Гравитация что это простыми словами
Гравитация, или На чём держится мир
Гравитация — это сила, которая действует на каждого обитателя Земли, впрочем, как и на саму Землю. Утрируя, можно сказать, текущий вид Вселенной существует благодаря силе притяжения. А значит пора разобраться, что такое гравитация простыми словами.
Определение гравитации
Слово «гравитация» происходит от латинского gravitas — вес.
Гравитация — сила, с помощью которой планета или другое тело притягивает объекты к своему центру. Именно благодаря ей мы не улетаем в космос, всегда притягиваясь к Земле. Так и планеты Солнечной системы всегда испытывают притяжение звезды и остаются на своих местах.
Как работает гравитация
Сила притяжения зависит от массы объектов и расстояния межу ними. Все, что имеет массу, имеет и гравитацию. Объекты с большей массой имеют большую гравитацию. Она ослабевает с расстоянием, и чем ближе объекты друг к другу, тем сильнее их тяготение.
Исаак Ньютон был первым, кто математически описал гравитацию и то, что она одинаково действует на все объекты во Вселенной: от падающего яблока до планет, которые движутся вокруг звезды. Так и появился закон всемирного тяготения, которого придерживались веками.
Сила притяжения F между двумя материальными точками с массами и
, разделёнными расстоянием
, действует вдоль соединяющей их прямой, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния.
Здесь — гравитационная постоянная, равная 6,67408(31)·10 −11 м³/(кг·с²).
Кстати, падение яблока на голову Ньютона — это миф. Он действительно любил отдыхать под яблоней, и наблюдения за падающими яблоками натолкнуло его на мысль о всемирном тяготении. Но по голове Ньютона ничего не било.
Теория Ньютона объясняла гравитацию как некую силу. Но в последствии появилась теория Эйнштейна, в основе которой подход геометрический. Если простыми словами: крупные объекты искривляют пространство-время вокруг себя, а в это «искривление» попадают другие объекты.
Этот принцип хорошо показан в этом ролике:
Теория Энштейна — является действующей на сегодня.
Насколько важна гравитация?
Очень важна! Гравитация — это одна из сил фундаментальных взаимодействий, которым подчиняется всё, что есть во Вселенной. Вот эти взаимодействия:
Именно благодаря им мир такой, каким мы его знаем. Гравитация в этом списке является самым крупномасштабным, но одновременно и самым слабым взаимодействием, остальные — определяют взаимодействия на уровне частиц.
Как гравитация повлияла на Вселенную
Именно сила притяжение создает звезды и планеты, собирая вместе материал, из которого они сделаны. Гравитация — это то, что удерживает планеты на орбите вокруг Солнца и то, что удерживает Луну на орбите вокруг Земли.
Роль гравитации для землян
Те условия, в которых мы живём, были бы невозможны без неё. Она удерживает нашу планету на одинаковом расстоянии от Солнца, не позволяет атмосфере покинуть пределы Земли, как и всему, что находится на её поверхности. Гравитационное притяжение Луны притягивает к себе моря, вызывая приливы океана.
Луна и приливы на Земле
Гравитация очень важна для нас. Мы не могли бы жить на Земле без неё. Тяготение Солнца удерживает Землю на орбите вокруг него на постоянном комфортном для жизни расстоянии. Сила притяжения удерживает нашу атмосферу и воздух, которым мы дышим.
Гравитация — это то, что скрепляет наш мир.
Однако гравитация не везде одинакова на Земле. Она немного сильнее в местах с большей массой под землей, чем в местах с меньшей массой.
Есть ли гравитация у человека?
У каждого материального объекта есть своя сила притяжения, и человек не является исключением.
О выходе новых статей рассказываем в соцсетях
Что такое гравитация простыми словами
Что представляет собой гравитация?
Гравитация — самая таинственная сила во Вселенной. Ученые мужи не знают до конца природу её возникновения. Именно она удерживает на орбитах планеты нашей Солнечной системы. Это сила, возникающая между двумя объектами и зависящая от массы и расстояния.
