Что больше log2 22 или log3 75
Вычисление логарифма числа онлайн
Знаков после запятой:
Онлайн калькулятор логарифмов
Калькулятор вычисляет логарифм числа онлайн. Можно вводить как десятичные дроби (в качестве разделителя для десятичных дробей можно использовать как точку, так и запятую), так и обычные (например, если нужно вычислить логарифм то в поле «число» можете смело писать 1/9).
Помните, что операция взятия логарифма определена только для положительных чисел, а основание логарифма должно быть положительным и не должно равняться единице.
Что такое логарифм числа?
Это равенство называют основным логарифмическим тождеством.
Примеры
Решение. По определению, равен показателю степени, в которую нужно возвести число
чтобы получить число
Так как
то эта степень равна двум. То есть
Видно, что для вычисления этого логарифма никакой калькулятор не нужен!
Так как то
Как видите, всё не так уж сложно!
На этом всё интересное о логарифмах не заканчивается, поэтому в продолжение этой статьи любознательным читателям рекомендуем прочитать о свойствах логарифмов.
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение логарифмических уравнений.
Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Введите логарифмическое уравнение
Решить уравнение
Немного теории.
Логарифмическая функция. Логарифмы
Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем \( x = \sqrt[4] <81>= 3 \)
В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.
Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b
log77 = 1, так как 7 1 = 7
Определение логарифма можно записать так:
Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.
Вычислить \( 3^ <-2\log_3 5>\)
Используя свойства степени и основное логарифмическое тождество, находим
Свойства логарифмов
При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.
Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:
Десятичные и натуральные логарифмы
Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.
Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b
Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb
Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:
Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac<\lg b> <\lg a>, \;\; \log_a b = \frac<\ln b> <\ln a>$$
Логарифмическая функция, её свойства и график
В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)
Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.
2) Множество значений логарифмической функции — множество всех действительных чисел.
3) Логарифмическая функция не является ограниченной.
4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.
Ось Oy является вертикальной асимптотой графика функции y = logax
Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:
Логарифмические уравнения
Приемы и методы сравнения логарифмов
Разделы: Математика
Сравнение значений логарифмов или значения логарифма с некоторым числом встречается в школьной практике решения задач не только как самостоятельная задача. Сравнивать логарифмы приходится, например, при решении уравнений и неравенств. Материалы статьи (задачи и их решения) располагаются по принципу “от простого к сложному” и могут быть использованы для подготовки и проведения урока (уроков) по данной теме, а также на факультативных занятиях. Количество рассматриваемых задач на уроке зависит от уровня класса, его профильного направления. В классах с углубленным изучением математики этот материал может быть использован для двухчасового урока-лекции.
1. (Устно.) Какие из функций являются возрастающими, а какие убывающими:
Замечание. Это упражнение является подготовительным.
Замечание. При решении упражнения № 2 можно использовать как свойства логарифмической функции с привлечением графика логарифмической функции, так и следующее полезное свойство:
Положительные числа и 10 (основание логарифма) лежат по разные стороны от 1. Значит,
a >1, то при b>1 справедливо неравенство logab > logcb.
Так как 1 1, то log513 > log713.
5. Сравните числа log26 и 2.
Первый способ (использование монотонности логарифмической функции).
Второй способ (составление разности).
Составим разность .
-1 = ;
7. Сравните числа и 3log826.
Функция y = log2t возрастает на R+, 25 25. Значит,
Составим разность . Отсюда
.
Оценим логарифмы, учитывая, что функции y = log4t и y = log6t возрастающие на R+:
Учитывая, что функции убывающие на R+, имеем:
. Значит,
Замечание. Предложенный метод сравнения называют методом “вставки” или методом “разделения” (мы нашли число 4, разделяющее данные два числа).
Заметим, что оба логарифма больше 1, но меньше 2.
Первый способ. Попробуем применить метод “разделения”. Сравним логарифмы с числом .
Второй способ (умножение на натуральное число).
Замечание 1. Суть метода “умножения на натуральное число” в том, что мы ищем натуральное число k, при умножении на которое сравниваемых чисел a и b получают такие числа ka и kb, что между ними находится хотя бы одно целое число.
Замечание 2. Реализация вышеописанного метода бывает весьма трудоемка, если сравниваемые числа очень близки друг к другу.
В этом случае можно попробовать сравнение методом “вычитания единицы”. Покажем его на следующем примере.
Первый способ (вычитание единицы).
Вычтем из сравниваемых чисел по 1.
В первом неравенстве мы воспользовались тем, что
если c > a > 1, то при b > 1 справедливо неравенство logab > logcb.
Во втором неравенстве – монотонностью функции y = logax.
Замечание. Вычитать из сравниваемых чисел можно любое натуральное число n. При этом часто бывает достаточно взять n = 1.
Второй способ (применение неравенства Коши).
Получаем неравенство .
Найдем множество решений неравенства , удовлетворяющих условию x > 0.
Возведем обе части неравенства в квадрат (при x > 0 обе части неравенства положительны). Имеем 9x 2 0, получаем:
.
Ответ: неравенство верно.
Практикум по решению задач.
2. Расположите в порядке возрастания числа:
Методов сравнения логарифмов много. Цель уроков по данной теме – научить ориентироваться в многообразии методов, выбирать и применять наиболее рациональный способ решения в каждой конкретной ситуации.
В классах с углубленным изучением математики материал по данной теме может быть изложен в форме лекции. Такая форма учебной деятельности предполагает, что материал лекции должен быть тщательно отобран, проработан, выстроен в определенной логической последовательности. Записи, которые делает учитель на доске, должны быть продуманными, математически точными.
Закрепление лекционного материала, отработку навыков по решению задач целесообразно проводить на уроках-практикумах. Цель практикума – не только закрепить и проверить полученные знания, но и пополнить их. Поэтому задания должны содержать задачи разного уровня, от самых простых задач до задач повышенной сложности. Учитель на таких практикумах выступает в роли консультанта.
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение логарифмических неравенств.
Этот математический калькулятор онлайн поможет вам решить логарифмическое неравенство. Программа для решения логарифмического неравенства не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Введите логарифмическое неравенство
Решить неравенство
Немного теории.
Логарифмические неравенства
Неравенства вида
\( log_ax > b \) и \( log_ax 0, \; a \neq 1, \; b \in \mathbb
называют простейшими логарифмическими неравенствами.
Эти неравенства можно переписать в виде
\( log_ax > log_aс \) и \( log_ax 1\)
Функция \(y = log_ax \) возрастает на всей своей области определения, т.е. на интервале \( (0; \; +\infty) \). Поэтому для любого числа \(x > c\) справедливо неравенство \( log_ax > log_aс \), а для любого \( x \in (0; \; c) \) справедливо неравенство \( log_ax 1\) и \( b \in \mathbb
Так как \( \frac<1> <2>= log_42 \), то неравенство можно переписать в виде \( log_4x > log_42 \)
Так как \(4 > 1 \), то функция \( y = log_4x \) возрастающая. Поэтому множество всех решений неравенства есть интервал \( (2; \; +\infty) \).
Ответ: \( (2; \; +\infty) \)