса нет, значит число — положительное. Следовательно, целочисленный тип со знаком (signed) означает, что минус может присутствовать, т.е. числа могут быть как положительными, так и отрицательными. Целочисленный тип без знака (unsigned) означает, что минус спереди отсутствует, т.е. числа могут быть только положительными.
Что используется по умолчанию: signed или unsigned?
Так что же произойдет, если мы объявим переменную без указания signed или unsigned?
Тип | По умолчанию | |
Символьный тип данных | char | signed или unsigned (в большинстве случаев signed) |
Целочисленный тип данных | short | signed |
int | signed | |
long | signed | |
long long | signed |
Все целочисленные типы данных, кроме char, являются signed по умолчанию. Тип char может быть как signed, так и unsigned (но, обычно, signed).
В большинстве случаев ключевое слово signed не пишется (оно и так используется по умолчанию).
Программисты, как правило, избегают использования целочисленных типов unsigned, если в этом нет особой надобности, так как с переменными unsigned ошибок, по статистике, возникает больше, нежели с переменными signed.
Правило: Используйте целочисленные типы signed, вместо unsigned.
Переполнение
Вопрос: «Что произойдет, если мы попытаемся использовать значение, которое находится вне диапазона значений определенного типа данных?». Ответ: «Переполнение».
Переполнение (англ. «overflow») случается при потере бит из-за того, что переменной не было выделено достаточно памяти для их хранения.
На уроке №28 мы говорили о том, что данные хранятся в бинарном (двоичном) формате и каждый бит может иметь только 2 возможных значения ( 0 или 1 ). Вот как выглядит диапазон чисел от 0 до 15 в десятичной и двоичной системах:
Десятичная система | Двоичная система |
0 | 0 |
1 | 1 |
2 | 10 |
3 | 11 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
8 | 1000 |
9 | 1001 |
10 | 1010 |
11 | 1011 |
12 | 1100 |
13 | 1101 |
14 | 1110 |
15 | 1111 |
Как вы можете видеть, чем больше число, тем больше ему требуется бит. Поскольку наши переменные имеют фиксированный размер, то на них накладываются ограничения на количество данных, которые они могут хранить.
Примеры переполнения
Рассмотрим переменную unsigned, которая состоит из 4 бит. Любое из двоичных чисел, перечисленных в таблице выше, поместится внутри этой переменной.
«Но что произойдет, если мы попытаемся присвоить значение, которое занимает больше 4 бит?». Правильно! Переполнение. Наша переменная будет хранить только 4 наименее значимых (те, что справа) бита, все остальные — потеряются.
Например, если мы попытаемся поместить число 21 в нашу 4-битную переменную:
Десятичная система | Двоичная система |
21 | 10101 |
Число 21 занимает 5 бит (10101). 4 бита справа (0101) поместятся в переменную, а крайний левый бит (1) просто потеряется. Т.е. наша переменная будет содержать 0101, что равно 101 (нуль спереди не считается), а это уже число 5, а не 21.
Теперь рассмотрим пример в коде (тип short занимает 16 бит):
Результат выполнения программы:
x was: 65535
x is now: 0
Что случилось? Произошло переполнение, так как мы попытались присвоить переменной x значение больше, чем она способна в себе хранить.
Для тех, кто хочет знать больше: Число 65 535 в двоичной системе счисления представлено как 1111 1111 1111 1111. 65 535 — это наибольшее число, которое может хранить 2-байтовая (16 бит) целочисленная переменная без знака, так как это число использует все 16 бит. Когда мы добавляем 1, то получаем число 65 536. Число 65 536 представлено в двоичной системе как 1 0000 0000 0000 0000, и занимает 17 бит! Следовательно, самый главный бит (которым является 1) теряется, а все 16 бит справа — остаются. Комбинация 0000 0000 0000 0000 соответствует десятичному 0, что и является нашим результатом.
Аналогичным образом, мы получим переполнение, использовав число меньше минимального из диапазона допустимых значений:
Результат выполнения программы:
x was: 0
x is now: 65535
Переполнение приводит к потере информации, а это никогда не приветствуется. Если есть хоть малейшее подозрение или предположение, что значением переменной может быть число, которое находится вне диапазона допустимых значений используемого типа данных — используйте тип данных побольше!
Правило: Никогда не допускайте возникновения переполнения в ваших программах!
Деление целочисленных переменных
В языке C++ при делении двух целых чисел, где результатом является другое целое число, всё довольно предсказуемо:
Но что произойдет, если в результате деления двух целых чисел мы получим дробное число? Например:
В языке C++ при делении целых чисел результатом всегда будет другое целое число. А такие числа не могут иметь дробь (она просто отбрасывается, не округляется!).