«Гравитацию» называют силой притяжения или тяготения. С помощью неё планета или другое тело тянет объекты к своему центру. Сила тяжести удерживает планеты на орбите вокруг Солнца.
Что она ещё делает?
Почему Вы приземляетесь на землю, когда вскакиваете, а не уплываете в космос? Почему предметы падают, когда Вы их бросаете? Ответ — невидимая сила тяжести, которая тянет объекты друг к другу. Земная гравитация — это то, что держит нас на земле и заставляет вещи падать.
Официально открыл Ньютон
Все, что имеет массу, имеет гравитацию. Мощь зависит от двух факторов: массы предметов и расстояния между ними. Если взять в руки камень и перо, с одинаковой высоты отпустить их, оба предмета упадут на землю.
Тяжелый камень упадет быстрее пера. Перо еще повисит в воздухе, потому что оно легче. Объекты с большей массой имеют большую силу притяжения, которая становится слабее с расстоянием: чем ближе объекты друг к другу, тем сильнее их гравитационное тяготение.
На Земле и во Вселенной
Во время полета самолета люди в нём остаются на своих местах и могут передвигаться по нему, как на земле. Так происходит из-за траектории полета. Существует специально разработанные самолеты, в которых на определенной высоте отсутствует гравитация, образуется невесомость.
Самолет выполняет специальный маневр, масса предметов меняется, они ненадолго поднимаются в воздух. Через несколько секунд гравитационное поле восстанавливается.
Рассматривая силу гравитации в Космосе, у земного шара она больше большинства планет. Достаточно посмотреть движение космонавтов при высадке на планеты. Если по земле мы ходим спокойно, то там космонавты как бы парят в воздухе, но не улетают в космос. Это значит, что у данной планеты тоже есть сила тяготения, просто несколько иная, чем у планеты Земля.
Сила притяжения Солнца настолько велика, что удерживает девять планет, многочисленные спутники, астероиды и планеты.
Гравитация играет важнейшую роль в развитии Вселенной. При отсутствии силы тяготения, не было бы звезд, планет, астероидов, черных дыр, галактик. Интересно, что черных дыр на самом деле не видно.
Ученые определяют признаки черной дыры по степени мощности гравитационного поля в определенной области. Если оно очень сильное с сильнейшим колебанием, это говорит о существовании черной дыры.
Миф 1. В космосе отсутствует гравитация
Просматривая документальные фильмы о космонавтах, кажется, что они парят над поверхностью планет. Так происходит из-за того, что на других планетах гравитация ниже, чем на Земле, поэтому космонавты идут как бы паря в воздухе.
Миф 2. Все приближающиеся к черной дыре тела разрываются
Черные дыры обладают мощной силой и образуют мощные гравитационные поля. Чем ближе объект к черной дыре, тем сильнее становятся приливные силы и мощность притяжения. Дальнейшее развитие событий зависит от массы объекта, размера черной дыры и расстояния между ними.
Про гравитацию простыми словами
Черная дыра имеет массу прямо противоположную ее размеру. Интересно, что чем больше размер дыры, тем слабее приливные силы и наоборот. Таким образом, не все объекты разрываются при попадании в поле черной дыры.
Миф 3. Искусственные спутники могут обращаться вокруг Земли вечно
Теоретически можно так сказать, если бы не влияние второстепенных факторов. Многое зависит от орбиты. На низкой орбите спутник вечно летать не сможет из-за атмосферного торможения, на высоких орбитах он может находиться в неизменном состоянии довольно долго, но здесь вступают в силу гравитационные силы других объектов.
Если бы из всех планет существовала только Земля, спутник притягивался бы к ней и практически не менял траекторию движения. Но на высоких орбитах объект окружает множество планет, больших и малых, каждая со своей силой тяготения.
В этом случае спутник бы постепенно отходил от своей орбиты и двигался хаотично. И, вполне вероятно, что по прошествии какого-то времени, он рухнул бы на ближайшую поверхность или перешел на другую орбиту.
Небольшое видео на нашу тему:
Некоторые факты
Несмотря на непрекращающееся изучение силы притяжения, гравитация остается нераскрытой. Это означает, что научные знания остаются ограниченными и человечеству предстоит познать много нового.
Если гравитация это не сила, то как она «притягивает» объекты?
Считается, что гравитация ответственна за все происходящее в нашей Вселенной – от падения яблока на голову Исаака Ньютона, до вращения сверхмассивных черных дыр в центрах далеких галактик. Обычно мы представляем гравитацию как силу, которая притягивает вещи к массивным объектам. В некоторых учебниках по физике, особенно начальных классов, можно встретить утверждения о том, что «гравитация Земли притягивает объекты к центру планеты». Но так ли это? Исследователи полагают, что ключом к разгадке тайны гравитации является термин «ускорение», а не «тяга». Дело в том, что гравитация вообще не притягивает объекты; скорее, она искривляет пространство-время, заставляя объекты следовать за создаваемыми ей изгибами, в результате чего они иногда ускоряются. В этой статье разбираемся чем на самом деле является гравитация.
Мы воспринимаем гравитацию, как силу, которая «притягивает» к себе объекты. Но так ли это?
Ньютоновская гравитация
В 1665-1667 годах в Англии бушевала бубонная чума. В этот период молодой ученый по имени Исаак Ньютон вернулся из Кембриджского университета на свою семейную ферму в Вулсторпе. Время, проведенное в изоляции, позволило ему познать физическую природу света: Ньютон провел множество экспериментов и пришел к выводу, что свет можно рассматривать как поток частиц, которые исходят от некого источника и двигаются по прямой до ближайшего препятствия.
Такая модель света называется корпускулярной; она легла в основу классической физики, без которой современных достижений науки просто не существовало бы.
Считается, что примерно в это же время Ньютон стал автором своего наиболее известного открытия – Всемирного закона тяготения. Он совершил концептуальный прорыв признав два различных вида движения – равномерное и ускоряющееся.
В усадьбе Вусторп Ньютон совершил свои величайшие открытия. Вот что самоизоляция с людьми делает!
Важно понимать, что для современников Ньютона гравитация была земной силой; она была ограничена объектами вблизи поверхности Земли. Но в семейном яблоневом саду Ньютон обнаружил, что гравитация – сила универсальная. Она простирается до самых планет, до Луны, звезд и дальше.
Сегодня, благодаря трудам еще одного великого ученого, мы знаем, что энергия буквально говорит пространству-времени, как изгибаться: согласно Общей теории относительности, сила тяжести возникает из-за искривления пространства и времени, а такие объекты, как Солнце и Земля, эту геометрию изменяют.
Гравитация Эйнштейна
Пытаясь разгадать величайшие тайны Вселенной Альберт Эйнштейн, которому на тот момент исполнилось 30 лет, понял, что пространство-время изгибает не сила, но масса. Изгибы, которые оставляют под собой массивные объекты, например Солнце, подсказывают энергии как двигаться.
Представить себе пространство-время можно в виде равномерно натянутой плотной ткани, в центр которой закинули бильярдный шар – точно так же, как изгибается ткань под давлением шара, изгибается и пространство-время под давлением массивных объектов.
Большой шар сильно искривляет пространство-время, заставляя меньший шар изменить свой курс и следовать за падением.
Вместо шара и ткани также можно представить себе автомобиль, который движется по извилистой дороге – когда автомобиль спускается с холма, то ускоряется. Массивные объекты во Вселенной подобны ускоряющемуся автомобилю – они создают экстремальные изгибы в пространстве-времени.
Интересно, что гравитация способна ускорять объекты, когда они входят (или приближаются) в глубокие гравитационные колодцы. Гравитационные колодцы – это концепция, согласно которой чем массивнее тело, тем глубже и больше порождаемый им гравитационный колодец.
Еще больше увлекательных статей о том, какие законы физикой управляют Вселенной и почему, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!
Гравитация и астероиды
Чтобы лучше понять, как работает гравитация и как она способна ускорять объекты, возьмем, к примеру, Землю и Луну. Земля – довольно массивный объект. По крайней мере, по сравнению с Луной. Это означает, что наша планета довольно сильно искривляет ткань пространства-времени.
Луна вращается вокруг нашей планеты из-за искривления пространства-времени, вызванного массой Земли. Выходит, она просто движется вдоль изгиба или нисходящего склона (в случае с автомобилем), который делает наша планета. В этом отношении на спутник Земли не действует какая-либо сила. Она просто следует определенному пути. Но почему в таком случае все астероиды и метеориты, пролетающие мимо нашей планеты, не попадают на орбиту?
Солнце и Луна искривляют ткань пространства-времени.
Причина, как полагают исследователи, кроется в пути, который проходит объект – он зависит от ряда факторов, таких как скорость, траектория и масса соответствующих объектов. Именно по этой причине каждый день сотни астрономов по всему миру наблюдают множество комет и астероидов, пролетающих мимо Земли и не попадающих на ее орбиту.
А если вам интересно, смогут ли люди когда-нибудь изобрести искусственную гравитацию, обязательно прочтите статью моего коллеги Владимира Кузнецова. В ней он подробно рассказывает о последних достижениях в этой области и о том, перестанет ли в скором будущем искусственная гравитация считаться атрибутом исключительно научной фантастики.
Что такое гравитация, сила притяжения (тяготения)
Сильные гравитационные поля
В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):
Видео
Гравитационный коллапс
Когда массивное тело, испытывая гравитационные силы, катастрофически быстро сжимается, происходит его коллапс. Так может закончиться жизнь звезды, имеющей массу более трёх солнечных. Когда в звездах заканчивается запас топлива для продолжения термоядерного процесса, их механическая устойчивость нарушается, и происходит стремительное, с ускорением, сжатие к центральной части. Если давление внутри звезды, которое постоянно растёт, сможет остановить сжатие, то центральная часть светила превратится в нейтронную звезду. При этом возможно сбрасывание оболочки и вспыхивание сверхновой. Но при превышении звездой массы, определённой пределом Оппенгеймера-Волкова, коллапс закончится преобразованием её в чёрную дыру. Значение данного предела пока точно не установлено.
Гравитационное излучение
Гравитационное излучение в двойной системе
Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.
Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.
Небесная механика
Эта часть механики изучает движение тел, находящихся в ничем не заполненном пространстве, на которые действует только гравитация. Самая простая задача раздела – обоснование гравитационного влияния двух тел, точечных или сферических, в пустом пространстве. Если же тел, которые взаимодействуют друг на друга, большее количество, задача усложняется. Численное решение приводит к неустойчивости решений от начальных условий. То есть, применив её к нашей планетной системе, мы не сумеем предугадать планетные движения на периоды, превысившие сто миллионов лет. Описание долговременного поведения системы, состоящей из многих притягивающихся тел с похожей массой, пока невозможно. Этому мешает понятие: динамический хаос.
Фундаментальные силы во Вселенной
По мнению физиков, четыре фундаментальные силы Вселенной — это гравитация, электромагнитные, слабые и сильные взаимодействия. Силы изменяют движение объекта, и эти четыре фундаментальные силы определяют, как все во Вселенной взаимодействует. Гравитация — самая слабая сила, но она наиболее легко видима и оказывает наибольшее влияние на крупномасштабном уровне. Это не только причина, по которой люди могут ходить по Земле, но и удерживает планеты, вращающиеся по орбите вокруг Солнца, и Солнце на своем месте в галактике.
Закон всемирного тяготения
Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.
Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.
Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:
Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.
Формула силы притяжения между телами:
G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.
Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.
Закон всемирного тяготения
Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.
Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.
Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.
Гравитация и научные исследования
Научные исследования в области гравитации будут продолжаться и в будущем. Теория относительности объясняет некоторые аномалии в ньютоновской гравитации; во Вселенной все еще есть тайны, которые ученые не могут объяснить. Гравитация не вписывается в теорию квантовых полей, и ученые до сих пор исследуют, как она соединяется с другими фундаментальными силами. Исследования гравитации также имеют более практическое применение. Космические аппараты НАСА отслеживают изменения гравитации Земли, что помогает ученым отслеживать изменения уровня моря и земной коры.
3. Физическая сущность гравитации
Анализируя современные теории гравитации, начиная с Ньютона и его последователей, мы видим сложность восприятия этого явления. Она заключается в том, что термин «тяготение» ассоциируется с термином «гравитационное излучение». Но если это излучение, т.е. нечто, исходящее от гравитирующего тела (например, Земли), то, как оно может действовать в обратном направлении, т.е. притягивать? Гегель указывал на это несоответствие ещё 200 лет назад. Он считал, что притяжение есть производное от отталкивания, однако, обосновать это теоретически не удосужился.
Физика не может использовать интуитивные прозрения, если их нельзя сформулировать последовательным математическим языком и дополнить описанием на обычном языке. Кроме того, существующие сегодня теории гравитации, включая закон всемирного тяготения Ньютона и общую теорию относительности Эйнштейна, не отвечают на самый главный вопрос – откуда берётся энергия на создание и поддержание гравитационного поля. По расчётам учёных сила притяжения Солнца, удерживающая Землю на орбите, составляет 3,6х10^(21)кгс. Но кроме Земли надо притягивать и другие планеты. Учёные попали в тупик, выяснив, что Солнце не в состоянии энергетически обеспечить притяжение планет солнечной системы. Ньютон, да и Эйнштейн долго бились над этим вопросом, но так и не нашли разумного ответа. В конце концов, Ньютон решил, что сама масса является источником силы притяжения. Так появилась гравитационная масса, которую он отделил от веса. Но при этом ему пришлось внести в свою теорию другую массу – инертную, как количество вещества. К его удивлению, математические вычисления показали, что эти массы в точности равны друг другу. Так родился закон эквивалентности тяжёлой и инертной массы, который Эйнштейн использовал для построения общей теории относительности. Таким образом, Ньютон отказался от физического объяснения наблюдаемых явлений, заменив его математическим. По его пути пошёл и Эйнштейн, создавая свою теорию гравитации, в которой доминирующую роль играет не масса, а пространство и время, как физические объекты. Поэтому его теорию называют ещё геометрической. Конечно, геометрия может определять параметры сил, но она не может быть причиной движения.
В ХХ веке появилась, и начала быстро развиваться квантовая теория микромира и отдельная её ветвь – квантовая теория гравитации. Её трудность, прежде всего, заключается в том, что она основана на математическом формализме довольно высокого уровня, когда по результатам вычислений судят о физической сущности рассматриваемого явления. Кроме того, она постулирует наличие в природе элементарных частиц – гравитонов, ответственных за гравитационное взаимодействие. Как известно, несмотря на долгие поиски, эти частицы так и не были обнаружены. К тому же, эта теория, как и все предыдущие, не отвечает на вопрос – где находится источник энергии, питающий гравитационное поле. Итак, все перечисленные выше теории, а также подобные им (сегодня их насчитывается более десятка) являются чисто математическими, с невыявленной физической сущностью. Такие теории не дают выхода на проведение экспериментов, подтверждающих их. Объясняя отсутствие широкомасштабных экспериментов с гравитацией, учёные ссылаются на то, что, согласно теории Ньютона, для их проведения требуется огромная масса, поскольку именно она является источником гравитационных сил, а это практически невыполнимо. Что же касается общей теории относительности Эйнштейна, то в ней, как уже отмечалось, одна математика, а физической сущностью выступают пространство и время, которые не поддаются экспериментам. Не в лучшем виде в этом вопросе выглядит и квантовая теория гравитации. А, как уже говорилось в главе 1, при использовании математических методов в решении задач, необходимо соблюдать осторожность.
В первую очередь, для проверки термодинамической природы гравитации необходимо создать искусственное гравитирующее тело. До сих пор такая идея не могла прийти в голову ни одному исследователю, поскольку она противоречила бы всем известным на сегодня теориям гравитации. Однако, согласно ТМГ, процессы, связанные с излучением гравитационных волн Землёй можно сымитировать в миниатюре. Сама природа подсказывает, как это можно осуществить, причём очень просто и наглядно. Для этого необходимо взять шар, желательно побольше, из материала, выдерживающего высокую температуру. Внутрь его поместить источник тепловой энергии и установить этот шар на весы. Предположительно, он должен терять в весе (конечно незначительно) вследствие того, что своим гравитационным излучением будет отталкиваться от подобного излучения Земли (так же как Луна). Так и произошло. Для решающего эксперимента был изготовлен стальной шар диаметром 100мм. В шаре было сделано конусное отверстие до центра. Затем его поставили на лабораторные весы рычажного типа ВЛТ-5 с ценой деления 0,3г и уравновесили обычными гирями. Вес шара составил 4,2кг. В качестве источника тепловой энергии был использован лазер ЛТ1-2 с энергией луча 5 кВт. Луч был направлен в конусное отверстие шара сверху вниз. По мере повышения температуры поверхности шара (измерение проводилось термопарой) стрелка весов, как и предполагалось, медленно отклонялась в сторону уменьшения веса. Приблизительно через полтора часа, при достижении температуры поверхности шара 300°С лазер был выключен. Разница (уменьшение) в весе шара по сравнению с первоначальным показанием (в холодном состоянии) составила 3г (десять делений шкалы). При отключении лазера, вес вернулся к исходному.
Далее, чтобы разнообразить эксперименты, гравитирующее тело было изготовлено в форме тора, или, попросту говоря, большого бублика из каолинового волокна с «запеченной» внутри по оси электроспиралью мощностью 500Вт. Тепловой поток в нём, как и в шаре, распространяется изнутри по радиусу, т.е. будет направленным. Взвешивание «бублика» производилось на тех же весах, что и в предыдущем опыте. В этом эксперименте, как и в опыте с шаром, тепловая энергия на создание гравитационного излучения расходовалась со всей поверхности тора. При этом рабочая часть поверхности, которая взаимодействует с гравитационным излучением Земли, составляет 20-25% от всей его поверхности. Если бы вся энергия спирали была направлена в рабочую, нижнюю, зону тора, то эффект потери веса тора увеличился бы раз в 10. Это предположение можно отнести и к эксперименту с шаром. Выводы, полученные из этих двух опытов, послужили толчком для создания гравитирующего тела в виде «тарелки». Эта «летающая тарелка» была изготовлена из двух алюминиевых полусфер диаметром 350мм. В нижней полусфере установили графитовый сердечник (излучатель) диаметром и высотой 100мм. Нижний его торец выпустили на 10мм наружу, а на верхнем уложили электроспираль в фарфоровых бусах мощностью 0,8кВт. Всё остальное пространство обеих полусфер было заполнено каолиновым волокном. Вес «тарелки» в холодном состоянии составил 3,5кг, а гравитирующая способность (уменьшение веса) к концу эксперимента составила 5г. Взвешивание проводилось всё на тех же весах. Надо сказать, что здесь я ожидал лучшего результата. Очевидно, большая часть теплового потока, проходящего через сердечник, отклонялась в стороны для прогрева теплоизоляции его боковой поверхности. В результате, только часть теплового потока преобразовалась в гравитационное излучение, которое взаимодействовало с подобным излучением Земли.
Наилучшие результаты, т.е. потеря веса, были получены на модели гравитирующего тела, в шутку названного «летающая кастрюля», по аналогии с «летающей тарелкой». Эта модель и в самом деле была изготовлена из кастрюли с диаметром и высотой 160мм. В днище вырезали отверстие диаметром 100мм, на которое уложили диск из графита диаметром 130мм и толщиной 35мм. На диск, как и в предыдущем эксперименте, уложили электроспираль в фарфоровых бусах мощностью 600Вт. Всё свободное пространство «кастрюли» заполнили каолиновым волокном. Вес модели в холодном состоянии составил 2,534кг. На этот раз взвешивание проводилось на электронных весах МК-6-А20 с ценой деления 2г. Это позволило наблюдать за изменением веса модели во времени вплоть до минут в процессе её нагревания, а затем остывания в естественных условиях. Модель была установлена на специальной подставке, исключающей возможность нагрева механизма весов. Результаты эксперимента сведены в таблицу.(см. таблицу изменения веса модели при нагреве и остывании)