Что будет если матрицу умножить на обратную матрицу
Обратная матрица и её свойства
Эта тема является одной из самых ненавистных среди студентов. Хуже, наверное, только определители.
Фишка в том, что само понятие обратного элемента (и я сейчас не только о матрицах) отсылает нас к операции умножения. Даже в школьной программе умножение считается сложной операцией, а уж умножение матриц — вообще отдельная тема, которой у меня посвящён целый параграф и видеоурок.
Сегодня мы не будем вдаваться в подробности матричных вычислений. Просто вспомним: как обозначаются матрицы, как они умножаются и что из этого следует.
Повторение: умножение матриц
Чтобы случайно не перепутать строки и столбцы местами (поверьте, на экзамене можно и единицу с двойкой перепутать — что уж говорить про какие-то там строки), просто взгляните на картинку:
Определение индексов для клеток матрицы
Почему система координат размещена именно в левом верхнем углу? Да потому что именно оттуда мы начинаем читать любые тексты. Это очень просто запомнить.
В общем, как определять индексы у элементов матрицы, мы разобрались. Теперь давайте разберёмся с умножением.
Умножать можно только согласованные матрицы.
Да, вот такое суровое определение. Из него сразу следует несколько фактов:
Дистрибутивность умножения пришлось отдельно описывать для левого и правого множителя-суммы как раз из-за некоммутативности операции умножения.
Единичная матрица — частый гость при решении матричных уравнений. И вообще частый гость в мире матриц.:)
Что такое обратная матрица
Поскольку умножение матриц — весьма трудоёмкая операция (приходится перемножать кучу строчек и столбцов), то понятие обратной матрицы тоже оказывается не самым тривиальным. И требующим некоторых пояснений.
Ключевое определение
Что ж, пора познать истину.
Казалось бы, всё предельно просто и ясно. Но при анализе такого определения сразу возникает несколько вопросов:
Насчёт алгоритмов вычисления — об этом мы поговорим чуть позже. Но на остальные вопросы ответим прямо сейчас. Оформим их в виде отдельных утверждений-лемм.
Основные свойства
\[\begin
\[\begin
\[\begin
Что ж, уже неплохо. Мы видим, что обратимыми бывают лишь квадратные матрицы. Теперь давайте убедимся, что обратная матрица всегда одна.
Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:
Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.
Впрочем, мы до сих пор ничего не знаем о том, всякая ли квадратная матрица является обратимой. Тут нам на помощь приходит определитель — это ключевая характеристика для всех квадратных матриц.
Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:
На самом деле это требование вполне логично. Сейчас мы разберём алгоритм нахождения обратной матрицы — и станет совершенно ясно, почему при нулевом определителе никакой обратной матрицы в принципе не может существовать.
Но для начала сформулируем «вспомогательное» определение:
Таким образом, мы можем утверждать, что всякая обратимая матрица является невырожденной.
Как найти обратную матрицу
Сейчас мы рассмотрим универсальный алгоритм нахождения обратных матриц. Вообще, существует два общепринятых алгоритма, и второй мы тоже сегодня рассмотрим.
Алгебраические дополнения
Готовьтесь. Сейчас будет боль. Нет, не переживайте: к вам не идёт красивая медсестра в юбке, чулках с кружевами и не сделает укол в ягодицу. Всё куда прозаичнее: к вам идут алгебраические дополнения и Её Величество «Союзная Матрица».
Важное замечание. Вообще-то во «взрослой» математике алгебраические дополнения определяются так:
Таким образом сегодня мы используем слегка упрощённое определение. Но как мы увидим в дальнейшем, его окажется более чем достаточно. Куда важнее следующая штука:
Первая мысль, возникающая в момент осознания этого определения — «это сколько же придётся всего считать!» Расслабьтесь: считать придётся, но не так уж и много.:)
Что ж, всё это очень мило, но зачем это нужно? А вот зачем.
Основная теорема
А теперь — всё то же самое, но разборчивым почерком. Чтобы найти обратную матрицу, нужно:
Задача. Найдите обратную матрицу:
\[\left[ \begin
Решение. Проверим обратимость. Посчитаем определитель:
\[\left| A \right|=\left| \begin
Определитель отличен от нуля. Значит, матрица обратима. Составим союзную матрицу:
Посчитаем алгебраические дополнения:
Итого наша союзная матрица выглядит так:
Осталось посчитать обратную:
Ну вот и всё. Задача решена.
Задача. Найдите обратную матрицу:
Решение. Опять считаем определитель:
Короче, союзная матрица будет выглядеть так:
Следовательно, обратная матрица будет такой:
Ну и всё. Вот и ответ.
Как видите, в конце каждого примера мы выполняли проверку. В связи с этим важное замечание:
Выполнить эту проверку намного проще и быстрее, чем искать ошибку в дальнейших вычислениях, когда, например, вы решаете матричное уравнение.
Альтернативный способ
Элементарные преобразования
Среди всевозможных преобразований матрицы есть несколько особых — их называют элементарными. Таких преобразований ровно три:
Почему эти преобразования называются элементарными (для больших матриц они выглядят не такими уж элементарными) и почему их только три — эти вопросы выходят за рамки сегодняшнего урока. Поэтому не будем вдаваться в подробности.
Важно другое: все эти извращения нам предстоит выполнять над присоединённой матрицей. Да, да: вы не ослышались. Сейчас будет ещё одно определение — последнее в сегодняшнем уроке.
Присоединённая матрица
Наверняка в школе вы решали системы уравнений методом сложения. Ну, там, вычесть из одной строки другую, умножить какую-то строку на число — вот это вот всё.
Так вот: сейчас будет всё то же, но уже «по-взрослому». Готовы?
В чём прикол? А вот в чём:
\[\left[ A\left| E \right. \right]\to \left[ E\left| B \right. \right]\Rightarrow B=<^<-1>>\]
Вот так всё просто! Короче говоря, алгоритм нахождения обратной матрицы выглядит так:
Задача. Найдите обратную матрицу:
Решение. Составляем присоединённую матрицу:
Поскольку последний столбец исходной матрицы заполнен единицами, вычтем первую строку из остальных:
Больше единиц нет, кроме первой строки. Но её мы не трогаем, иначе в третьем столбце начнут «размножаться» только что убранные единицы.
Зато можем вычесть вторую строку дважды из последней — получим единицу в левом нижнем углу:
Теперь можно вычесть последнюю строку из первой и дважды из второй — таким образом мы «занулим» первый столбец:
Умножим вторую строку на −1, а затем вычтем её 6 раз из первой и прибавим 1 раз к последней:
Осталось лишь поменять местами строки 1 и 3:
Готово! Справа — искомая обратная матрица.
Задача. Найдите обратную матрицу:
Решение. Снова составляем присоединённую:
Немного позалимаем, попечалимся от того, сколько сейчас придётся считать. и начнём считать. Для начала «обнулим» первый столбец, вычитая строку 1 из строк 2 и 3:
Наблюдаем слишком много «минусов» в строках 2—4. Умножим все три строки на −1, а затем «выжжем» третий столбец, вычитая строку 3 из остальных:
Теперь самое время «поджарить» последний столбец исходной матрицы: вычитаем строку 4 из остальных:
Финальный бросок: «выжигаем» второй столбец, вычитая строку 2 из строки 1 и 3:
И снова слева единичная матрица, значит справа — обратная.:)
Ну вот и всё. Проверку сделайте сами — мне в лом.:)
Обратная матрица.
Метод обратной матрицы.
Метод обратной матрицы – это один из самых распространенных методов решения матриц и применяется для решения систем линейных алгебраических уравнений (СЛАУ) в случаях, когда число неизвестных соответствует количеству уравнений.
Суть метода обратной матрицы.
Пусть есть система n линейных уравнений с n неизвестными:
Такую систему можно записать как матричное уравнение A* X = B,
где – матрица системы,
– столбец неизвестных,
– столбец свободных коэффициентов.
Обратная матрица к матрице A существует лишь тогда, когда det A ≠ 0. Ввиду этого при решении СЛАУ методом обратной матрицы первым делом находится det A. Если det A ≠ 0, то у системы есть только одно решение, которое можно получить методом обратной матрицы, если же det A = 0, то такая система методом обратной матрицы не решается.
Решение обратной матрицы.
Последовательность действий для решения обратной матрицы:
Приведенный ниже алгоритм решения обратной матрицы по сути такой же, как и приведенный выше, разница только в нескольких шагах: первым делом определяем алгебраические дополнения, а уже после этого вычисляем союзную матрицу C.
Нахождение обратной матрицы.
Нахождение обратной матрицы – это лучше всего делать с помощью присоединённой матрицы.
Теорема: Если к квадратной матрице с правой стороны приписать единичную матрицу такого же порядка и при помощи элементарных преобразований над строками преобразовать начальную матрицу, стоящую слева, в единичную, то полученная с правой стороны будет обратной к начальной.
Пример нахождения обратной матрицы.
Задание. Для матрицы найти обратную методом присоединенной матрицы.
Решение. Дописываем к заданной матрице А справа единичную матрицу 2го порядка:
Из 1й строки вычитаем 2ю:
От второй строки отнимаем 2 первых:
1ю и 2ю строки меняем местами:
От 2й строки отнимаем 2 первых:
Вторую строку умножаем на (-1), а к первой строке добавляем 2ю:
Итак, слева имеем единичную матрицу, а, значит, матрица, которая стоит справа, будет обратной к заданной изначально.
Т.о., имеем .
Ответ после нахождения обратной матрицы:
Замечание. Если на каком-либо этапе в «левой» матрице образуется нулевая строка, значит, что заданная изначально не имеет обратной.
Некоторые свойства операций над матрицами.
Матричные выражения
На базовых уроках Действия с матрицами, Как найти обратную матрицу? мы познакомились с понятием матрицы и основными операциями над матрицами. При этом основные акценты были подробно расставлены на технических приёмах вычисления, чтобы совершенно неподготовленный человек смог быстро научиться решать матрицы. Поэтому чайникам следует начать с первых двух статей и лягушатника с определителем матрицы. Из инструментальных средств рекомендую запастись матричным калькулятором, который позволит контролировать весь процесс решения и не допустить ошибок. Найти его можно, например, на складе математических формул и таблиц.
А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами.
Некоторые свойства операций над матрицами
Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.
Но сначала вернёмся к действиям с матрицами (к слову, в той статье мы уже неявно затронули ряд свойств). Начну с небольшого вопроса, который вызвал трудности у некоторых посетителей сайта:
Можно ли к матрице прибавить число?
Например: . Ну, или наоборот:
Нет. К матрице можно прибавить только другую матрицу, причём точно такого же размера.
Матрицу можно умножить на число. Но сложить их нельзя. Таковы правила игры.
Следует отметить, что допустимо сложение определителя матрицы с числом:
Результат вычисления определителя – число, а два числа суммируются без всяких проблем.
Вышесказанное, естественно, справедливо и для разности, ведь вычитание – это частный случай сложения.
Как на счёт того, чтобы плотно зависнуть у меня сегодня вечером? =) Практика показывает, что наибольшие трудности у студентов вызывает умножение матриц. Так наполним же кружки соответствующей информацией.
Повторим само правило. В статье Действия с матрицами я рассказал о том, какие матрицы можно умножать и привёл ряд наиболее распространённых примеров. Давайте рассмотрим операцию чуть подробнее и выделим два существенных пункта:
1) Смотрим на левую часть. Из первого урока нам известно, что матричное умножение возможно в том и только в том случае, если количество столбцов первой матрицы равно количеству строк второй матрицы.
2) Смотрим на правую часть и обращаем внимание на размерность результата – СКОЛЬКО строк и столбцов должно быть у итоговой матрицы.
Умножить матрицы
Решение: произведение существует, причём итоговая матрица состоит из 1 строки и 2 столбцов:
Ответ:
Умножить матрицы
Это пример для самостоятельного решения.
Предложенные примеры не случайны. Они вроде бы просты, но у начинающих здесь нередко возникает путаница с размерами матрицы-результата. Поэтому читателям с небольшим опытом целесообразно переписать вышеприведённую формулу и особенно серьёзно отнестись к практическим примерам.
А по каким принципам составляются начинка (суммы произведений чисел), думаю, все уже поняли. Дополнительно возьмём на вооружение образную ассоциацию, которая поможет хорошо запомнить действие. Читаем следующий параграф:
Как возвести матрицу в квадрат?
Операция определена только для квадратных матриц – «два на два», «три на три» и т.д.
Возвести квадратную матрицу в квадрат – это значит, умножить её саму на себя:
Возвести в квадрат матрицу
Решение: пример рутинный, и чтобы извлечь максимальную пользу, давайте закрепим очень распространённый случай умножения двух матриц «три на три»:
Строки первой матрицы – это столы в ресторане, а цветные столбцы второй матрицы – официанты. Сначала столы обслуживает красный официант, затем зелёный официант, и под конец застолья – синий официант. Тааак, хватит прикалываться, он не голубой =)
Это действительно удобный мысленный приём, который можно использовать на практике – последовательно (слева направо) перебираем столбцы второй матрицы и «пристраиваем» их к каждой строке первой матрицы.
Ответ:
Возведение матрицы в куб и более высокие степени разберём позже.
Немного о некоммутативности матричного умножения и единичной матрице
Материал, по меньшей мере, частично вам знаком. Для тех, кто не знает термина:
Коммутативность = Перестановочность.
Обычные числа переставлять можно: , а матрицы в общем случае не перестановочны:
. Собственно, подробная иллюстрация с конкретными примерами уже была дана в статье Действия с матрицами.
Рассмотрим некоторые исключения из правила, которые потребуются для выполнения практических задач.
Если у квадратной матрицы существует обратная матрица
, то их умножение коммутативно:
Чтобы проверить, правильно ли найдена обратная матрица, нужно вычислить произведение либо произведение
и убедиться в том, что получится единичная матрица
. Конкретные примеры можно посмотреть в статье Как найти обратную матрицу?
Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: ,
и т.д.
При этом справедливо следующее свойство: если произвольную матрицу умножить слева или справа на единичную матрицу подходящих размеров, то в результате получится исходная матрица:
Как видите, здесь также имеет место коммутативность матричного умножения.
Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: .
Желающие могут провести проверку и убедиться, что:
Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.
Коммутативность числового множителя относительно умножения матриц
Для матриц и действительного числа
справедливо следующее свойство:
То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.
Примечание: вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.
Вычислить произведение
Решение:
(1) Согласно свойству перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!
(2) – (3) Выполняем матричное умножение.
(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .
Окончательный ответ лучше оставить в виде , хотя, в принципе, годится и внесение дроби:
. На технических тонкостях умножения матрицы на число я подробно останавливался на уроке Действия с матрицами.
Ответ:
Маленькая шарада для самостоятельного решения:
Вычислить , если
Решение и ответ в конце урока.
Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь.
Прицепим к локомотиву ещё один вагон:
Как умножить три матрицы?
Прежде всего, ЧТО должно получиться в результате умножения трёх матриц ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)
Произведение трёх матриц можно вычислить двумя способами:
1) найти , а затем домножить на матрицу «цэ»:
;
2) либо сначала найти , потом выполнить умножение
.
Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения:
Перемножить матрицы двумя способами
Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.
1) Используем формулу
Действие первое:
Действие второе:
2) Используем формулу
Действие первое:
Действие второе:
Ответ:
Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ. Так, во втором пункте на втором шаге выполняем умножение , но ни в коем случае не
. С обычными числами такой бы номер прошёл, а с матрицами – нет.
Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:
Найти произведение трёх матриц
Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.
Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.
Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:
Как возвести матрицу в куб и более высокие степени?
Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу в куб, нужно вычислить произведение:
Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: . А матрица, умноженная сама на себя – это квадрат матрицы:
Таким образом, получаем рабочую формулу:
То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу умножить на матрицу
.
Возвести матрицу в куб.
Это небольшая задачка для самостоятельного решения.
Возведение матрицы в четвёртую степень проводится закономерным образом:
Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: – это произведение трёх матриц.
1) . Иными словами, сначала находим
, затем домножаем его на «бэ» – получаем куб, и, наконец, выполняем умножение ещё раз – будет четвёртая степень.
2) Но существует решение на шаг короче: . То есть, на первом шаге находим квадрат
и, минуя куб, выполняем умножение
Дополнительное задание к Примеру 8:
Возвести матрицу в четвёртую степень.
Как только что отмечалось, сделать это можно двумя способами:
1) Коль скоро известен куб, то выполняем умножение .
2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень, то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой .
Оба варианта решения и ответ – в конце урока.
Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:
1) находим ;
2) находим ;
3) возводим матрицу в пятую степень: .
Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.
Во втором разделе урока ожидается не менее пёстрая тусовка.
Матричные выражения
Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки, затем выполняется возведение в степень / извлечение корней, потом умножение / деление и в последнюю очередь – сложение /вычитание.
Если числовое выражение имеет смысл, то результат его вычисления является числом, например:
Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.
Рассмотрим матричное выражение , где
– некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.
В первом слагаемом сначала нужно транспонировать матрицу «бэ»:
, потом выполнить умножение
и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение. Скобки, как и в числовых выражениях, меняют порядок действий:
– тут сначала выполняется умножение
, потом полученная матрица транспонируется и умножается на 2.
Во втором слагаемом в первую очередь выполняется матричное умножение
, и обратная матрица находится уже от произведения. Если скобки убрать:
, то сначала необходимо найти обратную матрицу
, а затем перемножить матрицы:
. Нахождение обратной матрицы также имеет приоритет перед умножением.
С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.
Если матричное выражение имеет смысл, то результат его вычисления является матрицей.
Все задания будут из реальных контрольных работ, и мы начнём с самого простого:
Даны матрицы . Найти:
Решение: порядок действий очевиден, сначала выполняется умножение, затем сложение.
Сложение выполнить невозможно, поскольку матрицы разных размеров.
Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.
Пробуем вычислить второе выражение:
Ответ: действие выполнить невозможно,
.
Даны матрицы .
Найти значения выражений:
Решение: Разбираемся с произведением . Сначала транспонируем матрицы «дэ»:
И умножаем матрицы:
Матричное умножение выполнить невозможно, так как число столбцов матрицы не равно числу строк матрицы
.
А вот с произведением проблем не возникает:
Еще раз заметьте, как на первом же шаге множитель (–1) выносится вперёд, и ноги до него доходят в самую последнюю очередь.
С более сложными выражениями вроде чайникам рекомендую разбираться поэтапно, чтобы не запутаться:
Сначала находим произведение:
Затем считаем второе слагаемое:
И, наконец, всё выражение:
Более подготовленные студенты могут оформить решение одной строкой:
Ответ: действие выполнить невозможно,
,
.
Пара заключительных примеров для самостоятельного решения:
Для матриц Примера №10 выполнить действия:
Вычислить значение матричного многочлена , если
.
В последнем примере решение удобно оформить по пунктам.
Матричные выражения – это просто! И вряд ли на практике вам встретится что-то сложнее, чем разобранные примеры.
Теперь во всеоружии можно приступить к изучению матричных уравнений.
Пример 2: Решение:
Ответ:
Пример 5: Решение:
Ответ:
Пример 7: Решение:
1) Используем формулу
2) Используем формулу
Ответ:
Пример 8: Решение: Сначала возведём матрицу в квадрат:
Возведём матрицу в куб:
Возведём матрицу в четвёртую степень двумя способами:
Ответ:
Пример 11: Решение:
Возведение в квадрат невозможно, поскольку операция определена только для квадратных матриц.
Ответ: , действие
выполнить невозможно,
Пример 12: Решение:
1)
2)
3)
4)
5)
Ответ:
Примечание: выражение можно было вычислить и по-другому – предварительно раскрыть скобки:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам