если аллельные гены различны то такое состояние называют

Локусы, аллели, генетические маркеры что это?

В этой статье мы поможем разобраться вам во всех этих терминах, знание которых поможет понять механизм ДНК тест на установление родства, в том числе установление отцовства.

если аллельные гены различны то такое состояние называют. Смотреть фото если аллельные гены различны то такое состояние называют. Смотреть картинку если аллельные гены различны то такое состояние называют. Картинка про если аллельные гены различны то такое состояние называют. Фото если аллельные гены различны то такое состояние называют

Генетика человека. Главные понятия.

В каждом человеке есть уникальный набор генов, который достается нам от родителей.

При слиянии генов наших родителей внутри нас формируется совершенно уникальный и новый генетический код. Гены располагаются в хромосомах и имеют определенное место.

Так вот, благодаря научным исследованиям были определены участки, где находится конкретный ген, именно его и называют локусом или генетическим маркером.

Гены влияют на наш цвет волос, цвет глаз, цвет кожи и т.д. их многочисленные вариации называются аллелями. Нужно понимать, что ребенок получает по одной аллели каждого гена от отца и от матери.

Как правило аллели имеют противоположные свойства: темные и светлые волосы, высокий и низкий рост. Совокупность аллелей в исследуемых локусах и есть ДНК профиль человека.

Благодаря разнообразию эти аллелей в определенных участках (локусах) можно провести ДНК тест на установление родства. Т.к. ребенок получает половину генетического материала от матери и половину от отца.

Подробнее об аллелях и наследственности.

Т.к. аллели имеют противоположные свойства, один аллель, как правило, более сильный. И этот сильный аллель будет называться доминантным. Аллель, который не проявляется называется рецессивным. В целях отличия доминантных и рецессивных аллелей их обозначают разными буквами. Заглавную букву присваивают доминантному аллелю.

Как проходит тест ДНК

Получив образцы, генетическая лаборатория производит выделение ДНК из взятых мазков.

Далее проводится процедура полимеразной цепной реакции. Для этого достаточно иметь небольшой фрагмент ДНК.

После реакции ДНК-секвенатор проводит автономное тестирование и сравнение образцов. Итоговые данные вносятся сотрудником лаборатории в компьютерную программу, производится расчёт вероятности генетической связи и родства.

Программа сравнивает контрольный образец, предоставленный предполагаемым родственником, с испытуемым образцом.

Установление степени родства проводится по методу 25 STR, это минимальное количество генетических маркеров для точного определения родства.

Метод применяется в мировых лабораториях и обладает исключительно высокой достоверностью. Заключение и результаты тестирования подписываются руководителем лаборатории, заверяются печатью. Руководитель должен иметь действующий сертификат судмедэксперта.

Результат считается положительным, если вероятность совпадения выше 99,9999%.

Уникальность строения ДНК присуща каждому человеку, совпадения невозможны. Молекулы способны хранить полную информацию о наследственности. Именно за счёт этого в современной медицине достигается высокая достоверность тестирования.

Источник

Аллели

Нормальные диплоидные соматические клетки содержат два аллеля одного гена (по числу гомологичных хромосом), а гаплоидные гаметы — лишь по одному аллелю каждого гена. Для признаков, подчиняющихся законам Менделя, можно рассматривать доминантные и рецессивные аллели. Если генотип особи содержит два разных аллеля (особь — гетерозигота), проявление признака зависит только от одного из них — доминантного. Рецессивный же аллель влияет на фенотип, только если находится в обеих хромосомах (особь — гомозигота). Таким образом, доминантный аллель подавляет рецессивный. В более сложных случаях наблюдаются другие типы аллельных взаимодействий (см. ниже).

Следует, однако, отметить, что, несмотря на разнообразие взаимодействия аллелей, порой весьма сложных, все они подчиняются первому закону Менделя — закону единообразия гибридов первого поколения.

Связанные понятия

Ге́терозиго́тными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов, которые в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

Упоминания в литературе

Связанные понятия (продолжение)

Делеции (от лат. deletio — уничтожение) — хромосомные перестройки, при которых происходит потеря участка хромосомы. Делеция может быть следствием разрыва хромосомы или результатом неравного кроссинговера. По положению утерянного участка хромосомы делеции классифицируют на внутренние (интерстициальные) и концевые (терминальные).

Гемизиго́тным называют диплоидный организм, у которого имеется только один аллель данного гена или один сегмент хромосомы вместо обычных двух. Для организмов, у которых гетерогаметный пол мужской (как у людей и большинства млекопитающих), почти все гены, связанные с X хромосомой, гемизиготны у самцов, так как у самцов в норме имеется только одна X хромосома. Гемизиготное состояние аллелей или хромосом используется в генетическом анализе с целью поиска места локализации генов, ответственных за какой-либо.

Эпигенетическим наследованием называют наследуемые изменения в фенотипе или экспрессии генов, вызываемые механизмами, отличными от изменения последовательности ДНК (приставка эпи- означает в дополнение). Такие изменения могут оставаться видимыми в течение нескольких клеточных поколений или даже нескольких поколений живых существ.

Источник

Что такое аллельные гены: свойства, способы взаимодействия и множественный аллелизм.

Что такое аллельные гены?

Какие свойства есть у аллельных генов

Если рассмотреть генотип любого живого организма, то можно обнаружить, что он состоит из большого числа различных генов. Все вместе они образуют органическую совокупность и, являясь одним целым, выполняют общие функции.

Г. Менделем, которого считают основателем генетики, описана лишь одна возможность взаимодействия аллельных генов: когда одна полностью доминирует над другой. Аллель, которая подавляется, называют рецессивной.

Менделя считают отцом генетики как науки еще и потому, что он сформулировал все возможные закономерности наследования признаков. Сделал он это с помощью генетического метода, который и сегодня является наиболее перспективным. В основе метода лежит скрещивание организмов с определенными признаками и анализ проявлений этих признаков у потомства.

В этом месте нужно уточнить, что гены не всегда могут проявляться в виде признаков: при одинаковом генотипе у организмов могут быть фенотипические различия. Это объясняется тем, что на фенотип оказывает влияние то, как взаимодействуют генотип и окружающая среда.

Кроме того, фенотипическое проявление генов обусловлено не только одной парой генов: как минимум потому, что оно является результатом взаимодействия генотипической системы в целом.

Аллельное генотипическое взаимодействие — контакты белков и ферментов, а не генов.

Если принять и понять этот принцип, то можно избежать ошибок, проводя генетические исследования взаимодействия аллельных генов.

У методов Менделя есть определенные преимущества:

Чистая линия — это совокупность организмов, которые при длительном, на протяжении нескольких поколений, скрещивании друг с другом проявляют одинаковые признаки (расщепление отсутствует).

Ученый сформулировал 3 закона наследственности:

Эти законы позволяют описывать различные закономерности изменчивости и наследственности. Принципы, лежащие в основе этих законов, применяются в биологии и сегодня.

Способы взаимодействия аллельных генов

Согласно основам генетики, есть 2 варианта генотипического взаимодействия:

Исходя из этого, все живые организмы обладают парными аллельными генами. Внутри организма гены взаимодействуют 3 различными способами:

Кодоминирование

В случае такого взаимодействия аллельные гены проявляют свое действие независимо друг от друга.

Для варианта кодоминирования аллельных генов пример — это система групп крови ABO. Здесь гены A и B функционируют независимо.

Сверхдоминирование

В этой ситуации качество фенотипический проявлений доминантного гена увеличивается только тогда, когда он тесно связан с рецессивным.

В случае если в одной аллели находится два доминантных гена, то, как правило, их действие и проявление сильно хуже, чем в предыдущем варианте с одним доминантным и одним рецессивным геном.

Полное и неполное доминирование

При полном перекрытии доминантным геном рецессивного говорят о полном доминировании.

Неполное доминирование — вариант взаимодействия генов, когда рецессивный ген не подавляется полностью и может оказывать влияние (хотя бы минимальное) на фенотипическое проявление признака. В таком случае фенотипическое проявление признака является промежуточным — между родительскими формами.

Пример неполного доминирования — наследование окраски венчика цветка ночной красавицы. Здесь родительские формы имеют белый и красный цвета, а промежуточным будет розовый.

Множественный аллелизм

В генетике встречается такое явление как множественный аллелизм. В каждом организме есть два аллельных гена, при этом самих аллелей может быть больше двух. При таком раскладе только одна пара аллелей может проявлять фенотипические признаки: другие гены не задействуются. Гомологичные аллели, то есть одинаковые, «работают» над развитием одного и того же признака. При этом качество его проявления будет различаться.

При множественном аллелизме формы взаимодействия генов могут быть различными. Даже несмотря на то, что они отвечают за один и тот же признак. Дело в том, что проявляют они этот признак по-разному и при помощи различных способов (описанных выше).

Самый простой пример — окраска шерсти кролика. Здесь могут быть следующие варианты: белая, гималайская, шиншилловая, черная и коричневая. И это при том, что есть целая серия разных аллелей генов, ответственных за окрас. И таких примеров в биологии достаточно.

Несмотря на всю парадоксальность множественного аллелизма, в половую клетку живого существа проникает только одна пара гомологичных аллелей, и какая именно — вопрос случая. Так обеспечивается изменчивость каждого отдельного вида, играющая важнейшую роль в эволюции.

Благодаря изучению аллельных генов, становятся понятными закономерности наследования признаков. А еще это помогает исключить негативные последствия изменения наследственного набора организма.

Источник

Взаимодействие аллельных генов

Гены, контролирующие развитие одного и того же признака (например, окраску цветков), будь то аллельные или неаллельные, не могут действовать абсолютно независимо. Генотип — это не простая сумма составляющих его генов, это — сложная система, основанная на межаллельных и неаллельных взаимодействиях. Взаимодействие осуществляется на уровне белковых продуктов, которые вырабатываются под контролем генов.

Различные типы доминирования обусловлены взаимодействием аллельных генов. Полное доминирование далеко не всегда означает, что функция рецессивного гена полностью подавлена, и он не функционирует. Например, у львиного зева красная окраска цветов доминирует над светло-красной. Однако оба аллельных гена, доминантный и рецессивный, экспрессируются, т.е обеспечивают выработку фермента, катализирующего синтез пигмента. Но под контролем рецессивного гена вырабатывается неактивная форма фермента, которая не может обеспечить конечный этап выработки красного пигмента (цианидина). В результате у рецессивных гомозигот образуется только его предшественник — светло-красный пигмент (пеларгонидин). В гетерозиготе работа доминантного гена полностью обеспечивает превращение светло-красного пигмента в красный.

Характер доминирования может изменяться под влиянием внешних условий. Так, например, у пшеницы в обычных условиях доминирует нормальный колос, а при коротком световом дне — ветвистый. Но изменение характера доминирования не приводит к изменению генотипа и не изменяет расщепление в гибридном потомстве.

Взаимодействие аллельных генов особенно наглядно можно проследить на примере явления множественного аллелизма. Этим термином обозначают существование нескольких (иногда многих) аллелей одного и того же гена, которые образуют серию множественных аллелей. Такие серии известны у многих животных и растений; у дрозофилы число их достигает нескольких десятков.

Классическим примером множественного аллелизма является серия генов, контролирующих окраску глаз у дрозофилы. В нее входят 12 мутантных генов, которые определяют различные типы окраски: от белой до темно-красной, характерной для мух дикого типа.

Все члены серии множественных аллелей обозначаются одной и той же буквой (начальной в английском названии первого члена серии). К ней добавляется индекс в виде одной или двух букв — первых в названии данного члена серии. Например: начальный член вышеуказанной серии по окраске глаз у дрозофилы — рецессивная мутация white (белые глаза) обозначается как w, один из последующих мутантных членов серии как w a (apricot — абрикосовые глаза), а доминантный ген дикого типа — как W.

Все члены серии представляют собой мутантные формы одного того же гена дикого типа и поэтому занимают один и тот же локус в хромосоме. При нормальном (диплоидном) количестве хромосом в генотипе могут быть представлены только два члена этой серии.

Каждый из мутантных генов серии образует аллельную пару с любым другим членом серии, и все они аллельны одному гену дикого типа, вызывающему нормальную (красную) окраску глаз дрозофилы. Он является доминантным по отношению к любому другому члену серии. Если же в генотипе представлены два мутантных аллеля, то такие особи носят название компаундов. Для них характерно промежуточное состояние признака. Так, например, у гетерозигот по генам white и apricot окраска глаз желтая. Отличие взаимодействия аллельных генов от неаллельных заключается в том, что у гетерозигот по двум мутантным аллелям их действие не является комплементарным и не обеспечивает возврата к признаку дикого типа.

Серия аллельных генов по окраске глаз у дрозофилы

white — w — белыйapricot — w a — абрикосовый
ecru — w ec — цвета сурового полотнаcherry — w c — вишневый
tinged — w t — светло-желтыйblood — w b — кровавый
ivory — w i — цвета слоновой костиcoral — w co — коралловый
buff — w bf — рыжийwine — w w — винный
eosin — w e — эозиновыйmottled — w m — пятнистый

В некоторых сериях множественных аллелей ген дикого типа может быть рецессивным по отношению к мутантному гену. Это указывает на то, что мутировать ген может в разных направлениях: как в сторону доминантности, так и в сторону рецессивности. Примером такой ситуации служит серия из трех генов у дрозофилы: Truncate (T dp — обрезанные крылья) — Normaldumpy (dp — укороченные крылья).

Серии множественных аллелей обнаружены у мышей (окраска шерсти), кролика, соболя и лисицы (окраска меха), у гречихи, табака (самонесовместимость), у человека (гены группы крови) и др. Комбинирование алелльных мутаций широко используется селекционерами для получения новых ценных признаков.

Перейти к чтению других тем книги «Генетика и селекция. Теория. Задания. Ответы»:

Источник

АЛЛЕЛИ

Аллели (греческий allēlōn — взаимно; синоним аллеломорфы) — различные формы состояния гена, занимающие в гомологичных, парных хромосомах идентичные участки и определяющие общность биохимических процессов развития того или иного признака. Каждый ген может находиться по крайней мере в двух аллельных состояниях, определяемых его структурой. Наличием аллельных генов обусловлены фенотипические различия среди особей.

Термины «аллеломорфы», «аллеломорфная пара», «аллеломорфизм» предложены Бейтсоном и Сондерсом (W. Bateson, J. Saunders, 1902). Впоследствии Йоханнсен (W. L. Johannsen, 1909) предложил заменить их на более краткие — «аллели», «аллельная пара», «аллелизм».

В первоначальном значении термин «аллели» обозначал только гены, определяющие пару альтернативных менделирующих признаков (см. Менделя законы). Несмотря на то что по сути дела термины «ген» и «аллель» должны быть синонимами, термин «аллель» употребляется для обозначения определенной разновидности гена. Понятием «ген» обозначают локус (см.) хромосомы как таковой независимо от числа существующих аллель этого гена.

В каждой из гомологичных хромосом может располагаться лишь один аллель данного гена. Так как у диплоидных организмов имеется по две хромосомы каждого типа (гомологичные хромосомы), то в клетках этих организмов присутствуют по два аллели каждого гена. Аллельная пара составляется при оплодотворении и может состоять из идентичных или неидентичных аллель. В первом случае говорят об аллели в гомозиготном, во втором — в гетерозиготном состоянии. Кроме этого, у мужских особей диплоидных организмов может быть выявлен аллелизм в гемизиготном состоянии. Это обусловлено тем, что у человека пара половых хромосом (XY-хромосомы) не является гомологичной. В результате этого в тех случаях, когда аллельная пара не может быть составлена, проявление генов не зависит от того, являются ли они доминантными или рецессивными (см. Доминантность). Индивида, имеющего один или несколько таких неспаренных генов, но диплоидного по остальным генам, называют гемизиготным.

Название (номенклатура) генов обычно соответствует их конечным эффектам (фенотипам), причем используют английскую терминологию. Так, рецессивный ген, обусловливающий ахондроплазию, может быть назван achondroplasia. Для удобства написания генетических формул аллели обозначают символами. Рецессивный аллели обычно обозначается строчной первой буквой названия данного гена, в частности для гена achondroplasia символ может быть а. Если символ а уже был использован ранее для обозначения других генов данного вида, то может быть взят символ ас или какой-либо другой.

Доминантный ген обозначают одним из следующих способов: той же, но заглавной буквой (A), той же буквой с верхним индексом + (а + ); знаком + с верхним индексом символа рецессивного аллеля (+ а ) или чаще всего просто знаком +. Так, генетическая формула для индивида, гетерозиготного по мутантному рецессивному гену альбинизма, будет с/+, для альбиноса с/с, а для человека с нормальной пигментацией +/+.

Ген, который обычно встречается в природе и обеспечивает нормальное развитие и жизнеспособность организма, называют нормальным аллелем, или аллелем дикого типа.

Нормальный аллель может мутировать (см. Мутагенез). В результате ряда последовательных мутаций (см.) может возникнуть серия аллели одного локуса. Такое явление получило название множественного аллелизма. Поэтому для того, чтобы определить многообразные изменения какого-либо гена, необходимо исследовать многих индивидов — носителей разных членов серии множественных аллель. Люди с группой крови А подразделяются на три подгруппы. Это связано с наличием в популяциях людей трех различных аллель гена IА — IА1, IА2 и IА3. Для другого аллеля этой системы IB также известны три отличающиеся аллельные формы, что обусловливает выделение трех групп людей с группой крови В.

В настоящее, время популяционно-генетическими исследованиями выявлено более 50 разных аллель, контролирующих синтез α- или β-полипептидных цепей молекулы гемоглобина или фермента глюкозо-6-фосфат-дегидрогеназы у человека.

Основной формой взаимодействия между аллелями является доминирование (см. Доминантность). Нормальный (дикий) аллель обычно доминирует по отношению к мутантному аллелю. В зависимости от характера взаимодействия нормальных аллель с мутантными различают аморфы, гипоморфы, гиперморфы, антиморфы и неоморфы. Аморфы — полностью рецессивные аллели; гипоморфы обладают такими же свойствами, что и нормальные аллели, только в ослабленной степени; гиперморфы дают больше первичных продуктов в клетке по сравнению с нормальным аллелем; антиморфы подавляют проявление эффектов нормальных аллель, анеоморфы — аллели с новыми функциями, эффекты их не количественно, а качественно отличаются от эффектов нормального аллеля.

Хотя принципиальных различий в действии доминантных и рецессивных аллель не выявлено, конечные продукты их деятельности (эффекты) различны. Это особенно четко проявляется в ферментах. Превращение нормального доминантного аллеля в мутантный рецессивный часто приводит к синтезу неактивного фермента. Если у гетерозигот проявляются эффекты обоих аллель, то такой характер действия генов называют кодоминантным (см. Кодоминантность).

Единственным известным исключением из правила кодоминантного действия аутосомных генов является, по-видимому, генетический контроль синтеза полипептидных цепей иммуноглобулина. Молекула иммуноглобулина состоит из 2 тяжелых и 2 легких полнпептидных цепей, синтез которых контролируется двумя парами аутосомных несцепленных генов, причем в каждой клетке активен лишь один из аллельных генов данных локусов. Такое аллельное исключение аутосомных генов, очевидно, связано со спецификой биосинтеза иммуноглобулинов.

В истории развития учения об аллели большую роль сыграло открытие явления ступенчатого аллелизма (Н. П. Дубинин, А. С. Серебровский и другие, 1929—1934). В этом случае разработка метода межаллельной комплементации (см. Мутационный анализ) позволила показать, что при мутациях ген может изменяться не целиком, а через изменение отдельных его частей. Это положило начало учению о сложном строении гена и заметно изменило старые понятия о сущности аллели. При разных изменениях одного и того же участка гена возникают гомоаллели. В этом случае между аллелями нет рекомбинаций (см.). При изменении разных мест внутри гена появляются гетероаллели.

Псевдоаллели — тесно сцепленные локусы, имеющие сходные фенотипические эффекты. Сходство их с аллелями заключается в том, что они обычно передаются вместе как одна единица, хотя в редких случаях могут и рекомбинировать в результате кроссинговера. В цис- и транс-положениях (см. Молекулярная генетика) псевдоаллели обусловливают различные фенотипы. В цис-гетерозиготах (ab/++) мутантные псевдоаллели проявляют дикий или нормальный фенотип, а в транс-гетерозиготах (а+/+b) — мутантный фенотип. Группу тесно сцепленных локусов называют серией псевдоаллелей, или сложным генным локусом.

Гены с одинаковой функцией и локализацией у особей разных видов называют гомологичными. Наличие гомологичных генов у индивидов различных видов объясняют их происхождением от общих родительских форм. Например, мутации генов, контролирующих синтез фермента тирозиназы, участвующей в образовании пигмента меланина, приводят к неактивности данного фермента и и как результат — к появлению альбинизма у различных видов. Гомологичными генами контролируется также синтез VIII и IX факторов свертывающей системы крови у человека и других млекопитающих. Мутации в этих генах обусловливают развитие гемофилии А и В.

Для большинства генов установлена множественность эффектов проявления, в результате чего мутантные гены обусловливают возникновение различных синдромов (см. Плейотропия). Видимые эффекты некоторых генов не во всех случаях проявляются фенотипическп у носителей этих генов (см. Пенетрантность гена). На степень проявления эффектов аллельных генов нередко влияют другие неаллельные гены — гены-модификаторы. Последние сами по себе не имеют каких-либо видимых эффектов проявления, но способны усиливать или ослаблять эффекты так наз. главных генов, контролирующих образование альтернативных менделирующих признаков. Образование определенного признака может зависеть также от взаимодействия двух или более доминантных неаллельных генов, каждый из которых не имеет самостоятельного проявления, а контролирует протекание одного из звеньев последовательной цепи биохимических реакций. Такие гены называют комплементарными. Контролируемый ими признак проявляется фенотипически только в том случае, если все доминантные аллели этих локусов присутствуют в организме.

Таким образом, наличие в популяции многообразных форм генов, составляющих аллельные пары, сложный характер взаимоотношений внутри этой пары, влияние на проявление этой пары неаллельных генов является основной причиной существования фенотипических различий среди особей этой популяции по определенному признаку.

Библиография

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *