Графическая формула это что

Электронная и электронно-графическая формула

Что такое электронная и электронно-графическая формула

Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

Составление электронной и электронно-графической формулы

При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

Согласно правилу Клечковского, заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы – в порядке возрастания n:

При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда: в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным, что наиболее наглядно отражается при составлении электронно-графических формул.

Электронно-графические формулы обычно изображают для валентных электронов. В такой формуле все электроны помечаются стрелочками, а ячейками (квадратиками) – орбитали. В одной ячейке не может находиться более двух электронов. Рассмотрим на примере ванадия. Сначала записываем электронную формулу и определяем валентные электроны:

Внешний энергетический уровень атома вольфрама содержит 6 электронов, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Примеры решения задач

ЗаданиеИзобразите электронную и электронно-графическую формулу химического элемента алюминия.
ОтветАлюминий имеет порядковый номер 13 и расположен в третьем периоде Периодической системы Д.И. Менделеева, следовательно, атом этого химического элемента состоит из положительно заряженного ядра, внутри которого находится 13 протонов, а вокруг ядра имеется три оболочки, по которым движутся 13 электронов.

Электронная формула алюминия выглядит следующим образом:

На внешнем энергетическом уровне алюминия находится три электрона, все электроны 3-го подуровня. Электронно-графическая формула имеет следующий вид:

Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

ЗаданиеИзобразите электронную и электронно-графическую формулу химического элемента хлора.
ОтветХлор имеет порядковый номер 18 и расположен в третьем периоде Периодической системы Д.И. Менделеева, следовательно, атом этого химического элемента состоит из положительно заряженного ядра, внутри которого находится 17 протонов, а вокруг ядра имеется три оболочки, по которым движутся 17 электронов.

Электронная формула хлора выглядит следующим образом:

На внешнем энергетическом уровне атома хлора находится семь электронов, все они считаются валентными. Электронно-графическая формула имеет следующий вид:

Источник

Химические формулы веществ

Химические формула – это изображение качественного и количественного состава вещества с помощью символов химических элементов.

Знаки химических элементов

Химический знак или химический символ элемента – это первая или две первые буквы от латинского названия этого элемента.

Таблица 1: Информация, которую дает химический знак

На примере ClНазвание элементаХлорПринадлежность элемента к данному классу химических элементовНеметалл, галогенОдин атом элемента1 атом хлора Относительная атомная масса (Ar) данного элемента Ar(Cl) = 35,5Абсолютная атомная масса химического элемента

Название химического знака в большинстве случаев читается как название химического элемента. Например, К – калий, Са – кальций, Mg – магний, Mn – марганец.

Случаи, когда название химического знака читается иначе, приведены в таблице 2:

Название химического элемента Химический знак Название химического знака

(произношение)Азот NЭнВодород HАшЖелезо FeФеррумЗолото AuАурумКислород OОКремний SiСилициумМедь CuКупрумОлово SnСтанумРтуть HgГидраргиумСвинец PbПлюмбумСера SЭсСеребро AgАргентумУглерод CЦэФосфор PПэ

Химические формулы простых веществ

Химическими формулами большинства простых веществ (всех металлов и многих неметаллов) являются знаки соответствующих химических элементов.

Таблица 3: Информация, которую дает химический знак

Химические формулы сложных веществ

Формулу сложного вещества составляют путем записи знаков химических элементов, из которых это вещество состоит, с указанием числа атомов каждого элемента в молекуле. При этом, как правило, химические элементы записывают в порядке увеличения их электроотрицательности в соответствии со следующим практическим рядом:

Исключение составляют:

Число атомов химического элемента в молекуле и сложном ионе определяется на основании понятия валентности или степени окисления и записывается индексом внизу справа от знака каждого элемента (индекс 1 опускается). При этом исходят из правила:

алгебраическая сумма степеней окисления всех атомов в молекуле должна быть равной нулю (молекулы электронейтральны), а в сложном ионе – заряду иона.

Этим же правилом пользуются при определении степени окисления химического элемента по формуле вещества или сложного иона. Обычно это элемент, имеющий несколько степеней окисления. Степени окисления остальных элементов, образующих молекулу или ион должны быть известны.

Заряд сложного иона – это алгебраическая сумма степеней окисления всех атомов, образующих ион. Поэтому при определении степени окисления химического элемента в сложном ионе сам ион заключается в скобки, а его заряд выносится за скобки.

При составлении формул по валентности вещество представляют, как соединение, состоящее из двух частиц различного типа, валентности которых известны. Далее пользуются правилом:

в молекуле произведение валентности на число частиц одного типа должно быть равным произведению валентности на число частиц другого типа.

Например:Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Цифра, стоящая перед формулой в уравнении реакции, называется коэффициентом. Она указывает либо число молекул, либо число молей вещества.

Коэффициент, стоящий перед химическим знаком, указывает число атомов данного химического элемента, а в случае, когда знак является формулой простого вещества, коэффициент указывает либо число атомов, либо число молей этого вещества.

Например:

Химические формулы многих веществ были определены опытным путем, поэтому их называют «эмпирическими».

Таблица 4: Информация, которую дает химическая формула сложного вещества

В 1 моль СаСО3 (6,02 ·10 23 молекулах) содержится 1 моль (6,02 ·10 23 атомов) кальция, 1 моль (6,02 ·10 23 атомов) углерода и 3 моль (3·6,02·10 23 атомов) химического элемента кислорода)

Массовый состав вещества:Масса каждого элемента в 1 моле вещества:1 моль карбоната кальция (100г) содержит химических элементов: 40г кальция, 12г углерода, 48г кислорода.Массовые доли химических элементов в веществе (состав вещества в процентах по массе):

Для вещества с ионной структурой (соли, кислоты, основания) – формула вещества дает информацию о числе ионов каждого вида в молекуле, их количестве и массе ионов в 1 моль вещества:

Молекула СаСО3 состоит из иона Са 2+ и иона СО3 2-

1 моль (6,02·10 23 молекул) СаСО3 содержит 1 моль ионов Са 2+ и 1 моль ионов СО3 2- ;

1 моль (100г) карбоната кальция содержит 40г ионов Са 2+ и 60г ионов СО3 2-

Молярный объем вещества при нормальных условиях (только для газов)

Графические формулы

Для составления графической (структурной) формулы вещества необходимо:

Примеры графических формул:Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Источник

Структурно-графические формулы веществ

Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Эмпирические формулы дают информацию о качественном и количественном составе соединений. Взаимное расположение атомов в молекуле вещества отражают структурно-графические формулы, однако они не показывают пространственное расположение атомов.

При составлении структурно-графических формул можно руководствоваться следующими правилами:

1. Элементы соединяются в соответствии с их валентностью.

2. Черточка в формуле обозначает единичную химическую связь, количество черточек соответствует валентности, например:

3. Состав кислот и оснований следует начинать изображать с центрального атома,

4. Если в молекуле кислоты содержится больше атомов кислорода, чем водорода, то «избыточные» атомы кислорода соединены с центральным атомом двойной связью,

например: HClO4 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

5. При написании графических формул солей исходят из графических формул кислот, заменяя атомы водорода на атомы металла, учитывая его валентность, например:

Na3PO4 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это чтоFe2(SO4)3 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что
KHCO3 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что
CaOHNO3 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что

Структурно-графические формулы некоторых кислот приведены в табл. 5.

2.4. Общие химические свойства основных классов
неорганических веществ

Оксиды ‑ вещества, состоящие из атомов двух элементов, один из которых – кислород в степени окисления (–2). По химическим свойствам их подразделяют на индифферентные, или несолеобразующие (CO, NO), и солеобразующие, которые бывают основными, кислотными и амфотерными.

Химические свойства основных оксидов

1. Взаимодействуют с кислотами с образованием соли и воды, например:

2. Взаимодействие с кислотными оксидами с образованием солей:

3. Оксиды щелочных и щелочноземельных металлов взаимодействуют с водой с образованием растворимых в воде оснований – щелочей:

Химические свойства кислотных оксидов

1. Общим свойством всех кислотных оксидов является их способность взаимодействовать с основаниями с образованием соли и воды:

2. Кислотные оксиды взаимодействуют с основными оксидами с образованием солей.

3. Большинство кислотных оксидов взаимодействует с водой с образованием кислот:

Очень немногие кислотные оксиды не взаимодействуют с водой. Наиболее известный из них оксид кремния (SiO2).

Химические свойства амфотерных оксидов

1. Амфотерные оксиды взаимодействуют с кислотами с образованием солей и воды.

В этих реакциях амфотерные оксиды играют роль основных.

2. Амфотерные оксиды взаимодействуют с щелочами с образованием солей и воды.

ZnO + 2КОН Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это чтоK2ZnO2 + Н2О,

ZnO + 2КОН + H2O Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это чтоK2[Zn(OH)4].

В этих реакциях амфотерные оксиды играют роль кислотных.

3. Амфотерные оксиды при нагревании взаимодействуют с кислотными оксидами с образованием солей:

4. Амфотерные оксиды при нагревании взаимодействуют с основными оксидами с образованием солей:

Оксиды могут быть получены различными способами:

1. Взаимодействием простых веществ с кислородом:

2. Разложением некоторых оксокислот:

H2SO3 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это что= SO2 + Н2О.

3. Разложением нерастворимых оснований:

Сu(OH)2 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это чтоCuO+ H2O.

4. Разложением некоторых солей:

СаСО3 Графическая формула это что. Смотреть фото Графическая формула это что. Смотреть картинку Графическая формула это что. Картинка про Графическая формула это что. Фото Графическая формула это чтоСаО + СО2.

Основания ‑сложные вещества, при диссоциации которых в воде образуются гидроксид-ионы и никаких других анионов.

По растворимости в воде основания делятся на две группы: нерастворимые [Fe(OH)3, Си(ОН)2 и др.] и растворимые в воде [КОН, NaOH, Са(ОН)2, Ва(ОН)2 ], или щелочи.

Химические свойства оснований

1. Водные растворы щелочей изменяют окраску индикаторов.

Таблица 6 ‑ Изменение цвета индикаторов в растворах

ИндикаторЦвет индикатораЦвет индикатора в растворе щелочи (рН > 7)Цвет индикатора в растворе кислоты (рН + (вернее H3O + ), которые образуются в результате электролитической диссоциации молекул кислот:

1. Кислоты одинаково изменяют цвет индикаторов (табл. 7).

2. Кислоты взаимодействуют с основаниями. Например:

3. Кислоты взаимодействуют с основными оксидам:

4. Кислоты взаимодействуют с амфотерными оксидами:

5. Кислоты взаимодействуют с некоторыми средними солями с образованием новой соли и новой кислоты, реакции возможны в том случае, если в результате образуется нерастворимая соль или более слабая (или более летучая) кислота, чем исходная. Например:

6. Кислоты взаимодействуют с металлами. Характер продуктов этих реакций зависит от природы и концентрации кислоты и от активности металла. Например, разбавленная серная кислота, хлороводородная кислота и другие кислоты‑неокислители взаимодействуют с металлами, которые находятся в электрохимическом ряду напряжения левее водорода. В результате реакции образуются соль и газообразный водород:

Кислоты-окислители (концентрированная серная кислота, азотная кислота HNO3 любой концентрации) взаимодействуют и с металлами, стоящими в ряду напряжения после водорода с образованием соли и продукта восстановления кислоты. Например:

1. Бескислородные кислоты получают путем синтеза из простых веществ и последующим растворением продукта в воде.

2. Оксокислоты получают взаимодействием кислотных оксидов с водой.

3. Большинство кислот можно получить взаимодействием солей с кислотами.

Источник

Химические формулы для «чайников»

Я думаю, что знакомство с формулами лучше всего начать со структурных формул органических веществ. Считается, что они сложны для понимания, поэтому в школе их изучают в выпускных классах. Но я уверен, что через 10 минут вы разберетесь, как легко составлять структурные формулы.

Но в химии приняты не только структурные формулы. И здесь мы познакомимся с некоторыми из них. Достаточно распространены так называемые истинные формулы. Для метана истинная формула записывается так:

Углеводороды

Двойные и тройные связи

Итак, за короткое время мы уже разобрались, что такое структурные формулы и выяснили, что они бывают развёрнутые и упрощённые. Но пока что мы познакомились только с одинарными химическими связями. Но на самом деле существуют двойные и даже тройные связи. Посмотрим на следующую таблицу.

Циклические углеводороды

Продолжим знакомство с формулами углеводородов. Они ещё не раскрыли нам всех своих секретов. Оказывается, что цепочки могут быть замкнутыми. То есть, атомы углерода соединяются друг с другом циклически.

ВеществоРазвёрнутая формулаУпрощённая формулаБрутто-формула
Циклопропан$slope(60)H`/C`/C:a`/H; H\#C\C:b\H; H-#a-#b-HH2C_(x1.4)CH2_q3CH2_q3
ЦиклобутанH|C|C|H; H|C|C|H; H-#2-#6-H; H-#3-#7-HH2C-CH2`|CH2`-H2C_#1
ЦиклопентанC_(x1.1)C@:H2() @()_qC@H2()_qC@H2()_qC@H2()_q@H2()H2C_(x1.4)CH2_qCH2_qCH2_qH2C_q
ЦиклогексанC\C@:H2() @()|C@H2()`/C@H2()`\C@H2()`|C@H2()/@H2()$L(1.3)CH2\CH2|CH2`/CH2`\H2C`|H2C/

Изомеры

До сих пор мы не особенно обращали внимания на последнюю колонку, где выведены брутто-формулы. Но может возникнуть вполне законный вопрос: зачем вообще нужны структурные формулы? Ведь брутто-формулы гораздо проще записывать. Может быть, достаточно было бы пользоваться только ими?
Но оказывается, что без структурных формул обойтись не получится. Например, если сравнить брутто-формулы из двух предыдущих таблиц, то мы увидим, что циклопропан имеет абсолютно тот же состав, что и пропен ( C3H6 ). А брутто-формула циклобутана совпадает с бутеном ( C4H8 ). Но это разные вещества! И разница заключается в структуре. То есть, имеет большое значение, в каком порядке элементы соединены друг с другом. А значит, именно структурные формулы позволяют точно описать нужное вещество.

В химии существует такое понятие как изомеры. Так называют разные вещества, которые имеют одинаковый состав. Это не редкость. И в этом нет ничего странного. Ведь бывают же совершенно разные слова, состоящие из одинаковых букв.

Классическими изомерами среди углеводородов можно назвать бутан и изобутан. Посмотрим на их формулы:

Изобутан является изомером бутана. Обратите внимание, что брутто-формулы одинаковы. Но хотя они близки по свойствам, это разные вещества.

Как видно, разнообразие углеводородов не перестаёт удивлять. Оказывается, они могут состоять не только из линейных цепочек, но могут образовывать разветвлённые структуры. И чем длиннее исходная цепочка, тем больше вариантов. Если у бутана возможны только два изомера, то у пентана их уже три:

Обратите внимание, что научное название зависит от числа звеньев в прямой цепочке, а традиционное название просто учитывает количество атомов углерода в молекуле. Так получилось из-за того, что химики, которые только начинали исследовать углеводороды, первым делом научились определять состав веществ. То есть, сначала люди смогли получить лишь брутто-формулы. А из них невозможно понять, какова длина самой длинной цепочки. Поэтому названия учитывали общее число атомов углерода.
Затем наука дошла до того, что люди смогли исследовать структуру молекул, придумали структурные формулы и переименовали уже известные вещества в соответствии с новыми знаниями. Но старые названия уже успели прижиться и существуют до сих пор.

Бензол и скелетные формулы

Думаю, что пора познакомиться ещё с одним весьма примечательным представителем углеводородов. Это вещество называется бензол. Вот его формулы:

Развёрнутая формулаУпрощённая формулаСкелетная формулаБрутто-формула
H|C\C|C `//C `\C `||C /\/HH_(y.5)C\\CH|CH`//C `\HC`||HC/\\|`//`\`||/

Давайте посмотрим, как выглядят формулы других веществ, производных от бензола.

ВеществоРазвёрнутая формулаСкелетная формулаСмешанный вариантБрутто-формула
НафталинC/C \\C |C `//C `\C`|`\\C `/C ||C \C/`/|H/\\|`//`\`|`\\`/||\//C10H8
ТолуолH|C|C\C|C `//C `\C `||C /\/H; H-#2-H|\\|`//`\`||/CH3|\\|`//`\`||/
КумолH\C\C/C/H; H|#2|H; H|#4|H; H|#3|C\C|C `//C `\C `||C /\/H\ |\\|`//`\`||/H3C\ |\\|`//`\`||/

Как видите, появился ещё и смешанный вариант. Опять какой-то новый вид формул? На этот раз уже нет. Просто иногда внутри одной формулы удобно сочетать различные способы.

А вот скелетная формула углеводорода, который называется коронен. Причём, другие варианты здесь уже использовать нет смысла.

БутанБутенИзобутанГексан
/\///\/\|`|0//\/\/

Трехмерные изображения

Иногда плоского изображения становится недостаточно. Поэтому для изображения трехмерных структурных формул используют особое изображение для химических связей:

Формулы с окружностью

Само собой, все они означают одно и то же. Но первые три отличаются только поворотом вокруг собственного центра. Тут нет ничего необычного, ведь молекулы не стоят на одном месте. А вот дальше мы видим кружок вместо трёх двойных связей. Причём, я намеренно изобразил все атомы водорода в последней формуле. Чтобы было хорошо видно, что каждый угол фактически лишился одной чёрточки. Их заменил кружок. Он как бы означает, что все двойные связи равномерно распределены внутри кольца.

Формулы бензола, где используется чередование одинарных и двойных связей называются формулами Кекуле в честь немецкого учёного, который внёс значительный вклад в исследование структуры бензола.

На самом деле, среди химиков нет единого мнения по поводу того, насколько правильно использование формул с кружком. Некоторые авторы категорически против. Но есть масса публикаций, где такая запись широко употребляется. Моя задача состоит в том, чтобы Вы узнали о существовании подобных формул и не удивлялись, увидев их.

Вот пара примеров записи уже для уже знакомых нам веществ:

Нафталин:/\|`/`\`|_o`\`/|\/_oТолуол:`/`-`\/-\_o-CH3

Знакомство с кислородом. Спирты

Ещё здесь из четырёх спиртов есть два изомера: 1-пропанол и 2-пропанол. У них одинаковые брутто-формулы, хотя вещества это разные. Их молекулы отличаются номером углеродного атома, к которому крепится группа OH. Возможно, Вы спросите, почему у 1-пропанола гидроксильная группа присоединена к третьему, а не к первому атому углерода? Тут следует вспомнить, что молекулы не находятся в одном положении. Они постоянно крутятся. И вполне могут развернуться как угодно:

Карбоновые кислоты

Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH), которая и придаёт таким веществам кислотные свойства.

Карбоновые кислоты могут иметь несколько карбоксильных групп. В этом случае они называются: двухосновная, трёхосновная и т.д.

В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

Щавелевая кислотаМолочная кислотаЯблочная кислотаЛимонная кислота
HOOC-COOHH3C\ /COOHHOOC\/ \COOHHOOC\/ \/COOH
двухосновная карбоновая кислотаоксикарбоновая кислотаДвухосновная оксикарбоновая кислотаТрёхосновная оксикарбоновая кислота

Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся. Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов. Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

Радикалы

Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода. Ну а если отнять два атома водорода, то получится двухвалентный радикал.

Радикалы в химии получили собственные названия. Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов. И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
Всё это демонстрируется в следующей таблице.

НазваниеСтруктурная формулаОбозначениеКраткая формулаПример спирта
МетилCH3-<>MeCH3-OHCH3OH
ЭтилCH3-CH2-<>EtC2H5-OHC2H5OH
ПропилCH3-CH2-CH2-<>PrC3H7-OHC3H7OH
ИзопропилH3C\CH(*`/H3C*)-<>i-PrC3H7-OH(CH3)2CHOH
Фенил`/`=`\//-\\-<>PhC6H5-OHC6H5OH

Существует ещё такое явление, как свободные радикалы. Это радикалы, которые по каким-то причинам отделились от функциональных групп. При этом нарушается одно из тех правил, с которых мы начали изучение формул: число химических связей уже не соответствует валентности одного из атомов. Ну или можно сказать, что одна из связей становится незакрытой с одного конца. Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

Знакомство с азотом. Амины

Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот.
Он обозначается латинской буквой N и имеет валентность, равную трём.

В общем, никаких особых новшеств здесь нет. Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии, используя какой-нибудь учебник или интернет.
Но мне бы хотелось ещё рассказать о формулах в неорганической химии. Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

Рациональные формулы

Не следует делать вывод о том, что неорганическая химия проще, чем органическая. Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды. Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева. А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

ВеществоСтруктурная формулаРациональная формулаБрутто-формула
Оксид кальцияCa=OCaO
Гидроксид кальцияH-O-Ca-O-HCa(OH)2
Карбонат кальция$slope(45)Ca`/O\C|O`|/O`\#1CaCO3
Гидрокарбонат кальцияHO/`|O|\O/Ca\O/`|O|\OHCa(HCO3)2
Угольная кислотаH|O\C|O`|/O`|HH2CO3

При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой. Но пока что не очень понятно, как они получаются. Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа. Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов, при пожарах и извержениях вулканов. Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой и превращается в малорастворимый карбонат кальция:

Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы. Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д.
Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо. А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами. Вот скелетная формула гидрокарбонат-аниона:

Система Хилла

Немного о системе easyChem

Вместо заключения мне хотелось бы рассказать о системе easyChem. Она разработана для того, чтобы все те формулы, которые мы тут обсуждали, можно было легко вставить в текст. Собственно, все формулы в этой статье нарисованы при помощи easyChem.

Выглядит конечно не очень красиво, но тоже осуществимо.

Система easyChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
Кроме того, брутто-формулы в этой статье вычисляются автоматически. Потому что easyChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф), а затем с этой структурой можно выполнять различные действия. Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу, проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

Вот несколько примеров, раскрывающих секрет подготовки текста статьи:

Текстовое описание easyChemВыводимый результатСгенерированная брутто-формула
(NH4)2CO3(NH4)2CO3
H-C-C-O-H; H|#2|H; H|#3|HH-C-C-O-H; H|#2|H; H|#3|H
CH3|\\|`//`\`||/CH3|\\|`//`\`||/

Описания из левого столбца автоматически превращаются в формулы во втором столбце.
В первой строчке описание рациональной формулы очень похоже на отображаемый результат. Разница только в том, что числовые коэффициенты выводятся подстрочником.
Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом ; Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия, которые потребовались бы для изображения формулы карандашом на бумаге.
В третьей строке демонстрируется использование наклонных линий при помощи символов \ и /. Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

Здесь есть гораздо более подробная документация по использованию системы easyChem.

На этом разрешите закончить статью и пожелать удачи в изучении химии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *