Что больше солнце или бетельгейзе
На небосклоне внезапно потемнела звезда. Что об этом говорят ученые?
Ультрафиолетовые снимки Бетельгейзе, которые сделал телескоп «Хаббл» в конце 2019 года, показали, что эта звезда резко потускнела. Ученые год не могли разгадать загадку этого феномена. Тем временем звезда, к удивлению астрономов, тускнеет снова.
Читайте «Хайтек» в
О какой звезде речь?
Звезда вляется одной из самых больших и ярких звезд на небе. Она располагается в созвездии Ориона. Ее размер и масса в 15–25 раз превышают солнечную. Из-за этого, а также небольшого расстояния до Земли, Бетельгейзе можно легко увидеть невооруженным глазом.
Бетельгейзе примерно в 1 000 раз больше нашего Солнца. Если бы вместо Солнца была Бетельгейзе, то она в среднем простиралась бы примерно до пояса астероидов и периодически достигала бы орбиты Юпитера. Она настолько велика, что мы можем даже составлять своего рода «карты» ее поверхности с помощью телескопных наблюдений.
Также звезда может пульсоровать: она меняет свой размер, то увеличиваясь, то уменьшаясь в диаметре. Диаметр Бетельгейзе при пульсациях варьируется от 500 до 800 диаметров нашего Солнца. В своей наименьшей фазе звезда, будь она в нашей системе, простиралась бы до орбиты Марса, а в максимальной — до орбиты Юпитера.
Из-за пульсаций Бетельгейзе также является переменной звездой — ее яркость также меняется. В период максимальной яркости она является восьмой по яркости звездой ночного неба и ярчайшей звездой созвездия Ориона. На минимуме же она становится 20-й по яркости (сразу после Денеба).
Расстояние до Бетельгейзе около 640 световых лет. Технически может быть так, что она уже взорвалась, но свет от ее взрыва пока не дошел до нас.
В октябре 2019 года звезда начала тускнеть, и к февралю 2020 года ее яркость беспрецедентно уменьшилась. Это было неожиданно даже для красного сверхгиганта (этот класс светил известен своим непостоянным блеском). К апрелю 2020 года яркость Бетельгейзе восстановилась до нормального уровня.
У специалистов было две версии случившегося. Во-первых, звезда могла выбросить временно затмившее ее облако пыли. Это часто случается с красными сверхгигантами, хотя обычно подобные «затмения» не столь масштабны. Во-вторых, поверхность небесного тела могла покрыться темными пятнами.
Группа астрономов во главе с Андреа Дюпри (Andrea Dupree) из Гарвард-Смитсоновского центра астрофизики опубликовала результаты анализа данных наблюдений за Бетельгейзе в 2019-2020 годах.
Данные собрали с помощью «Хаббла», следившего за звездой в ультрафиолетом диапазоне, наземной обсерватории STELLA, которая получала информацию о движении внешних слоев звезды, космической обсерватории STEREO и наземных наблюдателей и обсерваторий (например, TrES), которые отслеживали изменения яркости Бетельгейзе.
Первая версия вскоре подтвердилась: над конвективными ячейками звезды обнаружили пылевые облака.
Ученые пришли к выводу, что в прошлом году из крупной конвективной ячейки на видимой поверхности гиганта произошел выброс плазмы, который был ускорен расширяющимися слоями звезды в ходе очередного цикла долговременных пульсаций. Расширяющийся плазменный пузырь прошел через горячую атмосферу звезды в более холодные внешние области, где плазма остыла, что привело к образованию частиц пыли, создавших пылевое облако, наблюдавшееся в южном полушарии Бетельгейзе.
С сентября по ноябрь 2019 года, как раз перед масштабным падением яркости, « Хаббл » фиксировал поток вещества, который рвался из атмосферы светила наружу со скоростью более 300 тыс. км/час. По расчетам авторов статьи, при этом Бетельгейзе ежедневно теряла вдвое больше массы, чем обычно истекает из нее в виде звездного ветра.
Данные, полученные в ультрафиолете, показали, что внешние слои атмосферы звезды вернулись к прежнему состоянию уже к февралю 2020 года, несмотря на то, что блеск звезды в видимом диапазоне тогда еще не вернулся к прежнему уровню.
На расстоянии миллионов километров от поверхности звезды этот материал достаточно охладился, чтобы из него образовалась пыль, затмившая Бетельгейзе.
Правда, остается вопрос, почему это облако не было обнаружено при наблюдениях на субмиллиметровых волнах. Исследователям еще предстоит на него ответить.
Ожидается, что следующий минимум яркости звезда пройдет в апреле 2021 года, наблюдения за ней будут вестись при помощи космических обсерваторий. Близость звезды позволяет в ходе долговременных наблюдений за ней в деталях изучить процессы потери массы сверхгигантом и его околозвездной среды.
Что происходит сейчас?
С конца апреля наблюдения Бетельгейзе прекратились. Солнце в своем годовом движении по небесной сфере подошло слишком близко к этой звезде, и теперь она находится не на ночном, а на дневном небе. Понятно, что наземные телескопы не могут изучать ее в это время. Однако астрономы нашли способ пронаблюдать светило и выяснить, что оно снова начало тускнеть.
Ученые использовали спутник STEREO-A, предназначенный для исследования солнечного ветра. Летом 2020 года его положение на орбите позволяло наблюдать Бетельгейзе (правда, для этого телескоп приходилось разворачивать на 180 градусов). Краткий отчет об этих наблюдениях опубликован в издании Astronomer’s Telegram.
В июне и июле STEREO-A выполнил в общей сложности пять измерений блеска звезды. Они показали, что яркость светила снова пошла на убыль.
Новое падение блеска Бетельгейзе стало неожиданностью. Обычно яркость этой звезды изменяется в 420-дневном цикле, и в августе-сентябре 2020 года она должна была достичь очередного максимума.
В данный момент ученые пристально следят за развитием ситуации. Бетельгейзе — ближайшая к Земле звезда, доживающая последние тысячелетия (а может быть, и годы) перед взрывом сверхновой. Изучая ее, человечество может узнать много нового о жизни и смерти светил, разгоняющих тьму Вселенной.
Отметим, что Бетельгейзе — не единственная из полуправильных переменных звезд, которая демонстрирует неоднородные изменения блеска. В прошлом году похожее поведение было выявлено у звезды V Гончих Псов, которые объяснялись асимметричной пылевой оболочкой.
Самые большие звезды во Вселенной: топ-10
Самая большая звезда во Вселенной: Unsplash
Самые большие звезды во Вселенной в тысячу раз превышают размеры Солнца. Эти гиганты достигают размеров планетарных систем. Некоторые звезды из списка десяти самых больших можно увидеть в ночном небе.
UY Щита
UY Щита — яркий красный сверхгигант. Считается самой большой из известных человечеству звезд во Вселенной. Расположена в созвездии Щита южного полушария.
Звезда гигантских размеров: ее диаметр — 4 млрд км, а значит в 1700 раз больше солнечного. Диаметр равняется 16 астрономическим единицам (одна астрономическая единица — это расстояния от Солнца до Земли).
Звезда находится на расстоянии 9 500 световых лет от нас, поэтому земляне видят UY Щита такой, какой она была 9,5 тыс. лет назад.
Если поместить сверхгиганта в центр Солнечной системы, он бы достиг орбиты Урана — предпоследней планеты в системе. Объем звезды в 5 млрд раз больше объема Солнца.
Созвездие Щита, в котором находится огромная звезда, можно наблюдать в Казахстане летом. Созвездие найдете по его соседу — созвездию Орел с яркой звездой Альтаир. Однако для наблюдений понадобится бинокль или подзорная труба. В условиях светового загрязнения городскими огнями понадобится телескоп.
Хотя звезда и огромная, она выглядит тускло. Виной тому большое скопление газа на пути между ней и Землей. Если бы не это препятствие, UY Щита была бы одним из самых ярких объектов в ночном небе.
VY Большого Пса
VY Большого Пса — красный гипергигант. Находится в созвездии Большого Пса.
Звезда в 1 400 больше Солнца. Несмотря на это, у нее очень маленькая плотность, поэтому звезда всего в 17 раз тяжелее Солнца. По массе и размерам VY Большого Пса близка к пределу Хаяси — значению размеров, больше которых звезда вырасти не может.
Звезда богата кислородом, тем не менее она легкая: ее плотность ниже плотности воздуха. Если VY Большого Пса поместить в центр нашей планетарной системы, она достигнет краями орбиты Юпитера или даже Сатурна. Звезда продолжает расширяться и уже сейчас в 3 млрд раз превышает объем Солнца.
Расстояние до гиганта — 3 900 световых лет. Сверхгигант не стабильный. Уже сейчас большая часть массы звезды сброшена в окружающее космическое пространство. В ближайшие 100 тыс. лет звезду ждет один из двух катастрофических сценариев:
Наблюдать гиганта на звездном небе можно зимой, так как в это время лучше всего видно созвездие Большого Пса. Найдете его справа от созвездия Ориона, VY Большого Пса находится ниже и левее Сириуса.
WOH G64
WOH G64 — третья звезда по величине среди звезд в обозримой Вселенной. Относится к красным сверхгигантам. Находится в созвездии Золотой Рыбы южного полушария, поэтому в РК ее увидеть не получится. Объем звезды сопоставим с другими лидерами и по разным оценкам достигает показателя 1 500 размеров Солнца.
Звезда уникальна тем, что ее окружает огромное пылевое облако в виде тора. Этот «космический бублик» в 30 тыс. раз больше, чем расстояние от Земли до Солнца. Облако мешает свету звезды пробиваться, поэтому у гиганта неестественно маленькая светимость.
WOH G64 в галактике Большое Магелланово Облако: Wikipedia
Раньше звезда была более массивной. Из-за процесса образования звездного ветра (утечки вещества звезды в космическое пространство) она потеряла до трети своей массы.
WOH G64 находится в соседней нам галактике Большое Магелланово Облако на расстоянии около 163 тыс. световых лет. Свет звезды, который сейчас наблюдаем, был ею излучен, когда на Земле обитали неандертальцы.
VV Цефея А
VV Цефея — двойная звезда затменного типа. Состоит из звезд А и В. Звезда А — четвертая по размерам известная людям звезда, третья — в нашей Галактике.
Она относится к красным гипергигантам, превосходит Солнце в 1050–1900 раз. Светимость превышает солнечную в 200–500 тыс. раз, а масса — в 25–100 раз. VV Цефея А медленно теряет массу из-за звездного ветра.
Вокруг звезды А вращается звезда В. Звезде В нужно около 20 лет, чтобы совершить полный оборот вокруг гигантской звезды. Сама звезда В средняя: по размерам всего лишь в 10 раз больше Солнца.
KW Стрельца
KW Стрельца — это красный сверхгигант в созвездии Стрельца. Он расположен на расстоянии 9 800 световых лет от Солнца, имеет видимую звездную величину 9.35, то есть он невидимый невооруженному глазу.
KW в созвездии Стрельца: Wikipedia
Светимость KW Стрельца примерно в 370 000 раз больше, чем у Солнца, а его диаметр 1460 раз больше нашей звезды. Если бы поставить KW Стрельца вместо Солнца, то его край прошел бы посередине между орбитами Юпитера и Сатурна.
V354 Цефея
V354 Цефея — красный сверхгигант в созвездии Северного полушария Цефей. Находится в Млечном Пути на расстоянии около 9000 световых лет от нашей планеты. Максимальная оценка размера планеты — 1 млрд км, помещенная в середину Солнечной системы звезда достигла бы орбиты Юпитера.
Хотя светимость звезды в 400 тыс. раз больше Солнца, из-за далекого расстояния на небе V354 Цефея невозможно разглядеть невооруженным глазом. Однако с помощью телескопа можно полюбоваться на гиганта: увидите его в нижней части созвездия Цефей.
Мю Цефея
Мю Цефея, или гранатовая звезда Гершеля, — красный сверхгигант в созвездии Цефея. Одна из самых мощных звезд в Галактике Млечный Путь. Гигант в 650–1420 раз больше Солнца.
В РК Цефей наблюдается весь год, но лучше всего он видим с августа по январь. Созвездие легко найти в ночном небе по его соседям: Цефей находится между Полярной звездой, W-образной Кассиопеей и похожим на крест или птицу созвездием Лебедь. Звезда расположена немного ниже самой яркой звезды созвездия Альдерамина.
V509 Кассиопеи
V509 Кассиопеи — звезда в созвездии Кассиопеи, желтый гипергигант. Находится на расстоянии 7 800 световых лет от Земли. Она превышает Солнце в от 400 до 900 раз и тяжелее в 25 раз.
V509 в созвездии Кассиопеи: Wikipedia
Звезду можно наблюдать невооруженным взглядом. Так как Кассиопея считается созвездием северного полушария, жители РК могут без труда полюбоваться гигантом. Найти созвездие Кассиопеи несложно: оно выглядит как буква W. Верх W обращен в сторону Малой Медведицы и Полярной звезды.
Бетельгейзе
Бетельгейзе — яркая звезда ночного неба, красный сверхгигант. Находится в созвездии Ориона. Бетельгейзе в 650–800 раз больше Солнца. Если бы в центр Солнечной системы поместили эту гигантскую звезду, то она бы поглотила Меркурий, Венеру, Землю и Марс.
Хотя звезда огромная по размерам, ее масса всего лишь в 17 раз больше солнечной. Расстояние до звезды — 500–600 световых лет.
Бетельгейзе в созвездии Ориона: Pixabay
У звезды есть другие исторические названия:
Все они переводятся как ‘рука’ или означают ее часть, потому что в созвездии Ориона Бетельгейзе находится на месте руки или плеча мифологического персонажа.
Звезду легко рассмотреть невооруженным взглядом. Делать это лучше зимой, так как в это время года созвездие Орион поднимается над горизонтом. Бетельгейзе — левая верхняя звезда созвездия. Люди с хорошим зрением увидят красноватый оттенок гиганта.
Антарес
Антарес — красный сверхгигант, одна из самых ярких звезд ночного неба. Находится достаточно близко к нам: расстояние до Солнца оценивается в 600 световых лет. Находится в Пузыре I — соседе Местного пузыря, в который вместе с Альдебараном, Альфой Центавра, Вегой, Альтаиром, Капеллой и другими звездами входит Солнечная система.
Антарес в созвездии Скорпиона: Wikipedia
Антарес — узнаваемая с древности звезда. Древнеегипетские храмы ориентированы таким образом, что свет Антареса играл определенную роль в церемониях, что в них проходили. В Древней Персии она считалась царской звездой. В арабском мире ее называли Калб-аль-Акраб (‘сердце скорпиона’).
Звезда такая яркая, потому что в 400–600 раз больше Солнца и находится очень близко к Земле. Если поместить Антарес в центр нашей системы, то он поглотил бы все до Марса, а короной касался бы Юпитера. Звезда хорошо видна в конце весны. Найдете ее в созвездии Скорпиона.
Людям кажется, что они крохотные жители на небольшой планете, если сравнивать Землю с Солнцем. Однако есть во Вселенной супергиганты, в сравнении с которыми Солнце — желтый карлик. Осознать размеры Вселенной невозможно, но знание о самых гигантских светилах поможет переосмыслить место человека в мире.
Уникальная подборка новостей от нашего шеф-редактора
Звезда «Бетельгейзе» – красный сверхгигант, который должен взорваться
Происхождение названия
Основные характеристики звезды Бетельгейзе
Определенные особенности звезды являются крайне интересными для многих астрономов современности. Размер звезды Бетельгейзе узнали одним из первых. Ученые измерили ее угловой диаметр применяя астрономический интерферометр, он составил 0,047″. В дальнейшем, за счет систематического наблюдения, удалось установить, что диаметр звезды изменяется. Если расчеты расстояния до небесного тела верны, то диаметр колеблется от 500 до 800 диаметров солнца.
Помимо изменения диаметра, меняется и цвет Бетельгейзе. На данный момент времени он имеет красный цвет и находится на завершающей стадии жизни. Однако, живший в 1 веке до нашей эры китаец Сыма Цянь в своих исторических записках упоминал о некой звезде желтого цвета. Учитывая все нюансы описания ученые склонны предполагать, что речь шла именно о Бетельгейзе. Всего через век Птолемей указывал на красный оттенок звезды, следовательно, в этом промежутке она перешла в статус красного гиганта.
Еще один примечательный факт заключается в том, что звезда является переменной и ее диаметр постоянно меняется. С 1993 по 2009 он уменьшился на 15%. На фоне этого, тем не менее, яркость звезды существенно не изменилась. Астрономы пока не в состоянии объяснить причины колебания диаметра и продолжают наблюдать за небесным телом. Не исключено, что уменьшение диаметра – это ни что иное, как неверное считывание получаемых данных. На сегодняшний день звезда продолжает уменьшаться, что может свидетельствовать о приближении завершения ее существования.
Как увидеть на ночном небе?
Пусть Бетельгейзе взорвется не так скоро, как хотелось бы, то есть скорее всего мы этого зрелища не увидим, но знать, где расположен этот уникальный объект, не помешает. Известная информация о звезде Бетельгейзе дает понять, что ориентироваться при ее поиске на небосводе необходимо в первую очередь на созвездие Орион. Она входит в его состав и является альфой, то есть самой яркой звездой всего созвездия.
Сравнение с Солнцем
Сейчас ученые не могут ответить наверняка как выглядит звезда Бетельгейзе в точности, поскольку принимаемое за истинный диаметр звезды может оказаться слоем плотного молекулярного газа. А все потому, что мы еще не обладаем достаточными технологиями и такой силой увеличения телескопов, чтобы с Земли или ближайшего к Бетельгейзе спутника, рассмотреть объект подробнее. Тем не менее сравнить этого красного гиганта с нашим желтым карликом вполне возможно.
Начать можно с возраста и здесь ярчайшая звезда Ориона совсем еще малютка – ей всего около 9 млн. лет, тогда как наше Солнце имеет почтенный возраст в 4 с половиной миллиарда. Вес у Бетельгейзе внушительный и составляет около 17 солнечных масс, а его светимость от 80 до 105 раз выше нашего Солнца. Радиус Бетельгейзе точно определить довольно сложно, но он примерно в 760 раз превосходит радиус Солнца.
Будущее звезды
Бетельгейзе – прямой кандидат в суперновые, что можно понять по пульсации небесного тела.
Интересные факты о красном гиганте
Удаленность Бетельгейзе от Земли составляет 643 световых года по последним обновленным данным. Еще в 2007 году ученые предполагали, что до нее как минимум 520 св.лет. Тем не менее точная цифра все еще не известна.
Несмотря на большое расстояние до Земли некоторые последствия взрыва, когда он все таки произойдет, земляне почувствуют. Это может быть понижение температуры на пару градусов, более яркое и активное северное сияние, сбои в работе спутниковых систем, включая мобильную связь.
Бетельгейзе (9 фото)
Звезды — относительно простые астрономические объекты. Это, грубо говоря, гигантские шары из водорода с примесью гелия и некоторого количества более тяжелых элементов, где идут термоядерные реакции. Как именно они будут себя вести и какой будет их конечная судьба, зависит от массы.
Если масса звезды меньше десяти масс Солнца, ее жизнь кончается более или менее спокойно. Она превращается в красный гигант (с Солнцем это произойдет примерно через пять миллиардов лет), то есть раздувается, сбрасывает внешнюю оболочку, а внутреннее ядро, наоборот, сжимается, превращается в белый карлик. Это спокойный процесс, не сопровождаемый катаклизмами.
Звезды более массивные, чем десять масс Солнца, погибают в результате катастрофического взрыва и превращаются в нейтронную звезду или черную дыру, либо вообще перестают существовать как единый объект.
Жизнь звезды — это в основном цепочка смены типов термоядерных реакций, точнее, смены основного типа горючего. На первой стадии, когда звезда формируется из газового облака, температура в ее ядре поднимается до нескольких миллионов градусов, и начинаются реакции превращения водорода в гелий.
Когда водород выгорает, звезды сходят с главной последовательности, и их дальнейшая судьба зависит от массы. У звезд с массой от 0,8 до 8-10 масс Солнца после выгорания водорода в ядре это самое ядро начинает сжиматься и нагревается до температуры в 100 миллионов градусов. Тогда в нем начинается реакция превращения гелия в углерод — реакция слияния трех альфа-частиц в ядро углерода.
В этом случае внешняя оболочка звезды раздувается и появляется красный гигант — это ветвь вправо в середине главной последовательности. Эта стадия проходит примерно в 10 раз быстрее, чем стадия горения водорода, то есть этот этап занимает 10 процентов времени жизни звезды.
Затем, после выгорания гелия, сверхплотное ядро превращается в белый карлик, а оболочка расширяется, сбрасывается и улетает. У маломассивных звезд не хватает гравитации, чтобы еще сильнее сжать центральную область и нагреть ее до температуры в миллиарды градусов, при которой загорается углерод.
Звезды с массой более 8-10 масс Солнца после выгорания водорода тоже сбрасывают оболочку, превращаясь в красные сверхгиганты (это верхний правый угол диаграммы). Когда выгорает и гелий, температура в их центре достигает нескольких миллиардов градусов и начинается реакция слияния ядер углерода с образованием магния, неона и кислорода.
Затем по цепочке начинаются реакции с участием этих элементов, пока в центре звезды не образуются железное ядро. Железо — это «ядерная зола», в том смысле, что если до железа слияния ядер идут с выделением энергии, то после железа этот процесс, наоборот, требует поглощения энергии.
Процесс выгорания углеродного ядра занимает всего несколько тысяч лет. Когда у звезды накопится достаточно много железа в центральной области, ядерные реакции уже не могут поддерживать ее светимость, звезда теряет устойчивость и гравитация «схлопывает» звезду.
В результате центральная область сжимается и превращается либо в нейтронную звезду с плотностью миллиард тонн в кубическом сантиметре, либо в черную дыру. Области, которые над ней находятся, падают вниз, сталкиваются, отбрасываются, образуется ударная волна, которая разбрасывает вышележащие слои звезды в окружающее пространство.
Бетельгейзе, она же альфа Ориона — одна из ярчайших звезд северного неба. Найти ее на небе очень легко — она находится в верхнем левом углу созвездия Ориона, очень хорошо видимое как раз в эти дни. На широте Москвы Орион восходит над горизонтом примерно в пять часов вечера.
Масса звезды составляет примерно 15 ± 3 массы Солнца, а расстояние до нее оценивается примерно в 600-700 световых лет. Это одна из немногих звезд, у которых мы можем различить видимый диск. Еще в 1921 году Альберт Майкельсон с помощью своего интерферометра смог определить ее угловой размер — около 0,047 секунды.
Отчасти из-за яркости звезды и того, что она не наблюдается как точечный объект, мы не можем с высокой точностью определить расстояние до нее, а значит, не можем и точно определить светимость и массу. Все это не дает нам установить, на какой стадии своей эволюции находится Бетельгейзе.
Мы можем сказать, что ее возраст — около восьми миллионов лет, а диаметр примерно в тысячу-полторы раз больше Солнца. Если бы Бетельгейзе была центром Солнечной системы, то внутри такой большой звезды оказалась бы орбита Марса, а то и орбита Юпитера — в зависимости от того, как мы оцениваем расстояние до нее.
В недрах Бетельгейзе на данный момент уже прогорели весь водород и весь гелий, и примерно несколько тысяч лет назад она перешла на стадию горения углерода и превращения его в магний. Есть данные, что в китайских хрониках Бетельгейзе называли не красной, а желтой звездой — возможно, тогда она действительно была еще на предыдущей стадии эволюции.
Все последующие, постуглеродные стадии, гораздо более короткие, продолжаются сотни лет. Понять, на какой стадии Бетельгейзе находится сейчас и сколько ей осталось дожигать свое топливо, пока в центре не образуется железное ядро, достаточно сложно — помимо массы, это зависит от многих других деталей, например от того, как звезда вращается и есть ли у нее магнитное поле.
Но понятно, что в течение нескольких тысяч лет она сожжет весь углерод, а следующие стадии будут еще короче. Возможно, что этот этап уже прошел, может быть, у нее уже начал гореть неон. Достаточно точно можно сказать, что десять тысяч лет — это максимальная продолжительность, оставшаяся Бетельгейзе до стадии железного ядра и взрыва.
Колебания блеска Бетельгейзе были замечены еще Уильямом Гершелем в XIX веке, когда у астрономов не было других способов оценить яркость звезды кроме глазомера. Сейчас для оценки звездной величины используются фотометрические приборы. В соответствии с данными AAVSO, американской организации, объединяющей исследователей переменных звезд, яркость Бетельгейзе колеблется примерно на полторы звездных величины.
Однако в этом декабре яркость звезды достигла «дна» — минимального уровня за всю историю наблюдений с помощью электронных приемников излучения. Согласно данным, опубликованным на сайте астрономических телеграмм, видимая звездная величина Бетельгейзе снизилась до значения 1,125.
Колебания яркости — это одна из особенностей красных сверхгигантов. Звезда находится под действием двух сил: с одной стороны, гравитация стремится сжать ее в точку, а с другой стороны, газовое давление и излучение заставляют ее расширяться во все стороны. У красных сверхгигантов нарушена устойчивость, они колеблются вокруг положения равновесия.
Описание механизма этих колебаний, впервые предложенное Эддингтоном, а потом «доведенное до ума» советским астрономом Сергеем Жевакиным, примерно таково: под действием излучения из центра звезды ее внешние оболочки нагреваются, начинают расширяться, становятся более разреженными, более прозрачными и за счет этого начинают остывать. По мере падения температуры и давления газ начинает вновь стягивать гравитация, он становится менее прозрачным, излучение начинает нагревать его сильнее, и цикл повторяется.
Есть звезды, пульсирующие как часы, — цефеиды, у них очень точный период, но звезды на поздних стадиях эволюции, такие как Бетельгейзе, пульсируют нерегулярно — их точность «сбивается» из-за наличия конвекции во внешних слоях звезды, которая переносит часть тепла, мешая излучению регулировать процесс колебаний. Во время одного цикла, продолжающегося от 150 до 400 дней, радиус Бетельгейзе может существенно меняться.
Внешние слои сверхгиганта до последнего момента «не знают» о том, что происходит в ядре. Все процессы, возбуждающие колебания звезд, похожих на Бетельгейзе, происходят в их внешних слоях. Иными словами, пульсации внешних слоев не отражают процессы, происходящие в центральных областях звезды, поэтому то, что у Бетельгейзе сейчас более глубокий минимум, чем прежде, не говорит нам о том, что звезда скоро взорвется.
Поток нейтрино предвестник взрыва.
Еще 30-40 лет назад мы узнавали о взрыве сверхновой только в момент самого взрыва, но теперь мы сможем узнать о нем заранее — за несколько дней. Мы получим нейтринный сигнал.
В ходе ядерных реакций в центре любой звезды образуется гамма-квант и нейтрино. Гамма-квант, пройдя примерно одну десятую миллиметра, поглощается, потом переизлучается и добирается до поверхности звезды и вылетает «наружу» примерно через 10 миллионов лет. Поэтому с помощью электромагнитных волн узнать, что происходит в центре, просто невозможно.
А нейтрино проходят сквозь звезду без всякого взаимодействия, они летят примерно со скоростью света, а значит, здесь, на Земле, через восемь минут мы можем детектировать нейтрино, родившиеся в центре Солнца.
В момент, когда Бетельгейзе начнет взрываться как сверхновая, — то есть в момент, когда железное ядро в ее центре размером примерно с Землю будет превращаться в нейтронную звезду диаметром с московское Третье кольцо, — температура в ее центре поднимается до 10 миллиардов градусов. Эта колоссальная энергия уносится в основном именно нейтрино.
Нейтрино свободно пронизывают звезду и улетают. А ударная волна в веществе, отразившаяся от нейтронной звезды, будет примерно неделю идти до поверхностных слоев звезды. И только когда она дойдет до поверхности звезды, мы увидим оптическую вспышку.
Именно этот сценарий реализовался при вспышке сверхновой SN 1987A в Большом Магеллановом облаке. Тогда нейтринные детекторы зафиксировали примерно 20 нейтрино, пришедшие примерно за несколько часов до оптической вспышки. Бетельгейзе примерно в 100 раз ближе к нам, значит, поток нейтрино от ее взрыва будет в десятки тысяч раз больше и наши современные детекторы их точно зарегистрируют.
В результате взрыва внешние слои звезды приобретают скорость около 3 тысяч километров в секунду, они будут сталкиваться с веществом, выброшенным раньше — с веществом звездного ветра, которое удаляется от звезды со скоростью несколько километров в секунду. Поэтому сброшенная взрывом оболочка вскоре догонит ветер, возникнет еще одна ударная волна, газ нагреется, возникнет рентгеновское и гамма-излучение.
Спутники это излучение зафиксируют, и на некоторое время Бетельгейзе станет самым ярким рентгеновским источником на небе, но все равно он будет на порядки слабее рентгеновского излучения Солнца.
Нам это ничем не грозит. Какие-то серьезные последствия для нас могли бы наступить, если бы на месте Бетельгейзе находилась звезда с массой порядка сотен масс Солнца, подобная тем звездам, взрывы которых в далеких галактиках мы наблюдаем как длинные гамма-всплески.
Но этот сценарий работает для сферически симметричной звезды. Если звезда вращается, то, когда центральная область начнет сжиматься, вокруг нее образуется диск и два выброса — релятивистских джета, потока вещества с околосветовой скоростью, — которые прошивают звезду насквозь. Именно они продуцируют сверхмощное рентгеновское и гамма-излучение, и если такое событие произойдет рядом, а наша планета окажется на этом луче, то будет плохо.
По счастью, в окрестностях Земли и в нашей половине Галактики таких звезд нет.