Правило: Будьте осторожны при делении целых чисел, так как любая дробная часть всегда отбрасывается.
Поделиться в социальных сетях:
Урок №30. Размер типов данных
Комментариев: 23
Всем доброго времени суток. Появился такой вопрос: для объявления без знакового числа, для плюсов, обязательно писать unsigned int X, есть ли сокращенная форма по типу uint X?
Может проще для запоминания было сказать, что тип signed (со знаком) использует 1 (старший бит в байте для записи этого самого знака и для самого числа остается 7 бит (это в случае 1-го байта, для 2- байт 15 и т.д.) и в 7 битах можно записать число не больше чем 128.
К примеру 10000000 это отрицательный ноль. 🙂 Но такого не бывает.
Для того, чтоб числа имели дробь при делении целых чисел можно приписать ноль после точкой. Например : 8.0/5.0 = 1.6
Только это уже совсем другая история)
Достаточно поставить точку одному из выражений. Например: 8. / 5 или 8 / 5.
Остальное компилятор сам подставит)
Вообще, с «железным» правилом «Никогда не допускайте возникновения переполнения в ваших программах!» — сильно погорячились. Потому что очень часто переполнение как раз помогает создать более простой и быстрый код.
Например, нужно много раз увеличивать переменную на 1 и циклически прокручивать все значения от 0 до 255. Писать условие «если равно 255, то присвоить 0» — совсем не нужно, это произойдёт само при прибавлении 1 к 255, если используется 1-байтовая беззнаковая.
Другой очень частый пример: вычисление разности двух значений миллисекундного таймера, чтобы замерить период времени. 4-байтовая переменная с таким таймером переполняется каждые 49 суток. Если система работает непрерывно, то такое может случаться. Когда считаем разность (новое значение таймера минус старое) — возможен случай, когда новое значение уже переполнилось (снова пошло с нуля), а старое ещё нет (огромное число). Но когда вычисляется разность, тут снова произойдёт переполнение (из-за того, что получилось отрицательное значение), и эти два переполнения оказывают взаимно компенсирующее действие, как будто их не было вообще. И разность всё равно будет верной. И не надо городить никаких хитрых алгоритмов.
Скорее всего это какой-то очень древний подход. Никогда не слышал подобного в универе.
Потому что это относится к числам с плавающей точкой. У них отдельный бит хранит знак. В целочисленных типах такого нигде (или почти нигде) нет.
unsigned используется для экономии памяти, это же очевидно. Если знак действительно не нужен за счет дополнительно освобожденного бита, можно увеличить диапазон значений в 2 раза, что в некоторых случаях позволит использовать более «экономные» типы данных.
Ну так нужно указывать другой тип переменной(не целое число). Тогда будет дробь.
Забавная история, почему этот урок так важен =)
В игре Civilization есть баг с механикой агрессии и миролюбия. Суть такова, что агрессивность цивилизации измерялась по шкале от 1 до 10. Девятки и десятки были у всяких Чингисханов, Монтесум и Сталиных, а у духовного пацифиста Махатмы Ганди была единичка. И ещё были модификаторы — строй «республика» уменьшает агрессивность на 1, «демократия» — на 2. Соответственно, сразу же, как только индусы открывали Демократию, у Ганди становилась агрессивность −1.
А теперь внимание. Эта переменная была однобайтная и строго неотрицательная(unsigned), от 0 до 255. Соответственно, агрессивность Махатмы Ганди становилась равна 255 из 10. Поэтому, построив у себя демократию, Ганди двигался рассудком, клепал ядрёные бомбы и умножал всех на ноль.
Действительно хороший пример 🙂 С unsigned нужно быть аккуратным.
Типы данных в C++
В этом руководстве мы узнаем об основных типах данных, таких как int, float, char и т.д. в программировании на C++, с помощью примеров.
Что такое типы данных в C++?
Типа данных в C++ – это объявления переменных. Они определяют тип и размер данных, связанных с переменными. Например:
Здесь age – переменная типа int, это означает, что переменная может хранить только целые числа размером 2 или 4 байта.
Основные типы данных
В таблице ниже показаны основные типы данных в C++, их значение и размеры (в байтах):
Тип данных | Значение | Размер (в байтах) |
---|---|---|
int | Целое число | 2 или 4 |
float | Плавающая точка | 4 |
double | Двойная плавающая точка | 8 |
char | символ | 1 |
wchar_t | Широкий характер | 2 |
bool | Булево | 1 |
void | Пустой |
Теперь давайте обсудим эти фундаментальные типы данных более подробно.
1. int
2. float и double
Как упоминалось выше, эти два типа данных также используются для экспонента. Например:
3. char
Примечание. В С++ целочисленное значение хранится в переменной типа char, а не в самом символе.
4. wchar_t
Обратите внимание на букву L перед кавычками.
Примечание. В C++ 11 также представлены два других типа символов фиксированного размера – char16_t и char32_t.
5. bool
6. void
Примечание. Мы не можем объявлять переменные типа void.
Модификаторы типа
Мы можем дополнительно изменить некоторые из основных типов данных с помощью модификаторов типов. В C++ есть 4 модификатора типа:
Мы можем изменить следующие типы данных с помощью вышеуказанных модификаторов:
Список измененных типов данных
Посмотрим на несколько примеров.
Производные типы данных
Типы данных, производные от основных типов данных, являются производными типами. Например: массивы, указатели, типы функций, структуры и т.д.
Типы данных в языке Си
Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и способ реализации хранения значений и выполнения операций.
Язык Си поддерживает статическую типизацию, и типы всех используемых в программе данных должны быть указаны перед ее компиляцией.
Различают простые, составные и прочие типы данных.
Простые данные
Простые данные можно разделить на
Составные (сложные) данные
Другие типы данных
Программа, написанная на языке Си, оперирует с данными различных типов. Все данные имеют имя и тип. Обращение к данным в программе осуществляется по их именам (идентификаторам).
Идентификатор — это последовательность, содержащая не более 32 символов, среди которых могут быть любые буквы латинского алфавита a — z, A — Z, цифры 0 — 9 и знак подчеркивания (_). Первый символ идентификатора не должен быть цифрой.
Несмотря на то, что допускается имя, имеющее до 32 символов, определяющее значение имеют только первые 8 символов. Помимо имени, все данные имеют тип. Указание типа необходимо для того, чтобы было известно, сколько места в оперативной памяти будет занимать данный объект.
Компилятор языка Си придерживается строгого соответствия прописных и строчных букв в именах идентификаторов и лексем.
INT a=2;
b = A + 3; // идентификатор А не объявлен
b = a + 3; // идентификатор b не объявлен
Целочисленные данные
Целочисленные данные могут быть представлены в знаковой и беззнаковой форме.
Основные типы и размеры целочисленных данных:
Количество бит | Беззнаковый тип | Знаковый тип |
8 | unsigned char 0…255 | char -128…127 |
16 | unsigned short 0…65535 | short -32768…32767 |
32 | unsigned int | int |
64 | unsigned long int | long int |
Вещественные данные
Вещественный тип предназначен для представления действительных чисел. Вещественные числа представляются в разрядной сетке машины в нормированной форме.
Нормированная форма числа предполагает наличие одной значащей цифры (не 0) до разделения целой и дробной части. Такое представление умножается на основание системы счисления в соответствующей степени. Например, число 12345,678 в нормированной форме можно представить как
12345,678 = 1,2345678·10 4
Число 0,009876 в нормированной форме можно представить как
В двоичной системе счисления значащий разряд, стоящий перед разделителем целой и дробной части, может быть равен только 1. В случае если число нельзя представить в нормированной форме (например, число 0), значащий разряд перед разделителем целой и дробной части равен 0.
В общем случае вещественное число в разрядной сетке вычислительной машины можно представить в виде 4 полей.
Различают три основных типа представления вещественных чисел в языке Си:
Тип | Обозна- чение в Си | Кол-во бит | Биты степени | Мантисса | Сдвиг |
простое | float | 32 | 30…23 | 22…0 | 127 |
двойной точности | double | 64 | 62…52 | 51…0 | 1023 |
двойной расширен- ной точности | long double | 80 | 78…64 | 62…0 | 16383 |
Как видно из таблицы, бит целое у типов float и double отсутствует. При этом диапазон представления вещественного числа состоит из двух диапазонов, расположенных симметрично относительно нуля. Например, диапазон представления чисел типа float можно представить в виде:
Для представления числа в двоичной системе счисления преобразуем отдельно целую и дробную части:
178,12510 = 10110010,0012=1,0110010001·2 111
Для преобразования в нормированную форму осуществляется сдвиг на 7 разрядов влево).
Для определения степени числа применяем сдвиг:
0111111+00000111 = 10000110.
Символьный тип
Логический тип
Логический тип применяется в логических операциях, используется при алгоритмических проверках условий и в циклах и имеет два значения:
В программе должно быть дано объявление всех используемых данных с указанием их имени и типа. Описание данных должно предшествовать их использованию в программе.
Типы данных в языке C++
Основные типы данных
Базовые типы данных
Модификации базовых типов данных
Дополнительные символьные типы
Автоматическое назначение типа
Примечания
Для вывода на консоль символов wchar_t следует использовать не std::cout, а поток std::wcout. При этом поток std::wcout может работать как с char, так и с wchar_t. А поток std::cout для переменной wchar_t вместо символа будет выводить его числовой код.
В стандарте С++11 были добавлены типы char16_t и char32_t, которые ориентированы на использование Unicode. Однако на уровне ОС пока не реализованы потоки для работы с этими типами. Поэтому если потребуется вывести на консоль значения переменных этих типов, то необходимо преобразовать переменные к типам char или wchar_t.
Преобразование типов
Преобразование типов происхоит когда требуется конвертация значений из одного типа данных в другой. Преобразование типов может происходить в следующих случаях:
Перобразование может быть неявным, когда компилятор автоматически конвертирует один тип в другой, и явным, когда программист сам указывает в какой тип нужно сконвертировать значение.
Неявное преобразование типов
Преобразование, когда значение из одного типа конвертируется в другой тип, большего размера, называется числовым расширением и всегда безопасно и не приводит к потере данных.
Когда значение типа данных конвертируется в аналогичный, но меньший по размеру тип данных, или конвертация происходит между разными типами данных, то это называется числовой конверсией и может (но не всегда) приводить к потере данных.
Арифметические выражения
При обработке выражений компилятор разбивает каждое выражение на отдельные подвыражения. Арифметические операторы требуют, чтобы их операнды были одного типа данных. Чтобы это гарантировать, компилятор использует следующие правила:
Приоритет типов операндов для арифметических операций:
Явное преобразование типов
В языке C++ есть 5 видов операций явного преобразования типов:
Конвертация в стиле языка C
В программировании на языке Cи явное преобразование типов данных выполняется с помощью оператора ( ).
Язык C++ также позволяет использовать этот оператор следующим образом:
Конвертация в стиле языка C не проверяется компилятором, поэтому она может быть неправильно использована, например привести к переполнению.
Операция static_cast
Операция static_cast в языке C++ осуществляет явное и допустимое приведение заданного выражения в указанный тип данных. Операция static_cast аналогична операции «круглые скобки» с одним исключением: она не выполняет приведение указателей на неродственные типы (для этого применяется операция reinterpret_cast). Основным преимуществом операции static_cast является проверка выполнения компилятором во время компиляции с генерацией предупреждений, что усложняет возможность возникновения ошибок.
Операция dynamic_cast
В языке C++ операция dynamic_cast используется для конвертации указателей родительского класса в указатели дочернего класса. Это является наиболее распространенным применением оператора dynamic_cast.Этот процесс называется приведением к дочернему типу (или «понижающим приведением типа»).
Если dynamic_cast не может выполнить конвертацию, то он возвращает нулевой указатель, поэтому нужно делать проверку результата динамического приведения на нулевой указатель. Оператор dynamic_cast также может использоваться и со ссылками. Работа dynamic_cast со ссылками аналогична работе с указателями, но поскольку в языке C++ не существует «нулевой ссылки», то dynamic_cast не может возвратить «нулевую ссылку» при сбое. Вместо этого dynamic_cast генерирует исключение типа std::bad_cast.
Поскольку динамическое приведение выполняет проверку во время работы программы, использование оператора dynamic_cast немного снижает производительность. Понижающее приведение также может быть выполнено и через оператор static_cast. Основное отличие заключается в том, что static_cast не выполняет проверку во время запуска программы. Это позволяет оператору static_cast быть быстрее, но опаснее оператора dynamic_cast.
Существуют случаи, в которых понижающее приведение с использованием оператора dynamic_cast не работает:
В общем, использование виртуальных функций должно быть предпочтительнее использования понижающего приведения. Однако в следующих случаях понижающее приведение является лучшим вариантом:
Операция const_cast
Операция const_cast используется для снятия/установки модификаторов const, volatile, mutable. Часто это применяется, чтобы обойти неудачную архитектуру программы или библиотеки, для стыковки С и С++, для передачи информации через обобщённые указатели void*, для одновременного написания const- и не-const-версии функции.
Операцию const_cast для сброса const следует использовать только в крайних случаях, когда точно известно поведение программы. А вот использование операции const_cast ради добавления константности можно использовать без опасений получить неопределенное поведение.
При использовании операции const_cast выражение должно быть ссылкой или указателем, а тип должен совпадать с исходным типом вплоть до модификаторов const, volatile и mutable.
Операция reinterpret_cast
Оператор приведения reinterpret_cast используется для приведения несовместимых типов с сохранением битового представления. Может приводить целое число к указателю, указатель к целому числу, указатель к указателю (это же касается и ссылок).
Является функционально усеченным аналогом приведения типов в стиле языка С.
Отличие состоит в том, что reinterpret_cast не может снимать квалификаторы const и volatile, а также не может делать небезопасное приведение типов не через указатели, а напрямую по значению. Например, переменную типа int к переменной типа double привести при помощи reinterpret_cast нельзя.