Гфбд 17 что это

Способ получения гексафторбутадиена

Гфбд 17 что это. Смотреть фото Гфбд 17 что это. Смотреть картинку Гфбд 17 что это. Картинка про Гфбд 17 что это. Фото Гфбд 17 что это

Владельцы патента RU 2247104:

Изобретение относится к области получения ненасыщенных перфторуглеродов, конкретно к получению гексафторбутадиена-1,3 (ГФБД).

ГФБД используется как бифункциональный мономер, пригодный для получения и сшивки перфторированных эластомеров, агент сухого плазменного травления в производстве полупроводниковых изделий и др.

Названные выше области требуют применения высокочистого ГФБД. Поэтому методы получения ГФБД должны быть рассмотрены с учетом возможности получения высокочистого ГФБД.

Известен метод получения ГФБД исходя из 1,2-дибромхлортрифторэтана путем его присоединения при теломеризации к хлортрифторэтилену под действием УФ-излучения с получением 1,4-дибром-2,3-дихлоргексафторбутана, и дегалогенирования последнего активированным цинковым порошком в кипящем этаноле [Dedek V., Chvatal Z., J. Fluor. Chem., 1986, v.32, №4, 363-379]. Недостатками этого метода являются трудности использования малотехнологичного ультрафиолетового излучения, низкий выход бутанового теломера (38%) и трудность получения чистого ГФБД, вызванная загрязнением ГФБД побочными продуктами, которые образуются из алифатического спирта при его хлорировании в условиях дегалогенирования в кипящем спирте в присутствии следов воды.

Известны методы синтеза перфторбутадиенов с концевыми двойными связями по реакции α,ω-дийодоперфторалканов дейодфторированием [ЕР №0205892, заявл. 15.05.86], и α,ω-дибромоперфторалканов дебромфторированием [ЕР №0270956, заявл. 27.11.87], которые осуществлялись с использованием металлоорганических соединений, таких как этилмагнийбромид и бутиллитий. Недостатками этих методов является нестойкость металлоорганических реагентов по отношению к следам кислорода воздуха и влаги, а также пожароопасность применения металлоорганических реагентов, что ограничивает применимость метода для получения значительных количеств ГФБД.

Наиболее близким по технической сущности к предлагаемому методу является давно известный метод получения ГФБД [R.N.Haszeldyne, J.E.Osbome, J. Chem.Soc., 1955, №11, 3880-3888], включающий сдваивание 1,2-дихлортрифториодоэтана с получением 1,2,3,4-тетрахлоргексафторбутана (ТХГФБ) и дегалогенирование последнего в среде кипящего этанола порошковым цинком. По этому способу ГФБД получают при действии порошкового цинка на ТХГФБ в среде кипящего этанола при его рефлюксе в течение 6 часов с получением ГФБД с выходом 87%. При этом жидкие при нормальных условиях компоненты конденсируются в обратном холодильнике, охлаждаемом холодной водой, и возвращаются в реактор, а газообразные компоненты проходят обратный холодильник и конденсируются в ловушке, охлаждаемой сухим льдом.

Недостатком данного способа для получения чистого ГФБД является то, что проведение процесса при температуре кипения растворителя приводит к загрязнению полученного ГФБД различными органическими примесями. Эти примеси представляют собой по данным газовой хроматографии с масс-спектроскопией:

1. Продукты частичного дегалогенирования ТХГФБ брутто формулы С4F6Сl2;

2. Продукты частичного восстановления ГФБД цинком общей формулы С4НхF6-х, где x=1-3;

Все перечисленные примеси и в том числе хлорированные углеводороды в той или иной степени проходят систему обратной конденсации и накапливаются в низкотемпературном приемнике вместе с ГФБД. Это приводит к загрязнению ГФБД перечисленными примесями.

В частности, нами установлено, что хлористый метил, хлористый метилен, изопропилхлорид и, возможно, хлористый этил по меньшей мере в малых концентрациях, вероятно, образуют азеотропные смеси с ГФБД. Поэтому загрязнение ГФБД этими примесями представляет особенно острую проблему.

Предлагается осуществлять способ в три стадии.

На первой стадии реакционная смесь, содержащая растворитель и дисперсный цинк, нагревается при перемешивании до температуры на 8-50°С ниже температуры кипения растворителя и вводится разово 5-18 мол.% полигалогенбутана от стехиометрического соотношения полигалогенбутан : цинк; далее реакционная смесь перемешивается до появления температурного скачка в 8-19°С и далее осуществляется подача полигалогенбутана до суммарной его загрузки 60-95 мол.% от стехиометрического соотношения при равномерной или дискретной подаче со скоростью, которая обеспечит поддержание температуры по крайней мере на 8-50°С ниже температуры кипения растворителя.

Предлагается также проводить реакцию по данному способу в среде алифатического спирта C1-C4 или сложного эфира с уксусной кислотой или смеси указанных спиртов и сложных эфиров.

Описанный способ предполагает использование реагентов и растворителей, наиболее эффективных с точки зрения скорости процесса, выхода ГФБД, дешевизны и доступности растворителя. При этом пониженная температура синтеза ГФБД препятствует побочным процессам гидролиза сложных эфиров и хлорирования спиртов в кислой реакционной среде с образованием трудноудаляемых хлоруглеводородных и других примесей. Нагрев смеси используется только на начальной стадии процесса, а далее необходимая температура реакционной смеси поддерживается за счет собственного тепла экзотермической реакции путем постадийной дозировки одного из реакционных компонентов. Это позволяет уменьшить энергозатраты, и при этом отказаться от одновременного использования нагрева/охлаждения и автоматики для термостатирования реакционной смеси.

В итоге предлагаемый способ позволяет за счет оригинальных параметров процесса получать ГФБД значительно более высокого качества, чем по прототипу и, кроме того, легко очищаемый далее до квалификации особо высокой чистоты. Способ прост в техническом отношении, т.к. предлагаемые параметры легко технологически реализуемы при крупномасштабном получении ГФБД, и для увеличения чистоты продукта здесь не требуются специальные последующие меры по удалению кислорода воздуха и влаги.

Кроме того, предложенная постепенная по температурному режиму и дозировке полигалогенбутана процедура получения ГФБД при температуре ниже температуры кипения растворителя позволяет избежать температурных скачков реакционной смеси до температуры кипения и выше (которые всегда возможны при использовании активных дисперсных реагентов типа металлического цинка) и в итоге избежать возможных выбросов реакционной смеси.

Изобретение иллюстрируется следующими примерами.

В круглодонную четырехгорлую колбу, снабженную обратным холодильником, мешалкой, термометром и дозировочной воронкой, при перемешивании загружается 70 мл изопропилового спирта и цинковый порошок в количестве 45 г (0,7 моль). Реакционная смесь подогревается до температуры 64°С. При интенсивном перемешивании в колбу добавляется 70,0 г (0,23 моль) 1,2,3,4-тетрахлоргексафторбутана небольшими порциями так, чтобы температура держалась на уровне 64°C±0,3°C. Летучие продукты реакции постепенно собираются в ловушке, охлаждаемой смесью сухого льда и ацетона до температуры минус 60°С.

Выход ГФБД сырца составляет 33,9 г (0,21 моль; 91 мол.%). Чистота продукта по данным газохроматографического анализа составляет 88 мас.%. Содержание хлоруглеводородов в продукте составляет 0,32 мас.%.

Продукт подвергается низкотемпературной ректификации при атмосферном давлении на стеклянной колонне со спиральной насадкой из нержавеющей стали. Температура в кубе колонны до 35°С; температура ректификации 5-6°С; температура охлаждения дефлегматора (-20)-(-25)°С. ГФБД собирается в низкотемпературной ловушке. Чистота продукта по данным газохроматографического анализа с масс-спектрометрическим детектором составляет 97,5 мас.%.

Выход ГФБД сырца составляет 48,6 г (0,30 моль; 90 мол.%). Содержание основного вещества в продукте по данным газохроматографического анализа составляет 94 мас.%.

Применение различных других полигалогенбутанов и растворителей при различных постепенных режимах подачи полигалогенбутана и температурных режимах для получения ГФБД иллюстрируется примерами 3-5. Синтезы проводились аналогично примерам 1 и 2; условия синтезов, а также результаты сведены в Таблицу 1.

ПРИМЕР 6 (сравнительный).

В круглодонную четырехгорлую колбу, снабженную обратным холодильником, охлаждаемым холодной водой, мешалкой, термометром и капельной воронкой, при перемешивании загружается 70 мл этилового спирта и 45 г (0,7 моль) цинкового порошка. Реакционная смесь подогревается до температуры 78°С при рефлюксе этанола. При интенсивном перемешивании в колбу с кипящей реакционной смесью постепенно добавляется тетрахлоргексафторбутан в количестве 56,2 г (0,185 моль) в течение 3 часов. Газообразные продукты реакции при стабильном рефлюксе проходят обратный холодильник и медленно конденсируются в ловушке, охлаждаемой до температуры минус 60°С.

Результаты синтеза по Примеру 6 также приведены в Таблице 1.

Применение предлагаемого способа существенно улучшает общий выход и чистоту получаемого ГФБД; чистота продукта после однократной ректификации составляет не менее 97,5 мас.%, а содержание трудноудаляемых хлоруглеводородных примесей удается снизить до уровня менее 0,25 мас.%.

Гфбд 17 что это. Смотреть фото Гфбд 17 что это. Смотреть картинку Гфбд 17 что это. Картинка про Гфбд 17 что это. Фото Гфбд 17 что это

2. Способ по п.1, отличающийся тем, что на первой стадии реакционную смесь, содержащую растворитель и дисперсный цинк, нагревают до температуры на 20-50°С ниже температуры кипения растворителя и вводят разово 5-18 мол.% полигалогенбутана от стехиометрического соотношения; далее реакционную смесь перемешивают до появления температурного скачка в 8-19°С, и далее осуществляют подачу полигалогенбутана в общем количестве 60-95 мол.% от стехиометрического соотношения со скоростью подачи, которая обеспечивает поддержание температуры по крайней мере на 8-40°С ниже температуры кипения растворителя.

3. Способ получения гексафторбутадиена по пп.1, 2, отличающийся тем, что в качестве полярного органического растворителя используют алифатические спирты с числом атомов углерода 1-4, их сложные эфиры с уксусной кислотой или смеси алифатических спиртов и эфиров.

Источник

Новости

Запущена новая очередь по производству высокотехнологичного электронного газа гексафторбутадиена (ГФБД)

29 мая состоялся визит представителей руководства Кировского района города Перми, Пермской городской Думы, общероссийского народного фронта и общественности района в ООО «Пермская химическая компания».

В ходе визита ООО «ПХК» продемонстрировало открытость, прозрачность деятельности в области охраны труда, экологии, дана объективная информация об уровне производства и планах развития компании.

«Расширение производства ГФБД с 7 до 20 тонн в месяц на ООО «ПХК» выполнялось на основании проектной документации, которая содержала в себе все необходимые разделы, в т.ч. «Пожарная безопасность», «Охрана окружающей среды» и другие специальные разделы, основная задача которых – гарантировать безопасность для людей и окружающих принятых технических решений. Данный опасный производственный объект после техперевооружения находится на регистрации в органах Ростехнадзора.

По сравнению с ранее действующей технологией значительно выросло число газоанализаторов на хлор, ГФБД, датчиков на взрываемость, увеличилась мощность вентсистем (с увеличением воздухообмена), скорректирован график анализа воздушной среды воздуха рабочей зоны (количество замеров значительно возросло), применены самые современные газоанализаторы, закуплено современное аналитическое оборудование и освоены методики для более точного измерения концентрации загрязняющих веществ и т.д.

Таким образом можно утверждать, что на вновь введенном модернизированном производстве ГФБД на ООО «ПХК» гарантирована максимальная безопасность как для процессов, работников, оборудования, так и для граничащих с территорией объектов, а также жителей близлежащих домов микрорайона Новый Крым.

Источник

способ получения гексафторбутадиена

Изобретение относится к способу получения перфторолефинов, а именно гексафторбутадиена (CF 2 =CF-CF=CF 2 ). Способ заключается в прямом взаимодействии хлортрифторэтилена с цинком в присутствии металлокомплексного катализатора на основе растворов органических комплексов переходных металлов в полярных органических растворителях и возможно в присутствии активирующей добавки, в качестве которой используются галогениды металлов. Способ позволяет упростить процесс получения гексафторбутадиена. 5 з.п. ф-лы, 3 табл.

Формула изобретения

1. Способ получения гексафторбутадиена прямой реакцией хлортрифторэтилена с цинком в присутствии металлокомплексного катализатора на основе растворов органических комплексов переходных металлов в полярных органических растворителях и возможно в присутствии активирующей добавки, в качестве которой используются галогениды металлов.

2. Способ по п.1, отличающийся тем, что используют катализатор, образующийся «in situ» при смешении органических комплексов переходных металлов с комплексообразующим лигандом в полярном органическом растворителе.

3. Способ по п.1, отличающийся тем, что в качестве органических комплексов переходных металлов используют соединения никеля и палладия.

4. Способ по п.1, отличающийся тем, что в качестве активирующих добавок используются иодиды металлов.

5. Способ по п.1, отличающийся тем, что реакцию проводят при температуре 20-100°С, лучше 50-80°С.

6. Способ по п.1, отличающийся тем, что реакцию проводят с неполной конверсией хлортрифторэтилена, который после отделения продуктов реакции ректификацией возвращается в процесс.

Описание изобретения к патенту

Изобретение относится к области химической технологии получения перфторолефинов, а именно гексафторбутадиена CF 2 =CF-CF=CF 2 (далее ГФБД), который находит применение в синтезе различных (со)полимеров и в микроэлектронике при производстве интегральных схем.

Известен метод получения ГФБД исходя из 1,2-дибромхлор-трифторэтана путем его присоединения при теломеризации к хлортрифторэтилену под действием УФ-излучения с получением 1,4-дибром-2,3-дихлоргексафторбутана и дегалогенирования последнего активированным цинковым порошком в кипящем этаноле [Dedek V., Chvatal Z., J. Fluor. Chem., 1986, v.32, №4, pp.363-379]. Недостатками этого метода являются трудности использования малотехнологичного ультрафиолетового излучения, низкий выход бутанового теломера (38%) и трудность получения чистого ГФБД, вызванная загрязнением ГФБД побочными продуктами, которые образуются из алифатического спирта при его хлорировании в условиях дегалогенирования в кипящем спирте в присутствии следов воды.

Давно известен метод получения ГФБД [R.N.Haszeldyne, J.E.Osborne, J. Chem. Soc, 1955, №11, pp.3880-3888], включающий сдваивание 1,2-дихлортрифторйодэтана с получением 1,2,3,4-тетрахлоргексафторбутана (ТХГФБ) и дегалогенирование последнего в среде кипящего этанола порошковым цинком. По этому способу ГФБД получают при действии порошкового цинка на ТХГФБ в среде кипящего этанола при его рефлюксе в течение 6 часов с получением ГФБД с выходом 87%. При этом жидкие при нормальных условиях компоненты конденсируются в обратном холодильнике, охлаждаемом холодной водой, и возвращаются в реактор, газообразные компоненты проходят обратный холодильник и конденсируются в ловушке, охлаждаемой сухим льдом.

Недостатком данного способа получения чистого ГФБД является то, что проведение процесса при температуре кипения растворителя приводит к загрязнению полученного ГФБД различными органическими примесями. Эти примеси по данным газовой хроматографии в сочетании с масс-спектроскопией представляют собой:

Все перечисленные примеси, в том числе хлорированные углеводороды, в той или иной степени проходят систему обратной конденсации и накапливаются в низкотемпературном приемнике вместе с ГФБД. Это приводит к загрязнению ГФБД перечисленными примесями.

В частности установлено, что хлористый метил, хлористый метилен, изопропилхлорид и, возможно, хлористый этил по меньшей мере в малых концентрациях, вероятно, образуют азеотропные смеси с ГФБД. Поэтому загрязнение ГФБД этими примесями представляет особенно острую проблему.

Известен способ получения ГФБД реакцией дегалогенирования 1,4-дибром- или 1,4-дийодперфторбутанов этилмагнийбромидом в тетрагидрофуране с выходом 96% (Gianangelo Bargigia, Vito Tortelli, Claudio Tonelli, Silvana Modena; US Patent 5082981).

К недостаткам известного способа следует отнести использование в качестве исходных соединений труднодоступных дибром- или дийодперфторбутанов.

Известен другой способ получения ГФБД реакцией дегалогенирования 1,2,3,4-тетрахлоргексафторбутана цинком в среде абсолютированного этанола с выходом 93,5% (R.P.Ruh, R.A.Davis, K.A.Allswde GB 798407).

К недостаткам этого известного способа следует отнести необходимость применения в качестве растворителей абсолютированного этанола или других безводных спиртов и их последующей регенерации.

Предлагается осуществлять способ в три стадии.

При этом на первой стадии реакционную смесь, содержащую растворитель и дисперсный цинк, нагревают до температуры на 20-50°С ниже температуры кипения растворителя и вводят разово 5-18 мол.% полигалогенбутана от стехиометрического соотношения; далее реакционную смесь перемешивают до появления температурного скачка в 8-19°С, и далее осуществляют подачу полигалогенбутана в общем количестве 60-95 мол.% от стехиометрического соотношения со скоростью подачи, которая обеспечивает поддержание температуры по крайней мере на 8-40°С ниже температуры кипения растворителя.

В качестве полярного органического растворителя используют алифатические спирты с числом атомов углерода 1-4, их сложные эфиры с уксусной кислотой или смеси алифатических спиртов и эфиров. В известном способе используют в качестве исходных полигалогенбутаны формулы:

Из RU 2272017, 20.03.2006 известен еще один способ получения ГФБД.

Способ осуществляют за счет реакции 1,2,3,4-тетрахлоргексафторбутана с цинком в водной среде при температуре 30-90°С. Реакцию проводят путем дозировки 1,2,3,4-тетрахлоргексафторбутана в реакционный сосуд, содержащий цинк и воду с одновременным отбором образующегося целевого продукта. Предпочтительно процесс проводят в присутствии промотора, в качестве которого используют кислоты, в частности серную или соляную кислоты, растворимые соли слабых оснований, такие как галогениды цинка или аммония, катализаторы межфазного переноса, такие как четвертичные соли аммония, четвертичные фосфониевые соли, галогениды тетракис(диалкиламино)фосфония или галогениды N,N’,N»-гексаалкилзамещенного гуанидиния или смесь указанных веществ. Способ также не лишен сложностей из-за проведения реакции в водной среде и из-за необходимости строгого контроля скорости дозировки исходного тетрахлоргексафторбутана и одновременного быстрого отделения образующегося целевого продукта от конденсирующихся примесей.

Известны многостадийные способы получения ГФБД, дающие невысокие выходы целевого продукта. Так, способ, раскрытый в патенте Японии 2001114710, опубл. 1999, включает несколько стадий:

— получение CFBr 2 CF 3 изомеризацией CF 2 BrCF 2 Br в присутствии катализатора;

— получение CF 2 =CF-Zn взаимодействием CFBr 1 CF 3 с цинком в апротонном растворителе;

— получение C 4 F 6 реакцией CF 2 =CF-Zn с группой соединений, содержащих трехвалентное железо и двухвалентную медь, в апротонном растворителе.

В патенте США 2777004, опубл. 08.01.1957, описан многостадийный способ получения ГФБД из симметричного дихлордифторэтилена, включающий следующие стадии:

CFCl=CFCl CFCl=CF-CFCl-CFCl 2

2. Фотохимическое хлорирование, которое проводят, получая конверсию 96,1% и селективность 99,4%

3. Фторирование при температуре 250°С, в результате которого получают выход до 89,6%

4. Дегалоидирование CF 2 Cl-CFCl-CFCl-CF 2 Cl цинком в полярном растворителе, которое приводит к образованию ГФБД с селективностью 93,7%, конверсией 90,2%.

Каждая из перечисленных стадий синтеза сопровождается ректификацией с выделением соответствующего продукта, что означает удвоение количества стадий.

Недостатком перечисленных способов получения ГФБД является их многостадийность.

Наиболее близким к заявляемому является способ получения ГФБД дехлорированием 1,2-дихлоргексафторбутена-З, который образуется при пиролизе С 2 F 3 Cl при 500°С, но с очень низким выходом. Стадию дехлорирования проводят в присутствии цинка в растворителе [Синтезы фторорганических соединений, ред. Кнунянц И.Л., М., Химия, 1973 г., стр.17].

Продукты, несконденсированные на стадии конденсации, возвращают на пиролиз.

Способ позволяет проводить стадию пиролиза с конверсией 50-70%. Ректификация пиролизата позволяет получить товарный 1,2-дихлоргексафторциклобутан, а также 1,2-дихлоргексафторбутен-3, который подвергают дехлорированию с получением ГФБД-сырца.

В результате ректификации ГФБД-сырца выделяют товарный ГФБД.

Известный способ состоит из следующих стадий:

Как следует из описания данного известного способа получения ГФБД, он также является достаточно сложным технологически: многостадиен и требует использования высоких температур.

Технической задачей заявленного изобретения является упрощение технологии получения ГФБД.

Поставленная техническая задача осуществляется способом получения ГФБД прямой реакцией хлортрифторэтилена с цинком в присутствии катализатора на основе растворов органических металлокомплексов переходных металлов в органических растворителях и при необходимости в присутствии активирующей добавки.

При этом способе используют металлокомплексный катализатор, полученный смешением (предпочтительно «in situ») органических комплексов переходных металлов с комплексообразующим лигандом в органическом растворителе; в частности в качестве органических комплексов переходных металлов используют соединения никеля и палладия. В качестве возможной активирующей добавки используют галогенид металла, в частности иодид металла или их смесь.

Реакцию проводят при 20-100°С, предпочтительно при 50-80°С.

В частности, реакцию проводят с неполной конверсией хлортрифторэтилена, который после отделения продуктов реакции ректификацией может возвращаться в процесс.

Сведения, подтверждающие возможность осуществления изобретения

Итак, технический результат, способствующий решению указанной выше задачи, заключается в проведении прямой реакции хлортрифторэтилена с цинком в присутствии металлокомплексного катализатора и возможно активирующих добавок, что избавляет от необходимости проведения многостадийных синтезов и позволяет использовать в качестве основного сырья промышленно доступные вещества.

В способе по изобретению используют металлокомплексные катализаторы на основе органических комплексов переходных металлов, в частности никеля и палладия, а в качестве лигандов (комплексообразователей) чаще всего используют азотсодержащие гетероциклы, ароматические бензонитрил, триарилфосфины. Природа лиганда не имеет принципиального значения и выбирается с точки зрения дешевизны, доступности и растворимости получающихся комплексов в органическом растворителе. Количество лиганда выбирается таким, чтобы обеспечить перевод переходного металла в растворимый комплекс и составляет от 2 до 5 эквивалентов на г-атом металла. Использование большего количества лиганда допустимо, но не рационально с точки зрения удорожания процесса. Комплекс может быть приготовлен предварительно, использоваться в готовом виде либо приготавливаться прямо в реакционной массе при введении дополнительного количества лиганда.

В качестве растворителя для приготовления металлокомплексного катализатора используются полярные органические растворители, в частности N-метилпирролидон (N-МПД), диметилацетамид (ДМАА), диметилформамид (ДМФА). Количество растворителя подбирается такое, чтобы обеспечить полное растворение катализатора при температуре реакции. Использование большего количества растворителя нерационально с точки зрения последующей регенерации переходного металла.

Температура проведения реакции дехлорирования определяет скорость процесса: повышенная температура способствует быстрому течению реакции, но также снижает селективность процесса. Низкая температура позволяет достигнуть высокой селективности, однако значительно удлиняет время проведения реакции и уменьшает производительность процесса.

Обычно используют температуру 20-100°С, чаще 50-80°С, такой режим можно считать оптимальным с точки зрения поддержания быстрого и контролируемого течения реакции.

Количество цинка, вводимого в процесс дехлорирования, может варьироваться в пределах 2-100 г-атомов на 1 моль исходного хлортрифторэтилена. Большее его количество способствует быстрому протеканию реакции, но обычно бывает достаточно 5-20 г-атомов металла. Непрореагировавший цинк может быть легко отделен фильтрованием и вновь запущен в синтез. Форма, в которой металл используется в синтезе, не является существенной, однако применение гранулированного цинка или его стружки затрудняет перемешивание и последующее извлечение остатков металла из реакционного сосуда, поэтому предпочтительным является использование цинка в виде мелкого порошка (цинковой пыли).

Для уменьшения индукционного периода реакции и активации металлорганического комплекса целесообразно добавлять в реакционную массу активаторы. В качестве таковых можно использовать галогениды металлов, например иодиды металлов, вступающих в реакцию с органическими комплексами никеля и палладия с образованием активных форм катализаторов, чаще всего для этого используют иодиды натрия и калия.

Форма проведения процесса получения ГФБД в соответствии с изобретением не имеет особого значения. Можно проводить процесс дозировкой хлортрифторэтилена в реакционный сосуд с катализатором и собирать продукты реакции на выходе в низкотемпературную ловушку или закачивать хлортрифторэтилен под давлением в реакционный сосуд с катализатором, выдерживать его в закрытом виде при требуемой температуре и собирать газообразные продукты в низкотемпературную ловушку.

Непрореагировавший хлортрифторэтилен может быть отделен от продуктов реакции и снова использован в процессе. Лучшим методом разделения продуктов реакции является фракционная разгонка. Для удобства работы в лаборатории продукты реакции могут быть переведены в жидкие при комнатной температуре продукты (например, бромированием), далее разделены известными методами и регенерированы.

Варианты осуществления изобретения

Следующие примеры иллюстрируют возможность осуществления способа получения ГФБД согласно изобретению, но не ограничивают его.

Реакцию проводили в сосуде Шленка, снабженном стеклянным краном для подачи газа и вакуумирования. Для приготовления металлокомплексного катализатора к раствору комплексной соли палладия в ДМАА добавляли лиганд и иодид металла в качестве активатора. Полученную смесь продували хлортрифторэтиленом (далее МЗ) и заполняли им реакционный сосуд, добавляли цинковую пыль, закрывали резиновой мембраной (далее септой), в которую вставляли шприц объемом 150 мл для создания резерва объема расширяющемуся при нагревании газу. Реакционный сосуд выдерживали в масляной бане при необходимой температуре и периодическом перемешивании встряхиванием. Периодически проводили отбор проб газовой фазы над реакционной смесью газовым шприцем, анализ проводили методом газожидкостной хроматографии с масс-селективным детектором.

Условия реакции и результаты анализов приведены в таблице №1.

В пробирки, продутые аргоном, поместили комплексную соль никеля, лиганды, активатор, добавили цинк и закрыли их септами. После этого при охлаждении жидким азотом во все пробирки был сконденсирован избыток МЗ и добавлено по 4 мл соответствующего растворителя. После отогревания реакционные смеси интенсивно перемешивались при комнатной температуре (20-25°С).

Уже при отогревании реакционных смесей наблюдалось изменение окраски суспензии на красно-бурую. При этом в опыте с гранулами цинка изменения происходили заметно медленнее. Периодически проводили отбор проб газовой фазы над реакционной смесью газовым шприцем, анализ проводили методом газожидкостной хроматографии с масс-селективным детектором.

Условия проведения реакций и результаты анализа продуктов реакций приведены в таблице №3.

В пробирке объемом 30 мл в токе аргона смешали 0,196 г (0,25 ммоль) PdCl 2 (о-Tol 3 Р) 2 и 6 мл ДМАА. Реакционную смесь нагрели до 85°С. К полученной темно-желтой суспензии добавили 0,150 г (1 ммоль) NaI. Раствор стал коричнево-фиолетовым, его нагрели до растворения (2-3 мин при 120-130°С) и полученный красно-фиолетовый раствор охладили до комнатной температуры. Затем пробирку продули МЗ и добавили 2 г (30 ммоль) цинковой пыли. Раствор в течение 1-2 мин уже при комнатной температуре стал желто-оранжевым. Реакционный сосуд закрыли резиновой септой, в которую вставили через иглу шприц, содержащий 100 мл МЗ, и нагрели до 60°С. Периодически проводили отбор проб газовой фазы над реакционной смесью газовым шприцем, анализ проводили методом газожидкостной хроматографии с масс-селективным детектором. Через 1,5 часа содержание ГФБД в газовой фазе составило 23,3%, остальное МЗ.

Таким образом, как следует из представленных примеров, способ по изобретению позволяет прямой реакцией хлортрифторэтилена с цинком получить ГФБД по достаточно несложной технологии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Классы МПК:C07C17/281 только одного соединения
C07C21/20 галогензамещенные бутадиены
Автор(ы):Малышев Олег Робертович (RU)
Патентообладатель(и):Общество с ограниченной ответственностью научно-внедренческая фирма «Окта» (RU)
Приоритеты: