Путешествие к центру Земли: о чём расскажет глубочайшая подводная скважина
Сила, сдвигающая континенты
Земное нутро ближе, чем космические дали: примерно под таким девизом работают исследователи над проектом бурения земной коры до верхнего слоя мантии, которая занимает около 80% объёма планеты и весит чуть меньше 70% массы Земли. Пока всё, что было доступно учёным, — это небольшие фрагменты породы, которые случайно вынесло на поверхность, лава, остающаяся после извержения вулканов, и наблюдение за распространением сейсмических волн сквозь толщу Земли.
Протекающие в мантии процессы непосредственно влияют на поверхность планеты. Движение континентов и образование горных хребтов объясняются активностью мантии. Кроме того, под земной корой рождаются землетрясения и цунами, которые угрожают, в частности, Японии, являющейся инициатором проекта. Исследователи считают, что изучение мантии не только станет дорогой научной инициативой, но и принесёт практический результат.
«В Японии есть вулканы, происходят землетрясения и другие природные катастрофы. Хочется создать устройства для слежения за этими происшествиями и для их анализа. Но мы даже не знаем, какие учитывать факторы», — поясняет участник проекта из Японского агентства науки и технологии по изучению морского дна (JAMSTEC) Нацуэ Абе.
Для эффективных прогнозов таких скважин нужно несколько, пока же нет ни одной.
Увидеть мантию своими глазами
Начало инициативе было положено ещё в 2003 году, а осенью 2017 года исследователи из Азии, Европы, Северной Америки и Австралии дадут старт новой стадии проекта по бурению скважины в земной коре в рамках международной программы по исследованию океана IODP. В её рамках исследователи изучат наиболее перспективное, по предварительным оценкам, место: дно Тихого океана неподалёку от Гавайских островов. Есть и две запасные локации. Одна из них находится у побережья Мексики, вторая — недалеко от Коста-Рики.
Несмотря на наибольшую из трёх вариантов глубину — толща океана в выбранном месте у Гавайских островов составляет 4 км, — бурить тут придётся меньше. Толщина земной коры варьируется от 30 до 60 км на суше и от 4 до 7 км в океане. Исследователям придётся пробурить чуть меньше 6 км коры, после чего скважина, предположительно, углубится ещё примерно на километр в мантию.
Чтобы поднять из недр необходимые образцы, учёные придумали хитрый способ. В скважину будут заливать воду и под её давлением на поверхность, как ожидается, выбьет вещество, которое заполняет пространство между ядром и поверхностью Земли.
До глубинных слоёв мантии добраться, очевидно, не получится. Исследователи углубятся примерно до уровня так называемой границы Мохоровичича. Это открытый в 1909 году хорватским геологом Андреем Мохоровичичем условный слой, в котором меняется скорость распространения сейсмических волн, что может говорить об изменении химического состава и физических свойств вещества.
Кроме того, в процессе бурения исследователи смогут узнать, насколько глубоко в поверхности планеты существует жизнь.
Ещё одна попытка
К слову, геологи одновременно разочарованно (от нехватки необходимых знаний) и восхищённо (поскольку планета не перестаёт удивлять учёных) рассказывают: с каждым новым исследованием приходит понимание, что строение даже верхнего слоя Земли сложнее, чем казалось ранее. Чем глубже уходят новые скважины, тем больше новых подробностей о земной коре и её истории выясняют учёные.
Так, масштабный российский проект по бурению — Кольская сверхглубокая скважина — преподносил сюрпризы один за другим.
Место для научного исследования глубин выбрали, поскольку в этом месте граница Мохоровичича находится близко к поверхности, однако добраться до неё так и не получилось. На глубине более 12 км работы свернули по техническим причинам.
Однако за время бурения в 1970—1990 годах учёные узнали, что по мере погружения вглубь Земли температура растёт быстрее, чем предсказывали теоретические расчёты. К тому же было обнаружено, что в твёрдой породе на неожиданной глубине залегает руда относительно невысокой плотности: пробурив 2 километра, геологи обнаружили залежи медно-никелевых руд. Зато базальта — вулканической породы, которую ожидали извлечь с глубины около 5 км в соответствии с анализом сейсмических волн, — найти так и не удалось.
