Что будет если заморозить кровь
КОНСЕРВИРОВАНИЕ КРОВИ
КОНСЕРВИРОВАНИЕ КРОВИ (лат. conservare хранить, сохранять) — методы хранения крови вне организма в состоянии ее биологической и функциональной полноценности. При консервировании кровь не утрачивает стерильности, жидкостных свойств в течение определенного срока, что позволяет заготавливать и применять ее для переливания с леч. целью.
Русский ученый В. В. Сутугин впервые в 1865 г. высказал идею К. к. с целью последующего использования ее при военной травме. В 1867 г.
B. Раутенберг предложил предотвращать свертывание крови с помощью добавления углекислого натрия. Планомерное изучение проблемы К. к. в СССР началось в 1926 г. в Москве, в первом в мире Научно-исследовательском ин-те гематологии и переливания крови. Большой вклад в разработку этой проблемы внесли Д. Н. Беленький, C. И. Спасокукоцкий, А. А. Багдасаров, С. Д. Балаховский, А. Н. Филатов, С. Е. Северин, Ф. Р. Виноград-Финкель, П. М. Максимов и многие другие.
В 30-х гг. для К. к. начали применять жидкость ЦИПК — 5% р-р цитрата для малого разведения (1:9) и глюкозоцитратный консервант ЦИПК № 1.
К 1940 г. в СССР были разрешены основные задачи проблемы К. к. и установлена леч. эффективность такой крови, что позволило широко внедрить в практику ее массовую заготовку. В период 1941 — 1945 гг. были разработаны способы предотвращения бактериального загрязнения крови при ее массовой заготовке и хранении, а также новые консервирующие среды с лимоннокислым цитратом натрия и антисептиками. Это значительно повысило качество К. к. и снизило опасность гемотрансфузионных осложнений.
В последующие годы продолжались теоретические и практические изыскания, направленные на удлинение сроков хранения крови при температурах выше и ниже 0° — в жидком и замороженном состоянии.
Консервирование крови при температурах выше 0°
Наибольшее распространение как стабилизаторы получили лимонная к-та и лимоннокислый цитрат натрия. Механизм их действия состоит в связывании ионов кальция, что предотвращает свертывание крови.
Динатриевая соль этилендиаминтетраацетата — ЭДТАNa2 — также связывает ионы кальция. Однако одновременно она вызывает связывание ионов калия и магния и ранний гемолиз консервированной крови, что ограничило ее применение. Гепарин (50—60 мг на 1 л крови) используется для стабилизации крови гл. обр. в аппаратах искусственного кровообращения. Недостатком его является ограничение сроков стабилизации (до 24 час.) и образование сгустков за счет инактивации гепарина, в связи с чем он применяется лишь для кратковременного (несколько часов) К. к.
Стабилизация крови может быть достигнута и без добавления хим. веществ — путем пропускания крови через колонку с катионообменными смолами. По этому принципу в Белорусском НИИ переливания крови Е. Д. Бугловым в 1969 г. разработан препарат M-1-фосфат целлюлозы.
Для К. к., кроме стабилизации, имеет значение сохранение морфол, целостности эритроцитов и их функц, полноценности. Для этого требуется постоянный приток основного субстрата питания этих клеток — глюкозы, а также средств, обеспечиващих ее утилизацию,— ферментов и коферментов.
Установлена прямая связь кислородно-транспортной функции эритроцитов с содержанием 2,3-дифосфоглицерата (2,3-ДФГ), его важная роль в регуляции сродства гемоглобина к кислороду и в процессе отдачи кислорода тканям: при низкой концентрации в эритроцитах 2,3-ДФГ сродство гемоглобина к кислороду повышено, при этом диссоциация оксигемоглобина и передача кислорода тканям затруднены; при высокой концентрации 2.3-ДФГ связи гемоглобина с кислородом ослаблены, оксигемоглобин диссоциирует быстрее и ткани легко извлекают кислород из его комплекса с гемоглобином. Известно, что АТФ, кроме участия в формировании 2,3-ДФГ, также может быть связана с гемоглобином и влиять на процесс отдачи кислорода тканям; поэтому предполагается корреляция кислородно-транспортной функции эритроцитов с содержанием 2.3-ДФГ и АТФ. Т. о., наряду со стабилизацией, основное требование к гемоконсервантам — пополнять недостаток АТФ и 2,3-ДФГ. Введение в цитратный р-р для К. к. глюкозы дало возможность продления синтеза АТФ и покрытия потребности эритроцитов в энергии. Кроме того, важным моментом явилось доведение pH консервирующих р-ров до 4,5—5,1 (при этом эритроциты медленнее потребляют глюкозу), что отдаляет наступление гемолиза и повышает посттрансфузионную выживаемость эритроцитов.
Кислые глюкозоцитратные р-ры начиная с 1947 г. получили признание во многих странах. Они позволяют сохранять консервированную кровь при t 4—8 до 21 дня с посттрансфузионной выживаемостью 70% перелитых эритроцитов, что является международным стандартом. В СССР применяется р-р ЦОЛИПК-76, ЛИПК-Л-6, в США и др. странах — р-р ACD.
Состав консервирующего р-р а ЦОЛИПК-76: лимоннокислый цитрат натрия — 2 г, глюкоза — 3 г, левомицетин — 0,015 г, бидистиллированная вода до 100 мл. Срок хранения — до 2 лет.
Состав гемоконсерванта ЛИПК-Л-6: лимоннокислый цитрат натрия — 2,5 г, глюкоза — 3 г, натрия сульфацил — 0,5 г, трипафлавин нейтральный — 0,025 г, бидистиллированная вода до 100 мл. Срок хранения — до 7 дней.
Кислые глюкозоцитратные р-ры стали основой для создания новых гемоконсервантов, напр, цитроглюкофосфата, содержащего 1 г лимонной к-ты, 0,75 г тринатрийфосфата, 3 г глюкозы, до 100 мл б о дистиллированной воды, нормального р-ра едкого натра до pH 5,7 (20 мл р-ра на 80 мл крови), позволяющего удлинить сохранность функ. полноценности эритроцитов. За рубежом применяется цитратно-фосфатный р-р с декстрозой — СРВ.
Включение в гемоконсерванты метаболитов углеводно-фосфорного обмена (аденин, инозин, пируват и др.) открыло новую перспективу в К. к.— возможность восстановления («омоложения») консервированных эритроцитов после предельно допустимых сроков (21 день) хранения. Инкубация длительно хранившихся консервированных эритроцитов с метаболитами углеводно-фосфорного обмена приводит к восстановлению утраченной в процессе хранения их функц, полноценности (содержания 2,3-ДФГ, АТФ, Р50 и других показателей). Последующее замораживание восстановленных эритроцитов в жидком азоте позволяет сохранять «омоложенные» клетки длительное время.
Разработаны методы получения и консервирования компонентов крови: эритроцитной, тромбоцитной, лейкоцитной массы и плазмы. Консервирование клеток крови имеет большое значение, особенно в связи с возрастающим использованием в леч. практике трансфузий отдельных компонентов вместо цельной крови.
Эритроцитная масса (см.) — наиболее распространенная Трансфузионная среда. Получают ее путем асептического удаления плазмы после отстаивания или центрифугирования консервированной крови; в последующем возможно хранение конц. эритроцитной массы (гематокрит до 70%)- В леч. практике применяется также отмытая эритроцитная масса (подвергнутая повторному асептическому отмыванию физиол. р-ром), особенно у реактивных больных (сенсибилизированных, аллергизированных и др.).
Для применения в клин, практике лейкоцитной и тромбоцитной масс разработаны методы их получения с использованием центрифугирования в пластикатной аппаратуре и коллоидных осадите лей. Лейкоцитная масса (см. Лейкоконцентрат) сохраняется до 24 час.
Тромбоцитная масса (см.) сохраняется в собственной плазме при t° 4° в течение 6—8 час., а при t° 22° в пластикатных мешках — 72 часа.
Выделение и хранение лейкоцитной и тромбоцитной масс, кроме пластикатной аппаратуры, осуществляют с помощью специальных фракционаторов для автоматического асептического разделения крови на компоненты и получения в больших количествах этих клеток от одного донора методом цитафереза. (см. Плазмаферез).
Массовую заготовку консервированной крови и ее компонентов проводят учреждения службы крови (станции и отделения переливания крови) по единым методическим правилам. Кровь консервируется гл. обр. на стерильных гемоконсервантах 76 и цитроглюкофосфате, изготовляемых на заводах. Взятие крови от доноров в стеклянные флаконы или пластикатные мешки с гемоконсервантом производится в стационарных операционных станций и отделений переливания крови или по месту работы доноров, куда направляются специальные бригады, оснащенные всем необходимым для заготовки крови. Стерильность К. к. обеспечивается соблюдением строгих мер асептики при ее заготовке от доноров, использованием простерилизованных гемоконсервантов (в герметически укупоренных флаконах или пластикатных мешках) и замкнутых стерильных систем для взятия крови (рис. 1). Стерильность и качество консервированной крови строго контролируют путем выборочных бактериол, посевов, производимых на станциях и в отделениях переливания крови, а также макроскопической оценкой в леч. учреждениях перед выдачей для трансфузии.
Консервирование крови при температурах ниже 0°
Долгосрочное хранение клеток крови и плазмы возможно лишь при отрицательных температурах. При этом клетки сохраняются в анабиотическом состоянии — при подавлении метаболизма, но сохранении активности ферментных систем и жизнеспособности клеток.
Замораживание и хранение плазмы производят при t° —30°. Решению проблемы замораживания эритроцитов помогло установление факта, что ультрабыстрое охлаждение крови (100° в секунду) может происходить почти без кристаллического затвердевания (в тонком слое удавалось заморозить и сохранить малые объемы эритроцитов), и открытие криозащитного свойства глицерина, позволившего при смешении с эритроцитами сохранять их в замороженном состоянии. А. Д. Беляков с соавт. в 1956 г. и Ф. Р. Виноград-Финкель с соавт, в 1958 г. разработали метод сохранения клеточных элементов крови в переохлажденном состоянии при температурах ниже 0° (от —8 до —16°) без кристаллообразования.
В практике применяют два метода криоконсервирования эритроцитов: ультрабыстрое замораживание в жидком азоте (—196°) с малыми (15%) концентрациями глицерина или медленное замораживание с большой (30—50%) концентрацией глицерина при умеренных температурах (—40, —80°) в воздушной камере электрорефрижераторов. Эти методы позволяют длительно (годами) сохранять неповрежденными 85—95% эритроцитов.
Методика ультрабыстрого замораживания эритроцитной массы состоит в том, что из цельной донорской крови после центрифугирования эритроциты выделяют с соблюдением строгих условий асептики и смешивают их со стерильным ограждающим р-ром, содержащим глицерин. Смесь переводят в алюминиевый гофрированный контейнер или специальный пластикатный мешок и подвергают в течение 2 мин. замораживанию путем погружения в ванну с жидким азотом, после чего переносят в специальный бункер или камеру также с жидким азотом для последующего длительного хранения. Для использования замороженных эритроцитов контейнеры или мешки вынимают из жидкоазотного хранилища, подвергают оттаиванию путем помещения на 25 сек. в ванну с водой (t° 45°). После оттаивания производят отмывание эритроцитов от глицерина маннитно-солевыми, глюкозоманнитными, солевыми и другими р-рами с последовательно снижающейся гиперосмией до изоосмии. Для отмывания эритроцитов используют метод последовательного центрифугирования и сливания надстоя или автоматические фракционаторы различного типа для асептического отмывания размороженных эритроцитов в замкнутой системе. Отмытые эритроциты заливают равным объемом изотонических р-ров (сахарозоглюкозофосфатный, солевой и др.), после чего они пригодны для переливания в течение 24 час.
Методика медленного замораживания при умеренных температурах имеет свои преимущества — не требуется жидкоазотного оборудования, т. к. используются электрорефрижераторы. В качестве эндоцеллюлярного криофилактика широко применяют глицерин в большой концентрации (40%), хотя это и усложняет способы его отмывания после размораживания эритроцитов.
Для криоконсервирования лейкоцитов и тромбоцитов подобраны ограждающие р-ры, содержащие криофилактики эндоцеллюлярного (глицерин, диметилсульфоксид, диметилацетамид) или экзоцеллюлярного действия (поливинилпирролидон) в сочетании с углеводными р-рами (сахароза, глюкоза, аскорбиновая к-та). Замораживание клеток производят в специально сконструированных аппаратах, позволяющих охлаждать их по заданной программе. После программного замораживания и оттаивания лейкоцитов можно получать от 75 до 92% восстановленных клеток.
Существует метод разделения лейкоцитной массы на лимфоциты и гранулоциты. Размороженные лимфоциты предназначаются для типирования и переливания больным с угнетенной иммунол, активностью; гранулоциты можно использовать при лечении больных с септицемиями, агранулоцитозом и др.
Замораживание, хранение, оттаивание и отмывание эритроцитов и других клеток крови производятся в специально организованных отделениях (банках) долгосрочного хранения замороженной крови при учреждениях службы крови (рис. 2).
Клин, опыт подтверждает эффективность трансфузий взвеси размороженных эритроцитов при лечении острой кровопотери, анемий различной этиологии, при операциях на открытом сердце и при использовании аппарата «искусственная почка». Преимущества трансфузий размороженных отмытых эритроцитов заключаются в их лучшей переносимости (без посттрансфузионных реакций) больными, сенсибилизированными или аллергизированными предыдущими переливаниями крови или медикаментозными средствами. Они не содержат иммуноагрессивных клеточных (лейкоциты и тромбоциты) и белковых компонентов плазмы, являющихся основной причиной реакций при повторных трансфузиях (см. Переливание крови).
Метод криоконсервирования крови, помимо обеспечения многолетнего хранения, создания запасов крови редких групп, снижает риск заражения вирусным гепатитом В. Он также дает возможность широкого применения аутотрансфузий путем предварительного накопления крови от данного больного и длительного ее хранения в замороженном состоянии до момента операции или необходимости трансфузий (см. Аутогемотрансфузия).
Посмертная кровь
Идея заготовки и применения посмертной (трупной, постагональной, фибринолизной) крови была высказана и экспериментально обоснована B. Н. Шамовым в 1929 г., который доказал, что кровь трупов животных в первые 6—8 час. после смерти сохраняет свою полноценность, не имеет токсических свойств и оказывает леч. эффект при переливании обескровленным собакам. В 1930 г.
C. С. Юдин впервые с успехом произвел переливание посмертной крови больному с острой кровопотерей. Дальнейшие многолетние исследования ряда авторов послужили основанием для заключения о сохранности функц, полноценности посмертной крови, ее нетоксичности и выраженной леч. эффективности для человека.
Особым качеством посмертной крови является ее способность после заготовки свертываться, а затем «развертываться», т. е. сгусток вновь переходит в жидкое состояние. Это свойство, названное фибринолизом (см.), — сложный биол, процесс, происходящий в системе свертывания крови после смерти. Оно используется с диагностической целью: фибринолиз характерен только для крови скоропостижно скончавшихся людей и не наблюдается в случаях смерти после длительной агонии. Фибринолиз позволяет заготавливать и хранить кровь без добавления стабилизирующих средств. В СССР в Московском городском НИИ скорой помощи им. Н.Б. Склифосовского и Ленинградском городском НИИ скорой помощи им. проф. Ю. Ю. Джанелидзе накоплен большой опыт заготовки и применения посмертной крови. В ряде городов организованы специальные отделения для заготовки от трупов органов и тканей, в т. ч. крови. Существуют определенные правила взятия крови (в первые 6—8 час. после смерти) от внезапно умерших в результате острой сердечно-сосудистой недостаточности, спазма или склероза коронарных сосудов, инфаркта миокарда, гипертонической болезни, кровоизлияния в мозг, электротравмы, закрытой травмы черепа, спинного мозга, шейного отдела позвоночника, асфиксии от сдавления. Установлена возможность удлинения сроков хранения посмертной крови путем добавления специальных консервирующих р-ров (сахарозоглюкозофосфатного).
Использование посмертной крови, хранившейся при температуре 4—6°, разрешается после получения результатов лабораторного исследования крови и суд.-мед. вскрытия трупа. По данным К. С. Симоняна с соавт. (1975), ок. 24% заготовленной крови бракуется: 7% по бактериальному загрязнению, 13% по серол, показателям и примерно 4% на основании противопоказаний по данным патологоанатомического исследования.
Переливание посмертной крови не получило широкого распространения в леч. практике гл. обр. в связи с хорошей организацией донорства и службы крови, обеспечивающей леч. учреждения консервированной кровью.
Что будет если заморозить кровь
Данный материал взят из книги “Диагностические тест-системы: Радиоиммунный и иммуноферментный методы диагностики” Таранова Анатолия Григорьевича и размещен на сайте с любезного разрешения автора.
ТЕХНИКА ЛАБОРАТОРНЫХ РАБОТ
2.1. Условия взятия и хранения биологического материала
Подготовка к проведению лабораторных исследований содержит два основных момента: необходимость соблюдения стандартных условий взятия биологического материала и предотвращение деградации биологически активного вещества в образцах.
3) множество лекарственных веществ способны влиять на определяемые вещества, повышая или понижая их уровень в крови;
4) взятие исследуемого образца у пациентов в горизонтальном, в вертикальном положении или после физической нагрузки изменяет уровень биологически активных веществ иногда более чем на 10 %.
Желательно, чтобы кровь, предназначенная для исследования, забиралась в однотипные центрифужные пробирки. Такие пробирки должен готовить (мыть, высушивать, добавлять коагулянт или ингибитор ферментов) один сотрудник. Кровь без добавок отстаивают, а с добавками центрифугируют, полученную сыворотку или плазму разливают в такое количество мелких пластмассовых или стеклянных пробирок (стекло не всегда выдерживает низкую температуру), которое равно или превышает число разных типов тестирования.
Во время процедуры взятия крови следует избегать гемолиза, который некоторым возможен при длительном венозном застое, энергичной аспирации крови шприцем, попадании в просвет иглы воды и детергентов, действии на кровь высокой и низкой температур.
2.1.1. Получение сыворотки или плазмы крови
Цельная кровь (капиллярная и венозная) используется в основном в биохимических исследованиях (определение глюкозы, показателей КЩР, определение концентрации электролитов в эритроцитах) и гематологии (исследование LE-клеток, гематокрита, на малярию, проведение стандартного клинического анализа крови). Для радиоиммуиных и иммуноферментных методов получают сыворотку или плазму.
При выборе вида материала следует учитывать следующее:
1) При получении сыворотки крови возникает опасность того, что при отстаивании крови из эритроцитов интенсивно освобождаются протеолитические ферменты, которые могут разрушить определяемое вещество и повредить его меченый аналог во время инкубирования. Поэтому для определения содержания белковых соединений предпочтительно готовить плазму крови.
2) При получении плазмы часто используют гепарин или цитрат. Первый блокирует связывание антитела с антигеном, второй существенно изменяет кислотность среды, к которой чрезвычайно чувствительны некоторые вещества. Поэтому в сухую центрифужную пробирку желательно насыпать 50 мг ЭДТА на 5 мл крови (1:100). Сразу же после забора кровь перемешать с ЭДТА и отцентрифугировать. ЭДТА является слабым антикоагулянтом, блокатором протеолитических ферментов и составной частью многих буферных смесей.
2.1.2. Обработка крови для лабораторных исследований
Полученная и доставленная в лабораторию кровь должна быть быстро обработана, или подвергнута исследованию. Длительное стояние сыворотки над эритроцитами может привести к сдвигам концентраций составляющих, поэтому время стояния сыворотки над сгустком должно быть ограничено. Кроме того, биологический полураспад некоторых исследуемых веществ настолько мал, что стояние сыворотки при высокой комнатной температуре может полностью исказить полученные результаты исследования.
Полученную сыворотку (плазму) необходимо быстро отделить от форменных элементов крови и плотно закрыть пробирки крышкой. Если получена липемическая или гемолизированная сыворотка, образец, как правило, выбрасывается.
2.1.3. Хранение крови (плазмы, сыворотки)
Для определения большинства биологического материала считается возможным хранение его при комнатной температуре не более 6-8 часов.
При работе с кровью общим правилом должно являться немедленное отделение плазмы или сыворотки от форменных элементов, так как некоторые вещества могут поглощаться и инактивироваться эритроцитами и лейкоцитами. Но даже в простых водных растворах они спонтанно окисляются (например, кортизол превращается в 21-дезоксикортизол).
Образцы крови необходимо хранить в хорошо закрытых пробирках, так как потеря в образце влаги в замороженном состоянии может привести к концентрированию исследуемого вещества и получению в итоге ошибочного результата.
По экономическим соображениям важно до госпитализации и до любых терапевтических вмешательств взять образцы плазмы или сыворотки и поместить их в банк сывороток. После установления диагноза, если нет нужды в исследовании биологического материала, и образец не нужен для исследований, он может быть изъят из банка сывороток или плазм, однако, в наличия патологического процесса (особенно опухоли) возможно повторное определение уровня исследуемых веществ или их комбинаций. Кроме того, исследуемый образец рекомендуется оставлять в банке сывороток с тем, чтобы при модификации наборов фирмой-поставщиком, можно было корректно продолжить мониторинг больного. Этот подход также может оказаться полезным, если появится новый маркер, отличающийся более высокой чувствительностью и специфичностью.
Размораживание и повторное замораживание повреждает практически все биологические пробы. Существует ошибочное мнение о том, что такое воздействие не влияет на тиреоидные и стероидные гормоны. Действительно, структура молекул этих гормонов лучше сохраняется в таких ситуациях. Однако следует помнить, что основной пул стероидных и тиреоидных гормонов циркулирует под “защитой” транспортных белков, которые, как и все другие белки, не выдерживают температурных перепадов и, разрушаясь, перестают “защищать” гормоны. Последние, освобождаясь, немедленно включаются в метаболическую цепь, что, в конечном итоге, ведет к искажению истинной картины.
Химическое окружение, в котором находится препарат, также является важным фактором. При хранении белков в растворах концентрация этих белков всегда должна быть больше 1 мг/мл. Известно, например, что разбавленная антисыворотка теряет активность намного быстрее, чем неразбавленная. Молекулы некоторых веществ биологического происхождения особенно легко разрушаются при окислении, поэтому их надо хранить в присутствии какого-нибудь восстановителя или в атмосфере, не содержащей кислорода.
Учитывая высокую скорость разрушения биологически активных веществ в органах и тканях, извлечение их и приготовление навесок анализа необходимо проводить в условиях постоянного охлаждения, хранить образцы только в замороженном состоянии. Предварительная обработка материала позволяет значительно увеличить его срок хранения. Например, после обработки гипофиза ацетоном первоначальный уровень гонадотропной активности сохраняется в нем при хранении в холодильнике без замораживания не менее года. Экстракты гормонов и чистые препараты сохраняются гораздо дольше, чем нативные образцы.
Известно, например, что в тканях гипоталамуса рилизинг-фактор к лютеинизирующему гормону подвергается сравнительно быстрому метаболическому разрушению. В то же время при хранении в стерильных условиях растворов синтетического ЛГ-рилизинг-гормонов в течение 18 месяцев при 40 °С он полностью сохранял свою биологическую активность и иммунореактивные свойства.
2.1.4. Получение, обработка и хранение мочи
Сбор мочи для определения биологически активных веществ проводят в течении заданных интервалов времени, чаще всего за сутки. На протяжении суток скорость образования и экскреции вещества с мочой колеблется весьма значительно, но эти колебания нивелируются при исследовании суточной порции мочи. В последнее время появляется возможность определять не в суммарной суточной моче и не суммарные вещества, а конкретные вещества и в любое время суток. Например, определение андрогена надпочечникового происхождения дегидроэпиандростерона-сульфата, или 17-окси-прегненолона, предназначенного для выявления адреногенитального синдрома.
Из рациона человека, по меньшей мере, за трое суток до сбора мочи
необходимо исключить продукты и лекарственные препараты, влияющие на
секрецию и метаболизм ряда веществ. Присутствие в моче некоторых
веществ эндогенного и экзогенного происхождения может искажать
результаты определения веществ. Сбор мочи производят в сосуды из дифферентного материала (стекла, пластмассы) во избежание разрушения вещества.
При сборе мочи также соблюдают определенные предосторожности, ли моча не содержит стабилизаторов, как, например, при определении стероидов и их метаболитов, она должна храниться до анализа в замороженном виде (как правило, не более 10 дней). Замороженную мочу со стабилизатором, предназначенную для определения катехоламинов, допускается хранить не более трех дней.
2.1.5. Получение экссудатов и транссудатов
Перед сбором экссудатов и транссудатов в посуду для сбора рекомендуется добавить 2 капли гепарина или на кончике ножа сухого цитрата натрия для предотвращения свертывания. Жидкость собирается в чистую сухую посуду и немедленно доставляется в лабораторию.
2.1.6. Сбор и хранение кала
Для исключения возможных погрешностей в диагностике запрещено доставлять кал после использования клизм, введения свечей, приема внутрь касторового и вазелинового масел и красящих веществ. Кал, взятый для исследования на дисбактериоз, должен быть срочно доставлен в лабораторию, или поставлен в холодильник при 4°С. При исследовании на простейшие запрещено сохранять кал в термостате или теплой воде, поскольку при этом происходит гибель и регенеративные изменения простейших.
2.1.7. Сбор и хранение мокроты
Мокроту рекомендуется собирать при кашле в сухую чистую посуду не более суток, так как при длительном хранении происходит разложение флоры и аутолиз элементов мокроты. Кратковременное хранение ее рекомендуется проводить в холодильнике при 4°С. Для бактериологических исследований мокрота не должна стоять более 4 часов с момента получения.
2.1.8. Сбор и хранение ликвора
Спинномозговая жидкость (ликвор), полученная при люмбальной пункции или пункции желудочков мозга, собирается в сухую чистую посуду и доставляется в лабораторию немедленно, так как при хранении в связи с разрушением клеточных элементов результат исследования может быть недостоверным.
2.2. Обработка лабораторной посуды
В специальных пособиях приводится много советов по тех лабораторных работ, поэтому мы ограничимся лишь некоторыми рекомендациями, имеющими существенное значение для постановки реакции и получения высококачественного результата в радиоиммунных и иммуноферментных методах диагностики. При работе с буферными системами, органическими растворителями и другими веществами, применяемыми для постановки реакции, особое внимание нужно обращать на чистоту реактивов. Вода для буферного раствора должна быть бидистиллированной и деионизированной. Органические растворители, как правило, подлежат очистке (например, эфир пропускается через колонку с оксидом алюминия) и двойной перегонке с дефлегматором (напр., при получении абсолютного этанола).
Лабораторная посуда должна быть тщательно обрабатывается механическими и химическими способами.
Приготовление моющего раствора:
на 1 л дистиллированной воды 20 г порошка типа «Лотос».
Приготовление хромовой смеси:
в фарфоровом стакане растворяют 50 г бихромата калия (K 2 Cr 2 O 7 ) в 100 мл воды. Раствор сливают в сосуд большего размера и добавляют (очень осторожно) 1 л серной кислоты (концентрированной).
Внимание! Добавлять серную кислоту в раствор, но не наоборот!
2.2.1. Обработка посуды с низкой радиоактивностью
2.2.2. Обработка посуды с высокой радиоактивностью
Все вышеописанные работы проводить только в вытяжном шкафу при полном отсутствии открытого огня.
Для выполнения биохимических исследований в лаборатории посуда проходит определенный цикл обработки в соответствии с требованиями санитарно-гигиенических и противоэпидемических служб. При выполнении в лабораториях коагулологических исследований или проведения исследований определения ряда пептидных гормонов биологическими методами помимо обычной чистой стеклянной посуды используют силиконированную посуду для взятия и хранения крови и плазмы.
2.2.3. Силиконирование посуды
Силиконирование посуды осуществляют для предотвращения контаминации исследуемого образца со стеклом, в котором проводят химическую реакцию. Силиконирование тормозит активацию свертывания крови, предохраняя распад некоторых веществ (например, пептидных гормонов) при инкубации их со встряхиванием.
Стекло покрывается мономолекулярной пленкой силикона:
5% раствор дихлордиметилсилана в толуоле. Чистая сухая посуда заполняется раствором и сразу же выливается. Силиконирование проводят в вытяжном шкафу, затем проводят сушку посуды в сушильном шкафу 180°С в течение часа.
Раствор для силиконирования хранят в посуде с притертой пробкой
в вытяжном шкафу.
Использовать силиконированную посуду не более 5 раз, затем силиконирование необходимо повторить.