Что будет если вселенная начнет сжиматься
Спросите Итана: может ли Вселенная всё-таки прийти к Большому сжатию?
Для Большого отскока требуется фаза повторного схлопывания (Большое сжатие), за которой следует расширение (новый Большой взрыв)
Одним из крупнейших прорывов XX века стало определение того, насколько на самом деле наша Вселенная богатая, обширная и массивная. В объёме радиуса порядка 46 млрд световых лет содержится примерно два триллиона галактик. Наша наблюдаемая Вселенная позволяет нам воссоздать всю историю нашей космической истории, протянувшуюся назад вплоть до Большого взрыва и даже, вероятно, немножечко дальше. А что насчёт будущего? Что насчёт судьбы Вселенной? Определённая ли она? Именно это и хочет знать наш читатель:
Вы писали, что Вселенная расширяется с замедляющейся скоростью. Я думал, что Нобелевскую премию выдали за открытие того, что Вселенная расширяется с ускорением. Можете ли вы уточнить ведущие теории? Есть ли среди возможностей Большое сжатие?
Лучшее предсказание будущего поведения находится в прошлом. Но как люди, так и Вселенная иногда могут нас удивить.
После Большого взрыва Вселенная была почти идеально однородной, была заполнена материей, энергией и излучением и быстро расширялась. Эволюция Вселенной в любой момент определяется энергетической плотностью её содержимого.
Скорость расширения Вселенной в любой момент зависит только от двух вещей: общей плотности энергии, существующей в пространстве-времени и пространственной кривизны. Если мы понимаем законы гравитации и то, как разные типы энергии эволюционируют со временем, мы можем воссоздать, какой была скорость расширения в любой момент прошлого. Также мы можем изучить различные удалённые объекты, находящиеся на разных расстояниях от нас, и измерить, как сильно растянулся их свет из-за расширения пространства. Каждая галактика, сверхновая, облако молекулярного газа, и т.п. — всё, что поглощает или испускает свет — расскажет космическую историю того, как расширение пространства растянуло его с момента, когда он был испущен, и до момента, когда мы смогли его наблюдать.
Чем дальше галактика, тем быстрее она удаляется от нас из-за расширения, и тем более её свет испытывает красное смещение, из-за чего нам приходится смотреть во всё более и более длинных волнах.
Из различных независимых наблюдений мы смогли сделать вывод, из чего именно состоит Вселенная. Три крупных и независимых линии наблюдения — это:
Все эти свидетельства вместе указывают на одно непротиворечивое изображение Вселенной. Они говорят нам о том, что есть во Вселенной сегодня, и дают нас космологию, в которой:
Относительная важность различных энергетических компонентов Вселенной в разное время в прошлом. В будущем тёмная энергия приблизится к 100% важности.
Уравнения, управляющие ОТО, в этом смысле весьма определённые: если мы знаем, из чего сегодня состоит Вселенная, а также законы гравитации, мы точно знаем, насколько важным был каждый из компонентов в любой точке прошлого. Сначала доминировали излучение и нейтрино. Миллиарды лет тёмная материя и нормальная материя были самыми важными составляющими. А в последние несколько миллиардов лет — и со временем ситуация будет только ухудшаться — тёмная энергия станет доминирующим фактором расширения Вселенной. Она заставляет Вселенную ускоряться, и именно тут у большинства людей начинается путаница.
Варианты судьбы расширяющейся Вселенной. Обратите внимание на различия разных моделей в прошлом.
В связи с расширением Вселенной мы можем измерить две вещи: скорость расширения, и ту скорость, с которой отдельная галактика отдаляется от нас с нашей точки зрения. Эти параметры связаны, но не совпадают. Скорость расширения говорит о том, как растягивается ткань пространства-времени. Она всегда оценивается в скорости на единицу расстояния, обычно в километрах в секунду на мегапарсек, где мегапарсек — это 3,26 млн световых лет.
Как материя (вверху), излучение (в середине) и космологическая константа развиваются со временем в расширяющейся Вселенной
Если бы не было тёмной энергии, со временем скорость расширения бы падала, приближаясь к нулю, поскольку плотность материи и излучения приближалась бы к нулю с увеличением объёма. Но при наличии тёмной энергии эта скорость расширения приближается к плотности тёмной энергии, какая бы она ни была. Если тёмная энергия, к примеру, является космологической константой, тогда скорость расширения асимптотически стремится к постоянному значению. Но если так, тогда скорость отдельных галактик, отдаляющихся от нас, будет увеличиваться.
Удалённая галактика Маркарян 1018 в оптическом диапазоне с наложением радиоданных (VLT)
Представим, что скорость расширения имеет определённую величину: 50 км/с/мпк. Если галактика расположена в 20 мпк от нас, тогда с нашей точки зрения она будет удаляться от нас со скоростью в 1000 км/с. Но со временем, когда ткань пространства расширится, эта галактика окажется дальше от нас. К тому времени, как она отдалится от нас на 40 мпк, её скорость удаления от нас будет равняться уже 2000 км/с. По прошествии ещё большего времени она будет от нас в десять раз дальше — на расстоянии 200 мпк, и будет удаляться от нас уже со скоростью 10 000 км/с. Ко времени, когда она отдалится на 6000 мпк, она будет удаляться от нас со скоростью в 300 000 км/с, быстрее скорости света. Но это будет продолжаться и далее; чем больше проходит времени, тем быстрее отдаляется от нас галактика. Именно это и имеется в виду под «ускоряющейся» Вселенной: скорость расширения уменьшается, но скорость удаления отдельных галактик растёт со временем.
Композит из ультрафиолетового, видимого и инфракрасного диапазонов проекта Hubble eXtreme Deep Field. Самое большое изображение удалённых частей Вселенной.
Всё это совпадает с лучшими нашими измерениями: тёмная энергия представляет собой постоянную плотность энергии, присущую пространству. С растяжением пространства плотность тёмной энергии остаётся постоянной, и Вселенная закончит своё существование в режиме Большой заморозки, в котором всё, что не связывает гравитация (она связывает, например, нашу местную группу галактик, нашу Галактику, Солнечную систему, и т.п.) разлетится в стороны друг от друга. Если тёмная энергия на самом деле окажется космологической константой, тогда расширение будет происходить вечно, и приведёт к холодной и пустой Вселенной.
Когда астрономы впервые поняли, что Вселенная ускоряется, здравый смысл говорил, что она будет расширяться вечно. Однако пока мы не разберёмся в природе тёмной энергии получше, другие сценарии судьбы Вселенной остаются возможными. Они изображены на диаграмме: Большое сжатие, вечное расширение, Большой разрыв
Главные цели будущих обсерваторий, таких, как ike the Euclid, WFIRST, LSST включают измерения, которые подтвердят, действительно ли тёмная энергия является космологической константой. И хотя ведущая теория выступает в пользу постоянной тёмной энергии, важно рассматривать все возможности, не исключённые наблюдениями и измерениями. И пусть Большое сжатие выглядит маловероятным, его ещё не исключили. С появлением большего количества данных лучшего качества мы ещё можем обнаружить интересные намёки на то, что реальность ещё необычнее, чем большинство из нас предполагало!
Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].
Большой отскок: новые данные ставят под сомнение теорию Большого взрыва
Общепринятая теория возникновения Вселенной звучит примерно так: около 14 миллиардов лет назад из ниоткуда материализовалась огромная масса энергии, всплеск которой в одно мгновение раздул Вселенную, как воздушный шар. В результате быстрого расширения кривизна разгладилась, а материя перемешалась, и сформировалась Вселенная в своем нынешнем виде — плоская и гладкая. Скопления частиц образовали галактики и звезды, но все они — лишь крошечные пятнышки на преимущественно однородном полотне космоса.
Пол Стейнхардт, один из авторов инфляционной модели, стал одним из главных ее критиков. Он отмечает, что, согласно этой модели, в большинстве областей пространства-времени расширение не прекратится никогда, поэтому неизбежно должна возникнуть мультивселенная с бесконечным количеством карманных вселенных, в одной из которых мы живем.
Стейнхардт и его коллеги приступили к разработке другого сценария возникновения нашей Вселенной, взяв за основу циклическую модель, согласно которой Вселенная проходит через последовательные стадии расширения и сжатия.
Их цель — доказать, что наша плоская и однородная Вселенная могла возникнуть и без взрыва.
Чтобы достичь своей цели, Стейнхардт и его коллеги объединились с учеными, занимающимися компьютерным моделированием. Они проанализировали, как меняется структура Вселенной при коллапсировании, и обнаружили, что модель сжатия работает лучше, чем модель расширения: как бы ни выглядела Вселенная до сжатия, коллапсирование сглаживает любые изначальные неровности.
Сужение горизонта
Чтобы представить себе расширение и сжатие, можно вообразить Вселенную в виде шара.
Представьте, что вы сидите на воздушном шаре. Инфляционная Вселенная — это надувающийся шар. В ней пространство разглаживается и уплощается вследствие расширения. В циклической же Вселенной разглаживание происходит в период сжатия. На этом этапе шар незначительно сдувается, а область обзора сокращается очень сильно. Вы как будто смотрите через увеличительное стекло, которое становится всё более и более мощным. Радиус Хаббла уменьшается, поэтому окружающее пространство становится всё более однообразным.
По версии Стейнхардта и его коллег, Вселенная в течение примерно триллиона лет расширяется под влиянием некоего всепроникающего поля, под которым мы сегодня понимаем темную энергию. Когда это энергетическое поле становится разреженным, пространство постепенно начинает сжиматься. В течение миллиардов лет масштабный фактор уменьшается — частицы сближаются друг с другом, а радиус Хаббла сужается. Сжатие Вселенной перезаряжает энергетическое поле, которое затем нагревает пространство и испаряет его атомы. Происходит отскок — и начинается новый цикл.
В модели отскока микроскопический радиус Хаббла обеспечивает гладкость и плоскостность Вселенной. Инфляция раздувает многочисленные неровности, порождая мультивселенную, тогда как медленное сжатие устраняет их.
В результате получаем Вселенную без начала и конца — и никакой сингулярности, и никакой мультивселенной.
От любой Вселенной к нашей
Один из самых трудных моментов как в инфляционной модели, так и в модели отскока — это доказать, что их энергетические поля могут создать правильную структуру Вселенной.
Ийас и Стейнхардт критикуют инфляционную модель за то, что она работает только при определенных условиях. Они тщательно изучили все сценарии, которые можно рассчитать на бумаге.
А недавно, используя компьютерные симуляции (Ийас и Стейнхардт описали их в двух препринтах, опубликованных в июне), команда подвергла стресс-тесту свою модель медленного сжатия с группой маленьких вселенных, которую нельзя было испытать никаким другим способом.
Адаптировав под свои цели код, разработанный физиком-теоретиком из Принстонского университета Франсом Преториусом, команда исследовала искривленные и комковатые поля; поля, движущиеся в неправильном направлении; и даже поля, разные части которых движутся в противоположных направлениях.
Почти по всех случаях в результате сжатия образовывалась такая же скучная Вселенная, как наша.
Космолог из Оксфордского университета Кэти Клаф, которая занимается численным решением уравнений Эйнштейна, называет новые симуляции «исчерпывающими». Но добавляет, что такой анализ стал возможен только недавно, поэтому полный спектр условий, которые могут выполняться инфляционной моделью, всё еще не исследован.
Отношение к модели Ийас и Стейнхардта остается неоднозначным. Большинство космологов сходятся во мнении, что инфляционная модель по-прежнему не опровергнута.
«На данный момент модель медленного сжатия не может составить конкуренцию инфляционной модели», — говорит космолог из Нью-Йоркского университета Григорий Габададзе.
В дальнейших планах команды Стейнхардта — симулировать сам отскок. У Ийас уже готова одна модель отскока, которую она планирует в скором времени испытать в компьютерной симуляции. Члены команды надеются, что, совместив стадии сжатия и расширения, им удастся определить уникальные характеристики «отскакивающей» Вселенной, которые затем смогут подтвердить в ходе наблюдений астрономы.
Команда еще не описала все детали циклической Вселенной без взрыва и сжатия, не говоря уже о том, чтобы доказать, что мы в ней живем. Но Стейнхардт убежден, что в скором времени его модель станет жизнеспособной альтернативой мультивселенной.
«Препятствия, которых я больше всего опасался, уже преодолены», — утверждает он.
Как умрёт Вселенная
Вселенная — глобальный объект, который включает в себя время, космос и всё его содержимое: галактики, звёзды, планеты, их луны, все прочие тела, всю материю, всю энергию. Этот огромный и замечательный объект когда-то зародился. Как у всего хорошего, у Вселенной тоже есть свой конец. С прошлым и зарождением Вселенной учёные вроде как определились. А вот предсказания о конце Вселенной остаются набором теорий, которые выдают разный результат в зависимости от принимаемых значений нескольких постоянных.
Рождение и жизнь
За пикосекунды из кварк-глюонной плазмы зародились элементарные частицы. В дальнейшем из них образовались протоны и нейтроны, те в свою очередь дали ядра лёгких изотопов. Пока лишь ядра — до атомов веществу далеко.
Спустя 70 тысяч лет от начальной точки вещество начинает доминировать над излучением. Примерно с 380 тысяч лет после Большого взрыва электроны и ядра впервые образуют нейтральные атомы. Звёзд ещё не существует. Самые первые образуются с 550 миллионов лет после Большого взрыва. Звёзды собираются в галактики. Последних гравитационное взаимодействие формирует в скопления.
Согласно небулярной гипотезе, через ≈9 миллиардов лет после Большого взрыва (или ≈4,6 миллиардов лет назад) из одного газопылевого облака начало формироваться то, что позже станет Солнечной системой. Фрагмент облака сжался в шар по центру, окружающие его части тоже сжимались и вращались быстрее, формируя характерный диск. Из шара зажглась наша звезда, в холодных краях в сгущениях материи образовывались планеты.
Через 2,4 миллиарда лет от настоящего момента Млечный путь и Галактика Андромеды столкнутся. С Земли это наблюдать будет некому. Жизнь на нашей планете вымрет через примерно миллиард лет — Солнце будет давать слишком много тепла, и океаны просто испарятся. Сама звезда просуществует долго.
Жизненный цикл Солнца.
Через миллиарды лет Солнце уже будет красным гигантом, давно израсходовавшим свои запасы водородного топлива. Оно расширится в примерно 250 раз. Некоторые исследования показывают, что до схлапывания в белый карлик Солнце всё же захватит Землю, поскольку орбита планеты опустится ниже. Впрочем, это неважно — через 7,6 миллиардов лет, когда это произойдёт, на нашей планете уже не будет ничего живого. Солнце будет светить ещё миллиарды лет, но куда тусклее. В конце концов оно превратится в чёрного карлика. Ещё через миллиарды лет гравитация других звёзд отберёт оставшиеся планеты. Солнечная система прекратит существование.
В ближайшие сотни миллионов лет о гибели Земли беспокоиться не нужно — в этот период Солнечная система устойчива. Выгорание топлива ближайшей звезды через миллиарды лет невозможно назвать даже проблемами. У современного человечества есть настоящие задачи, которые грозят значительным ухудшением качества жизни. Их много: от перестающих работать антибиотиков из-за появления супербактерий до глобального изменения климата из-за выброса парниковых газов. Наконец, есть банальная опасность развязать термоядерную войну или уничтожить самих себя каким-либо ещё образом.
Возможно, наши потомки сдвинут орбиту Земли или вовсе переселятся с неё. Возможно, Земля переживёт этот процесс без лишней помощи. Но какие проблемы будут стоять перед постчеловечеством, которое покинет «колыбель цивилизации»? Что ожидает другие, внеземные формы жизни? Вопрос конечной судьбы Вселенной стоит на границе современной космологической науки.
Cжатие
Вселенная расширяется, галактики разбегаются друг от друга. Быть может, скорость расширения замедлится, дойдёт до нуля, а затем пойдёт в обратном направлении. Вселенная может начать сжиматься, постепенно схлопываясь в черные дыры. И эти чёрные дыры сольются в одну. Эта гипотеза носит название «Большое сжатие».
В законе Хаббла состояние расширения Вселенной определяется её плотностью. Если плотность ниже критической, то Вселенная продолжит увеличиваться в размерах и остывать. Если плотность Вселенной выше, то гравитационная сила постепенно остановит разбегание и направит его вспять. Вселенная будет сжиматься.
Коллапс будет отличаться от изначального расширения. Огромные скопления галактик сблизятся, затем начнут сливаться целые галактики. В какой-то момент звёзды подойдут друг к другу настолько близко, что дойдёт до частых столкновений. Звёзды не смогут рассеивать вырабатываемое тепло и начнут взрываться, оставляя горячий неоднородный газ. Из-за растущей температуры его атомы распадутся на элементарные частицы, которые будут поглощены срастающимися чёрными дырами. Гипотеза не указывает, каков будет финал.
Но последние экспериментальные наблюдения дальних сверхновых как объектов стандартной светимости и составление карты реликтового излучения показывают, что расширение не замедляется, а лишь ускоряется.
Расширение
Большой разрыв предполагает, что когда-то в будущем вся материя Вселенной, звезды и галактики, субатомные частицы, само пространство и время будут разорваны скоростью расширения. Сценарий этой смерти гласит, что за 60 миллионов лет до финала распадётся Млечный путь, за три месяца расстроится работа Солнечной системы. За полчаса до Большого разрыва разрушится Земля (или похожая планета), за одну наносекунду начнут разрушаться атомы. Согласно гипотезе, всё это произойдёт лишь через 22 миллиарда лет, уже после угасания Солнца в белый карлик.
За миллиарды лет звёзды выгорят. Из их останков родятся белые карлики, нейтронные звёзды и чёрные дыры. Через 150 миллиардов лет от текущего момента при том же ускорении разбегания галактик все галактики за пределами Местной группы выйдут за космологический горизонт. События в Местной группе никак не смогут влиять на события в удалённых галактиках, и наоборот. При наблюдении удалённой галактики время будет замедляться, а затем просто остановится. Другими словами, через 150 миллиардов лет наблюдатель в Местной группе никогда не увидит событий в удалённых галактиках. Более не будут возможны ни полёты к ним, ни какие-либо формы связи.
Через 800 миллиардов лет светимость Местной группы заметно снизится. Стареющие звёзды будут выдавать всё меньше света, красные карлики будут вымирать в белые. Через 2 триллиона лет от текущего момента из-за красного смещения удалённые галактики будет невозможно как-либо обнаружить: даже длина волн их гамма-лучей будет выше, чем размер наблюдаемой вселенной.
Через 100 триллионов лет закончится формирование звёзд, в космосе будут тускло светить их остатки. После того, как потухнет последняя звезда, космос изредка будут озарять вспышки слияний двух белых карликов. Через 10 15 лет планеты либо упадут на остатки своих бывших звёзд, либо уйдут к другим телам. Похожим образом через 10 19 —10 20 лет объекты покинут галактики. Небольшая часть объектов упадёт в сверхмассивную чёрную дыру.
Дальнейшее развитие зависит от того, стабилен протон или нет. Некоторые эксперименты утверждают, что минимальный период полураспада протона составляет 10 34 лет. Если это действительно так, через 10 40 лет во Вселенной останутся почти лишь только лептоны и фотоны. Исчезнут остатки звёзд, останутся лишь чёрные дыры. Возможно, процесс гибели нуклонов займёт больше времени.
Через 10 100 лет от текущего момента чёрные дыры испарятся излучением Хокинга. Наконец, Вселенная будет почти полностью пуста. В ней будут летать фотоны, нейтрино, электроны и позитроны, изредка сталкиваясь.
Если протоны стабильны, то через 10 1500 холодным слиянием и квантовым туннелированием лёгкие ядра превратятся в атомы железа 56 Fe. Элементы тяжелее этого изотопа распадутся с излучением альфа-частиц. Через 10 10 26 лет квантовое туннелирование превратит большие объекты в чёрные дыры. Возможно, железные звёзды превратятся в нейтронные через 10 10 76 лет от настоящего момента.
Есть и другие, более экзотические гипотезы. К примеру, в 2010 году учёные предсказали, что через пять миллиардов лет время закончится. Это событие трудно будет увидеть или как-то предсказать, его обещают внезапным. Пространство может кончиться из-за схлапывания ложного вакуума в истинный, в более энергетически низкое состояние, что, возможно, повлечёт полное разрушение объектов Вселенной.
Все эти гипотезы разработаны для текущих реалий простого уравнения состояния для тёмной энергии. Как и следует из имени, о тёмной энергии известно мало. Если верна инфляционная модель Вселенной, то в первые моменты после Большого взрыва существовали другие формы тёмной энергии. Возможно, уравнение состояния поменяется. Изменятся выводы, которые можно сделать из него. Трудно предсказать, что мы узнаем о тёмной энергии, если она получила развитие лишь в конце прошлого века.
Но во всех случаях гибель Вселенной — очень далёкое по меркам человечества явление. Если рассматривать её с масштаба продолжительности жизни одного человека, это слишком глобальное событие, чтобы о нём беспокоиться.
Как умрёт Вселенная
За пикосекунды из кварк-глюонной плазмы зародились элементарные частицы. В дальнейшем из них образовались протоны и нейтроны, те в свою очередь дали ядра лёгких изотопов. Пока лишь ядра — до атомов веществу далеко.
Спустя 70 тысяч лет от начальной точки вещество начинает доминировать над излучением. Примерно с 380 тысяч лет после Большого взрыва электроны и ядра впервые образуют нейтральные атомы. Звёзд ещё не существует. Самые первые образуются с 550 миллионов лет после Большого взрыва. Звёзды собираются в галактики. Последних гравитационное взаимодействие формирует в скопления.
Согласно небулярной гипотезе, через ≈9 миллиардов лет после Большого взрыва (или ≈4,6 миллиардов лет назад) из одного газопылевого облака начало формироваться то, что позже станет Солнечной системой. Фрагмент облака сжался в шар по центру, окружающие его части тоже сжимались и вращались быстрее, формируя характерный диск. Из шара зажглась наша звезда, в холодных краях в сгущениях материи образовывались планеты.
Через 2,4 миллиарда лет от настоящего момента Млечный путь и Галактика Андромеды столкнутся. С Земли это наблюдать будет некому. Жизнь на нашей планете вымрет через примерно миллиард лет — Солнце будет давать слишком много тепла, и океаны просто испарятся. Сама звезда просуществует долго.
Жизненный цикл Солнца.
Через миллиарды лет Солнце уже будет красным гигантом, давно израсходовавшим свои запасы водородного топлива. Оно расширится в примерно 250 раз. Некоторые исследования показывают, что до схлапывания в белый карлик Солнце всё же захватит Землю, поскольку орбита планеты опустится ниже. Впрочем, это неважно — через 7,6 миллиардов лет, когда это произойдёт, на нашей планете уже не будет ничего живого. Солнце будет светить ещё миллиарды лет, но куда тусклее. В конце концов оно превратится в чёрного карлика. Ещё через миллиарды лет гравитация других звёзд отберёт оставшиеся планеты. Солнечная система прекратит существование.
В ближайшие сотни миллионов лет о гибели Земли беспокоиться не нужно — в этот период Солнечная система устойчива. Выгорание топлива ближайшей звезды через миллиарды лет невозможно назвать даже проблемами. У современного человечества есть настоящие задачи, которые грозят значительным ухудшением качества жизни. Их много: от перестающих работать антибиотиков из-за появления супербактерий до глобального изменения климата из-за выброса парниковых газов. Наконец, есть банальная опасность развязать термоядерную войну или уничтожить самих себя каким-либо ещё образом.
Возможно, наши потомки сдвинут орбиту Земли или вовсе переселятся с неё. Возможно, Земля переживёт этот процесс без лишней помощи. Но какие проблемы будут стоять перед постчеловечеством, которое покинет «колыбель цивилизации»? Что ожидает другие, внеземные формы жизни? Вопрос конечной судьбы Вселенной стоит на границе современной космологической науки.
Cжатие
Вселенная расширяется, галактики разбегаются друг от друга. Быть может, скорость расширения замедлится, дойдёт до нуля, а затем пойдёт в обратном направлении. Вселенная может начать сжиматься, постепенно схлопываясь в черные дыры. И эти чёрные дыры сольются в одну. Эта гипотеза носит название «Большое сжатие».
В законе Хаббла состояние расширения Вселенной определяется её плотностью. Если плотность ниже критической, то Вселенная продолжит увеличиваться в размерах и остывать. Если плотность Вселенной выше, то гравитационная сила постепенно остановит разбегание и направит его вспять. Вселенная будет сжиматься.
Коллапс будет отличаться от изначального расширения. Огромные скопления галактик сблизятся, затем начнут сливаться целые галактики. В какой-то момент звёзды подойдут друг к другу настолько близко, что дойдёт до частых столкновений. Звёзды не смогут рассеивать вырабатываемое тепло и начнут взрываться, оставляя горячий неоднородный газ. Из-за растущей температуры его атомы распадутся на элементарные частицы, которые будут поглощены срастающимися чёрными дырами. Гипотеза не указывает, каков будет финал.
Но последние экспериментальные наблюдения дальних сверхновых как объектов стандартной светимости и составление карты реликтового излучения показывают, что расширение не замедляется, а лишь ускоряется.
Расширение
Большой разрыв предполагает, что когда-то в будущем вся материя Вселенной, звезды и галактики, субатомные частицы, само пространство и время будут разорваны скоростью расширения. Сценарий этой смерти гласит, что за 60 миллионов лет до финала распадётся Млечный путь, за три месяца расстроится работа Солнечной системы. За полчаса до Большого разрыва разрушится Земля (или похожая планета), за одну наносекунду начнут разрушаться атомы. Согласно гипотезе, всё это произойдёт лишь через 22 миллиарда лет, уже после угасания Солнца в белый карлик.
За миллиарды лет звёзды выгорят. Из их останков родятся белые карлики, нейтронные звёзды и чёрные дыры. Через 150 миллиардов лет от текущего момента при том же ускорении разбегания галактик все галактики за пределами Местной группы выйдут за космологический горизонт. События в Местной группе никак не смогут влиять на события в удалённых галактиках, и наоборот. При наблюдении удалённой галактики время будет замедляться, а затем просто остановится. Другими словами, через 150 миллиардов лет наблюдатель в Местной группе никогда не увидит событий в удалённых галактиках. Более не будут возможны ни полёты к ним, ни какие-либо формы связи.
Через 800 миллиардов лет светимость Местной группы заметно снизится. Стареющие звёзды будут выдавать всё меньше света, красные карлики будут вымирать в белые. Через 2 триллиона лет от текущего момента из-за красного смещения удалённые галактики будет невозможно как-либо обнаружить: даже длина волн их гамма-лучей будет выше, чем размер наблюдаемой вселенной.
Через 100 триллионов лет закончится формирование звёзд, в космосе будут тускло светить их остатки. После того, как потухнет последняя звезда, космос изредка будут озарять вспышки слияний двух белых карликов. Через 10 15 лет планеты либо упадут на остатки своих бывших звёзд, либо уйдут к другим телам. Похожим образом через 10 19 —10 20 лет объекты покинут галактики. Небольшая часть объектов упадёт в сверхмассивную чёрную дыру.
Дальнейшее развитие зависит от того, стабилен протон или нет. Некоторые эксперименты утверждают, что минимальный период полураспада протона составляет 10 34 лет. Если это действительно так, через 10 40 лет во Вселенной останутся почти лишь только лептоны и фотоны. Исчезнут остатки звёзд, останутся лишь чёрные дыры. Возможно, процесс гибели нуклонов займёт больше времени.
Через 10 100 лет от текущего момента чёрные дыры испарятся излучением Хокинга. Наконец, Вселенная будет почти полностью пуста. В ней будут летать фотоны, нейтрино, электроны и позитроны, изредка сталкиваясь.
Если протоны стабильны, то через 10 1500 холодным слиянием и квантовым туннелированием лёгкие ядра превратятся в атомы железа 56 Fe. Элементы тяжелее этого изотопа распадутся с излучением альфа-частиц. Через 10 10 26 лет квантовое туннелирование превратит большие объекты в чёрные дыры. Возможно, железные звёзды превратятся в нейтронные через 10 10 76 лет от настоящего момента.
Есть и другие, более экзотические гипотезы. К примеру, в 2010 году учёные предсказали, что через пять миллиардов лет время закончится. Это событие трудно будет увидеть или как-то предсказать, его обещают внезапным. Пространство может кончиться из-за схлапывания ложного вакуума в истинный, в более энергетически низкое состояние, что, возможно, повлечёт полное разрушение объектов Вселенной.
Все эти гипотезы разработаны для текущих реалий простого уравнения состояния для тёмной энергии. Как и следует из имени, о тёмной энергии известно мало. Если верна инфляционная модель Вселенной, то в первые моменты после Большого взрыва существовали другие формы тёмной энергии. Возможно, уравнение состояния поменяется. Изменятся выводы, которые можно сделать из него. Трудно предсказать, что мы узнаем о тёмной энергии, если она получила развитие лишь в конце прошлого века.
Но во всех случаях гибель Вселенной — очень далёкое по меркам человечества явление. Если рассматривать её с масштаба продолжительности жизни одного человека, это слишком глобальное событие, чтобы о нём беспокоиться.