Нынешний проект на первый взгляд обещает быть более успешным. Первые пробы подводного бурения на большую глубину и предварительные исследования проводят при помощи двух судов: японского «Тикю» и американского JOIDES Resolution. Корабль «Тикю» уже продемонстрировал свои возможности: в 2012 году учёные пробурили скважину и извлекли образцы пород с глубины более 2 километров.
Глубина, которую можно достичь при помощи JOIDES Resolution, также впечатляет, несмотря на то что корабль используется на относительном мелководье. В ходе испытаний JOIDES Resolution, которые начались в конце зимы 2017 года в Южно-Китайском море, планируется пробурить четыре скважины глубиной от 882 до 1670 метров на глубине от 2,8 до почти 4 километров.
Тем не менее в 2018 году, как изначально надеялись участники проекта, бурение начать уже не удастся. Техника до сих пор требует доработки. В ходе предстоящих работ на Гавайских островах исследователи будут уточнять толщину коры и другие данные о регионе, чтобы уменьшить риск неудачи и понять, чего не хватает имеющейся аппаратуре. По словам Абэ, активная фаза проекта — бурение скважины — начнётся не позже 2030 года.
В 1970 году на территории Кольского полуострова советские инженеры и геологи начали бурить скважину, которой предстояло стать самой глубокой в мире. Сейчас ее глубина свыше 12 километров.
В ходе работ над столь грандиозным проектом ученым удалось сделать множество открытий. Бурение сверхглубокой скважины позволило осуществить прорыв в области знаний о недрах земли. Но какова была цель бурения?
Прежде чем «вскрывать» земную кору, ученые тщательно подготовились. Они проводили множество исследований, решали немало математических и физических задач. Ведь скважину бурили не для добычи нефти или газа, на этот раз цели были исключительно научными.
Специалистам предстояло впервые воочию рассмотреть устройство земной коры и доказать, либо опровергнуть теорию. Многие еще со школьной скамьи знают об устройстве земного шара. Это раскаленное ядро, мантия и земная кора.
Однако строение именно земной коры вызывало у ученых немало вопросов. По идее она должна была состоять из нескольких слоев относительно молодых пород. Но так ли это на самом деле — еще предстояло узнать.
Таким образом, исследования недр земли вызывали не меньший научный интерес, чем исследования космоса. А, как известно, на границах 60-70-х годов прошлого столетия лидеры СССР и США активно боролись за кубок первенства в области научных открытий и достижений.
Когда в конце 50-х годов американские ученые вызвались пробурить земную кору насквозь с целью исследовать ее строение, их советские коллеги смело приняли вызов. Однако инициатива США быстро затухла. Пробурив 5 скважин в Карибском море и достигнув глубины всего 183 метра, они быстро свернули свой грандиозный проект.
Спустя примерно год после этого, в 1962 году Н.Хрущев издал указ использовать метод сверхглубокого исследования для изучения земных недр. При этом ставилось непременное условие — задействовать только отечественное оборудование.
Прежде чем приступать к процессу бурения, лучше ученые страны — геофизики и геохимики занялись составлением теоретической базы. Они представили макет разреза земной коры Кольского полуострова.
Место бурения было выбрано тоже не случайно. Ведь данный полуостров состоит из древнейших пород, возраст которых составляет около 3 млрд лет. Исследование разреза столь древних пород могло дать ученым много информации о том, какие процессы происходили на Земле миллиарды лет назад.
Помимо желания обогнать США во всех их начинаниях, советские ученые преследовали и другие не менее амбициозные цели. В первую очередь, специалисты стремились добраться до мантии. Она, как гласит теория, должна была состоять из пород, находящихся в расплавленном состоянии.
Также ученые считали своей задачей изучить особенности строения Балтийского щита, на территории которого находится Кольский полуостров. Они стремились узнать, каковы границы между слоями пород континентальной коры.
Работы велись в течение 20 лет. Иногда происходили аварии, и бурение приостанавливалось. В итоге удалось достичь глубины 12 километров 262 метра.
На Земле нет подобной глубокой скважины. Поэтому еще в 1997 году ее занесли в Книгу рекордов Гиннеса. Все-таки в чем то советским ученым точно удалось обогнать американских.
Достижения и открытия
Удалось ли ученым достичь мантии? Отнюдь. Но им удалось сделать множество открытий, которые перевернули их представления о строении земной коры.
Например, ученые совсем не ожидали, что уже на глубине пяти километров температура повыситься до 75° С, а на глубине 12 километров она и вовсе составила 220° С. В теории, температура земной коры должна была повысится только на глубине свыше 15 километров.
Также предполагалось, что поверхность земной коры состоит из гранитов, под которыми залегает слой базальтов. На деле же все оказалось совсем не так — нижний слой составляли архейские гнейсы.
Добравшись до отметки в 9 км, ученые и вовсе пришли в замешательство. На этой глубине пролегали водоносные горизонты, которым там совсем не место, с точки зрения теории.
Там же был обнаружен оливиновый пояс планеты, в существовании которого многие сомневались. В нем содержится довольно высокая концентрация золота.
Если прокопать ход сквозь Землю, то можно ли попасть в космос?
Для наглядности представим себе глобус Земли, чуть наклоненный у своей оси. Кажется, что если вы прокопаете туннель сквозь Землю, то просто вывалитесь на другой ее стороне и улетите в космос.
К сожалению, прорыть туннель сквозь Землю до сих пор не представляется возможным. Пока люди смогли погрузиться вглубь Земли чуть больше чем на 8 км. Почему? Чем глубже вы опускаетесь, тем выше давление. И на определенной глубине даже стальную трубу это громадное давление превратит в лепешку.
Но если бы все же такое стало возможным, то с какими проблемами вы столкнулись бы во время воображаемого рытья? Что бы вы нашли, дойдя до противоположной стороны?
Во-первых, немного о расстояниях. Путь сквозь центр Земли составляет более 12,7 тыс. км. Именно таков диаметр нашей планеты. Эти километры проходят через разные вещества — от почвы до расплавленных камня и металла.
Вы можете попробовать прокопать такой туннель в своем дворе. Прорыв почву, верхний слой земной коры, вы наверняка наткнетесь на камни, потом на еще более крупные камни, поскольку большая часть земной коры под континентами состоит из гранита, самой распространенной горной породы (его можно увидеть на поверхности в таких местах, как Большой Каньон на плато Колорадо в США). Толщина земной коры под континентами составляет 35—45 км. Под океанами же кора состоит в основном из базальта, и толщина ее намного меньше — от 5 до 10 км.
Под корой находится еще более широкий пласт (его толщина местами доходит до 2900 км), называемый мантией.
Мантия состоит из твердого и жидкого камня, находящегося под неимоверно высоким давлением.
И наконец, если бы вам удалось прорваться через мантию, вы достигли бы центра Земли — ядра, которое занимало бы следующие 3500 км. Ядро просто обжигающе горячо, его температура достигает, вероятно, 5000 °С. При такой сверхвысокой температуре часть ядра состоит из жидких расплавленных металлов, в основном железа. Окруженное большим количеством планетного вещества, ядро Земли подвергается просто сокрушительному давлению. Поскольку вещество ядра очень плотное (сильно сжатое), ученые считают, что ядро — это шар из твердого железа в жидком металле. Даже, несмотря на столь высокую температуру, чрезвычайно высокое давление так сильно сжимает вместе молекулы железа, что оно даже не может расплавиться.
Если бы вам все-таки удалось просверлить твердое ядро Земли, далее ваш путь пролегал бы через те же самые слои, но в обратном порядке: жидкое ядро, мантия, земная кора. Если бы вы пробились сквозь последние метры почвы, вы, возможно, очутились бы в чьем-нибудь саду, или в подвале какого-либо дома, или на шоссе в час пик.
Однако в любом случае вы бы не торчали вверх ногами. Вы просто стояли бы на противоположной стороне Земли, озадаченный и грязный.
Если бы удача совсем вам изменила, вы очутились бы на дне океана. И тогда смотрели бы на дневной свет сквозь толщу воды. А поскольку океаны занимают более 70% поверхности планеты, скорее всего, так и случилось бы.
Где бы вы точно не оказались, так это в космическом пространстве. К сожалению, единственная возможность попасть в космос для нашего современника — это оторваться от Земли с достаточно высокой скоростью, чтобы преодолеть притяжение планеты. Эта скорость называется второй космической и составляет 40 320 км/ч.
Вряд ли мы когда-нибудь узнаем, из чего состоит ядро Земли, — добраться до него и отщипнуть кусочек для исследования невозможно. Но есть шанс прикоснуться к мантии, окутывающей ядро и отделяющей от него земную кору. Прошедшей осенью мир узнал о начале международного проекта «Mohole to Mantle» — бурении скважины на глубину шесть километров под дном океана. Это самый короткий путь к мантии: ближе всего она подходит именно к океаническому дну, местами на 5–6 км. Чтобы добуриться до мантии с континентов, придется пройти не один десяток километров. Причем пройти сквозь слои гранита и базальта, из которых, согласно современным представлениям, состоит земная кора. Под дном океана гранитного слоя нет, сразу начинается базальт. Если всё пойдет по плану, то добраться до мантии ученые смогут уже в 2020 году.
Проект «Мохол»
В названии проекта «Mohole to Mantle» скрыта его предыстория. В 1909 году хорватский геофизик и сейсмолог Андрей Мохоровичич (1857–1936) обнаружил интересное явление: на определенной глубине земной коры резко возрастала скорость распространения упругих продольных сейсмических волн. Сейсмограмма неглубоких землетрясений давала два и более акустических сигналов: прямой и преломленный. Так была открыта и обозначена поверхность раздела между мантией и земной корой, переход от менее плотного слоя литосферы к более плотному с, очевидно, другим химическим составом и фазовым состоянием. Эта поверхность раздела, залегающая на глубине от 5 до 70 км, получила название «поверхность Мохоровичича» (или граница Мохо).
Первая попытка добуриться до границы Мохо была предпринята в 1961–1966 годах. Это был проект Национальной академии наук США, получивший финансирование от Национального научного фонда США. Идею высказали Уолтер Мунк, известный американский океанограф, и его коллега Гарри Гесс в 1957 году. Они-то и придумали название «Mohole», сложив Моho (граница Мохо) и hole (дыра). Их главный аргумент — «науки о Земле дадут подсказки космическим программам» — сработал безошибочно: то было время, когда зарождалась космическая эра, а СССР наводил ужас на Америку своими первыми космическими спутниками.
Место для бурения выбрали в Тихом океане, неподалеку от вулканического острова Гуадалупе, к западу от Мексики, где до дна 3,5 км. Главный вопрос заключался в том, с чего бурить. Ведь тогда еще не было специальных буровых платформ, какими сегодня располагают нефтяные компании. К счастью, в 1956 году консорциум CUSS (Continental, Union, Superior and Shell Oil Companies) разработал первое судно для бурения в океане, которое надлежало испытать. По сути — специальную баржу военно-морского ведомства США, на которую загрузили тяжелейшее буровое оборудование и назвали «CUSS 1». Это было едва ли не первое испытание будущих платформ для глубоководного бурения.
Первая фаза эксперимента (всего предполагалось три) продолжалась с 1961 по 1966 год. Было чрезвычайно трудно, особенно удерживать баржу на одном и том же месте в состоянии равновесия. Здесь помогли Военно-морские силы США, которые обеспечивали работу всей своей навигационной мощью, доступной в те годы. Невероятный энтузиазм исследователей помогал преодолевать трудности, тем более что общество с интересом следило, как развиваются события. Известный американский писатель Джон Стейнбек, океанограф-любитель, называл этот проект «первым прикосновением к новому миру» и регулярно писал репортажи в журнал «Лайф» с борта «CUSS 1»: «Первые образцы мягкие. Ядро размером 2,75 дюйма — это серо-зеленая глина возрастом 10–30 миллионов лет».
За пять лет исследователи пробурили пять скважин, собрали множество образцов из базальтового слоя, но до мантии не дошли — проект остановился на отметке 183 метра под дном. Второй его этап так и не начался. К этому моменту было уже потрачено 50 миллионов долларов. Национальный научный фонд признал результаты неудовлетворительными, а конгресс США посчитал расходы на этот проект неоправданными. Проект закрыли, и он остался в истории как первая попытка дотянуться до мантии через океан.
Организованное бурение
Но не только. «Мохол» показал, что глубоководное бурение возможно в принципе и что для этого необходимо развивать соответствующие технологии и оборудование. Вот почему очень скоро, в июне 1966 года, Национальный научный фонд США открывает большую Программу глубоководного морского бурения DSDP (Deep Sea Drilling Program). А уже через два года в морскую экспедицию отправляется научно-исследовательский буровой корабль нового поколения «Гломар Челендежр» («Glomar Challenger») Скриппсовского океанографического института (Сан-Диего, Калифорния), созданный специально для этой программы. Образцы, собранные с его помощью, дали доказательства того, что континенты движутся, а морское дно в рифтовых зонах обновляется. Тогда же ученые предположили, что, видимо, морское дно значительно моложе нашей Земли, не старше 200 миллионов лет.
«Гломар Челенджер» успешно проработал до 1985 года. За эти годы он накрутил 376 тысяч миль, с его помощью были исследованы 624 точки в океане, поднято со дна 170 километров кернов, из которых 57% в качестве образцов отправили в лаборатории для научных исследований. С этого корабля удалось бурить морское дно под семикилометровой толщей воды и углубиться в земную кору под дном на 1,7 км.
В 1985 году Национальный научный фонд США запускает следующую научную программу глубоководного бурения океана ODP (Ocean Drilling Program). Для нее уже готов исследовательский корабль третьего поколения — преемник отработавшего свое «Гломар». Он получил название «JOIDES Resolution», «JR» (Joint Oceanographic Institutions for Deep Earth Sampling) в честь корабля «Resolution», на котором капитан Джеймс Кук совершил свое второе знаменитое путешествие по Тихому океану 200 лет назад.
Результаты первой же экспедиции с его участием подтвердили, что еще 65 миллионов лет назад Гренландия, Канада и Западная Европа существовали в виде одного огромного континента. «JR» стал первым исследовательским кораблем, собравшим образцы породы рядом с черными курильщиками в Атлантическом океане.
Послужной список «JR» за 1985–2003 годы тоже впечатляет. Шесть с половиной тысяч дней он работал в океане, преодолел 356 тысяч миль, исследовал 669 точек в океане, поднял на борт 321,5 км кернов, 69% которых стали объектом исследования, пробурил 1797 скважин под дном океана, самая глубокая из которых — 2,11 км.
Однако каждая следующая сотня метров погружения в глубь тела Земли давалась всё с большим трудом и требовала всё больше денег. К началу восьмидесятых стало ясно, что исследовательское глубоководное бурение требует не только координации, но и объединения ресурсов, потому что страны уже не могут в одиночку осилить бюджеты амбициозных, но столь важных для человечества исследовательских проектов. Такой поворот событий касается не только наук о Земле. Большой адронный коллайдер в ЦЕРНе, международный термоядерный реактор ITER в Кадараше, исследования на Международной космической станции, проект «Геном человека» — все они стали возможны лишь благодаря международной кооперации ученых и объединению финансовых ресурсов.
Вот почему в 2003 году появляется Международная комплексная программа глубоководного бурения в океане IODP (The Integrated Ocean Drilling Program). В апреле Министерство образования, культуры, спорта, науки и технологий Японии и Национальный научный фонд США подписали меморандум, в котором договорились совместно сформировать программу IODP и управлять ею. Вскоре к программе присоединился европейский консорциум ECORD (The European Consortium for Ocean Research Drilling), объединяющий сегодня 17 европейских стран и Канаду. В апреле 2004-го в качестве ассоциированного члена примкнул Китай, в 2006-м — Республика Корея, в 2008-м — Индия. Россия в этом списке не значится.
За декларацией последовала огромная организаторская работа. Были построены три крупнейших современных хранилища кернов в университете TAMU в Техасе (США), в Бременском университете (Германия) и в Университете Коти (Япония). Они доступны всем участникам программы для исследовательских и образовательных целей, как и научные публикации, базы данных и реестр экспедиций, номера которых давно уже перевалили за третью сотню.
Но главное — теперь сообща можно планировать большие экспедиции с грандиозными целями. Именно таким стал проект «Mohole to Mantle», который стартует в октябре 2013 года и подготовка к которому уже началась.
«Открытие Земли»
Инициатором проекта бурения к мантии выступило Японское агентство науки и технологий по изучению морского дня JAMSTEC (Japan Agency for Marine-Earth Science and Technology). Во-первых, потому, что Япония сегодня — крупнейшая морская страна с развитыми морскими технологиями, а во-вторых — исследование океанического дна жизненно важно для Японии, это ключ к решению многих ее проблем.
Япония объявила о большом комплексном проекте «Тикю Хаккэн» («Открытие Земли»). По заказу JAMSTEC японские компании «Mitsui Engineering & Shipbuilding» и «Mitsubishi Heavy Industries» построили специальный исследовательский корабль «Тикю» («Земля»). И в июле 2005-го заказчик получил огромный, красивый, современный буровой корабль четвертого поколения (см. фото). На корабле есть вертолетная площадка, чтобы технические команды могли сменяться каждые две недели, научные лаборатории, в которых могут работать 50 научных сотрудников, и помещения для экипажа из 100 человек. Создание этого шедевра современного инженерного и технического искусства обошлось правительству Японии в 415 миллионов евро.
Не успел «Тикю» сойти на воду, как экспедиции последовали одна за другой. За эти семь лет по программе IODP «Тикю» поработал в 13 экспедициях, не считая пяти сугубо японских исследовательских проектов. Только один международный проект NanTroSEIZE (Nankai Trough Seismogenic Zone Experiment), начавшийся в 2007 году, потребовал восемь раз выходить в океан на продолжительный срок, и до окончания еще год. Его цель — понять, как зарождаются землетрясения и цунами. Для этого исследователи бурят скважины под дном океана в так называемой зоне субдукции, где океаническая кора пододвигается под активную континентальную окраину и погружается в мантию. Именно в таких зонах происходит множество сильных землетрясений, здесь часто просыпаются вулканы и зарождаются мощные цунами.
Бурение происходит на юго-западном побережье Японии, как раз в Японско-Курильской-Камчатской зоне субдукции. Задача — пробурить 13 скважин разной глубины и установить различные сенсоры, чтобы следить за процессами, происходящими на глубине, ловить предвестников землетрясений и цунами, изучить механизм землетрясений. Здесь к концу января ожидается очередной рекорд глубоководного бурения — 3,6 км. Затем последует четвертая стадия проекта, когда бур должен будет проникнуть еще глубже, на саму кухню землетрясений.
Еще одно большое дело, в котором участвовал «Тикю», — это биосферный проект исследования угольных пластов, залегающих глубоко под дном океана на северном побережье острова Хонсю, вблизи полуострова Симокита. В сентябре здесь уже поставлен рекорд — достигнута рекордная отметка под дном океана, 2,466 км. О том, как работал «Тикю» в этой экспедиции, снят впечатляющий документальный фильм, который можно посмотреть в Интернете. Словами этого не пересказать. Лучше один раз увидеть, как исследователи из разных стран мира просто бросаются к кернам, только что поднятым на палубу, нюхают их, трогают и чуть ли не пробуют на язык.
Благодаря этой экспедиции, завершившейся в сентябре 2012 года, собрано огромное количество образцов, исследование которых идет полным ходом. Ученые надеются найти в них разные формы микробной жизни, понять, как они участвуют в глобальном цикле углерода, где берут энергию и питательные вещества на такой большой глубине под землей, как производят природный газ. Вопросов очень много, и все они должны помочь нам лучше понять, как живет и функционирует подвижная и изменчивая система Земля, от которой зависят климат и жизнь на ее поверхности.
За прошедшие семь лет «Тикю» продемонстрировал свою уникальную работоспособность и мощность, устанавливая рекорд за рекордом. Именно этот исследовательский буровой корабль станет главным действующим лицом в проекте «Mohole to Mantle». Проект потребует много денег. И хотя правительство Японии уже вложило почти полмиллиарда евро в строительство корабля, еще как минимум миллиард потребуется на его обслуживание в течение предстоящего путешествия к мантии. Но эта задача решаема, если навалиться всем миром.
Подготовка уже началась. Сейчас исследователи выбирают наиболее подходящее место в океане. Суммарно «Тикю» может обеспечить глубину бурения 10 км. Если мы хотим углубиться в земную кору на 6 км, чтобы встретиться с мантией, то надо выбрать такое место в Тихом океане, где, во-первых, мантия подходит к земной коре на 6 км, а во-вторых, водная толща океана не превышает 4 км, лучше — еще поменьше. И если все получится, то в 2020 году мы получим уникальный образец — кусочек мантии Земли. Это всё равно что получить в руки образец марсианского грунта. Дэмон Тигл (Damon Teagle) из Университета Саутгемптона в Великобритании, один из научных руководителей проекта, назвал его самой грандиозной задачей в истории наук о Земле.
Зачем это нужно?
Глубоководное бурение идет по всему миру. Если посмотреть на карту Мирового океана, то он весь усыпан точками, обозначающими места проникновения под его дно, концентрация которых возрастает к побережью. К началу XXI века количество скважин исчислялось десятками тысяч! Конечно, большинство из них — коммерческие, с их помощью ищут полезные ископаемые, нефть и газ. Однако исследовательское бурение преследует фундаментальные научные цели. Парадоксально, но строение нашей Галактики мы знаем лучше, чем строение Земли. Каждый кусочек керна, поднятый из глубин земной коры, может рассказать нам о многом. Например, о строении коры, которую мы представляем себе пока лишь на основе косвенных экспериментальных данных, прослушивая Землю с помощью разных излучений. Образцы кернов расскажут нам, как далеко простирается жизнь в глубь Земли, как микроорганизмы выживают в таких условиях, когда зародилась жизнь на Земле и многое другое.
Сверхглубокое бурение — это потрясающая интрига, это прямой научный эксперимент, который может дать поразительные, неожиданные, изумляющие результаты, они могут перевернуть наши представления о Земле. Не все, разумеется, но в какой-то части. Именно такие результаты первыми в мире получили советские исследователи на Кольской сверхглубокой скважине. О Кольской сверхглубокой, поднявшей в свое время престиж отечественной науки на невероятную высоту, написано очень много в Интернете, в журналах, в книгах. И тем не менее здесь уместно коротко вспомнить эту красивую и трагическую историю, хотя она связана с бурением на земле, а не в океане.
Самую глубокую в мире научно-исследовательскую скважину на континенте начали бурить в мае 1970 года, в честь 100-летия со дня рождения В. И. Ленина. Закончилось бурение на отметке 12,262 км в 1989 году. Для скважины выбрали место на северо-западе Кольского полуострова, в 10 км от города Заполярный, неподалеку от нашей границы с Норвегией. Здесь на поверхность Балтийского щита выходят древнейшие изверженные породы возрастом около трех миллиардов лет. В толщу именно таких пород пока еще никто не залезал, разве что максимум на один-два километра, бурили в основном осадочные породы. А кроме того, здесь находится так называемый Печенгский прогиб, похожий на огромную чашу, как будто вдавленную в древние породы. Видимо, она образовалась в результате глубинного разлома, и именно здесь находятся крупные медно-никелевые месторождения.
Кольская сверхглубокая должна была ответить на множество вопросов: как происходит образование руд, где пролегают границы между слоями в континентальной коре, как меняется состав пород по мере продвижения в глубь земной коры и другие. Из ее недр с разных глубин подняты уникальные для науки материалы — керны породы суммарной длиной 4,4 км. Что же удалось узнать благодаря Кольской сверхглубокой? Как сказал в одном из выступлений министр геологии СССР (1975–1989), профессор Е. А. Козловскй, каждый метр Кольской — это открытие. О результатах исследования уникальных кернов не раз рассказывал Д. М. Губерман, доктор технических наук, заслуженный геолог РСФСР, бессменный директор Кольской сверхглубокой, ушедший из жизни в октябре 2011 года.
Геологи предполагали, что до глубины 5 км залегает гранитная толща, за которой следуют более прочные и более древние базальтовые породы. Об этом говорили данные сейсмического зондирования. Однако на Кольской скважине, пройдя больше 12 км, так и не добурились до базальта. Значит, послойное строение Земли — не догма? Этот фундаментальный вопрос требует дальнейших исследований.
Кроме того, оказалось, что на глубине более 7 км залегают не более плотные, а менее плотные и менее прочные породы, архейские гнейсы. На глубинах 9–12 км исследователи обнаружили высокопористые породы, насыщенные сильно минерализованными водами, — одно из главных действующих лиц в процессе образования руд. Прежде геологи полагали, что это происходит на значительно меньшей глубине. Но именно в кернах с глубины 9–12 км исследователи обнаружили повышенное содержание золота, до одного грамма на тонну породы. В принципе такая концентрация уже пригодна для промышленной разработки. Хотя столь большая глубина вряд ли сделает этот процесс экономически целесообразным, хотя где-то эти породы выходят на поверхность Земли, надо поискать. А вот наличие воды в порах породы на большой глубине — важнейшее прикладное знание, которое делает абсолютно нецелесообразным захоронение радиоактивных отходов в глубоких скважинах.
Приятную новость принесли керны с глубины 1,8 км. Здесь были найдены большие запасы медно-никелевых руд. Сегодня «Норникель» уже построил соответствующие шахты и начал добычу никеля на этой глубине.
Вообще, на сверхглубокой скважине работать сложно. Оказалось, что по мере углубления в Землю температура растет быстрее, чем было предсказано теоретически: на глубине 6 км градиент составил 20 градусов на каждый километр вместо обещанных 16-ти. На глубине 12 км температура составила 220 градусов — никто не ожидал, что будет так жарко. Исследователи считают, что у этого разогрева отчасти радиогенная природа. Тем не менее наши инженеры создали уникальное оборудование, включая исследовательские приборы, которые могли работать при столь высокой температуре. Вообще, на Кольской сверхглубокой использовали только отечественные машины и механизмы: турбобуры, легкие титановые трубы, механизмы и приборы, которые пришлось совершенствовать по мере работы. И это безусловное достижение.
Большое содержание метана на глубине — хорошая новость для тех, кто сегодня проводит уникальные эксперименты, подтверждающие возможность образования природного газа из минеральных компонентов. В самом деле, все необходимые компоненты — водород, железо, карбонаты, сильное сжатие — на глубине есть. Именно такие условия моделируют в своих экспериментах химики, получающие легкие углеводороды в установках высокого давления.
Очень важно для науки и то, что обнаружены 14 типов окаменелостей микроорганизмов на той глубине, на которой их не должно было бы быть, согласно принятым оценкам возраста жизни на Земле: возраст этих глубинных слоев превышал 2,8 миллиарда лет.
А вот еще один поразительный результат. Когда американцы доставили на Землю первые образцы лунного грунта, то оказалось, что по составу и свойствам они почти идентичны тем, которые подняли из скважины с глубины 3–4 км. Таким образом, предположение, что Земля и Луна некогда были одним целым, получило некоторое экспериментальное подтверждение.
В 1992 году правительство отказалось продолжать финансирование шахты. В 2008 году ее обанкротили, а потом задраили. Слава отечественной науки превратилась в прямом смысле в свалку. Сейчас она закрыта, хотя были планы пробурить до 15 км, точнее — так глубоко, как только окажется возможным. Но сегодня это государству почему-то не нужно. Хотя Кольская сверхглубокая по-прежнему остается самой глубокой вертикальной скважиной в мире.
Керны, которые были подняты из скважины, обеспечили работу исследователям на многие годы. Да и сейчас этот уникальный испытательный стенд мог бы давать ответы на очень важные вопросы, в том числе прикладные. Например — как ведет себя буровое и прочее оборудование на больших глубинах. А если в скважине установить сейсмодатчики и прочие сенсоры на разных глубинах, то, возможно, предсказание разрушительных землетрясений стало бы более точным. Да мало ли что еще полезного можно было бы сделать в этой уникальной глубинной лаборатории! Организовать, например, научный, образовательный и туристический центр, открыть колледж по подготовке буровиков — эта профессия будет чрезвычайно востребована уже в ближайшие годы.
Кольская сверхглубокая не дотянулась до мантии, да и трудно это сделать на континенте — уж больно глубоко надо бурить. Возможно, проект «Mohole to Mantle» решит эту задачу. Сложно, дорого, долго, но стоит того. Ведь мантия, сложенная из силикатов магния, железа и кальция, на долю которой приходится 67% всей земной массы и 83% объема, слишком многое определяет в нашей земной жизни. Фазовые переходы, пластические деформации, теплоперенос — все эти процессы, не останавливающиеся в мантии ни на минуту, приводят в движение континенты и литосферные плиты, порождают землетрясения и цунами, заставляют извергаться вулканы. «Мантия — это двигатель нашей планеты», — точно заметил Дэмон Тигл. Вот почему так важно добраться до нее и получить возможность исследовать ее напрямую.
Если расчеты геофизиков верны и верхняя граница мантии действительно пролегает на глубине 6 км под дном океана (в определенных местах), то очень высока вероятность, что путешествие к мантии в 2020 году завершится успешно и мы заново откроем для себя Землю.
Но это будет лишь первый шаг. Для системного исследования одной глубокой скважины на Земле мало. Нужна сеть подобных скважин по всему миру, на континентах и шельфах. Все они как единая система дадут нам более точное знание. А главное — более точный прогноз приближающихся землетрясений, цунами и вулканических извержений. И в этой мировой системе должна занять свое место Кольская сверхглубокая скважина. Я почему-то уверена, что в ее судьбе точка не поставлена. Хотя времени на размышления очень мало: Земля умеет залечивать свои раны, и через год-другой уникальную скважину можно потерять.