Идеальная модель что это

Идеальные и материальные модели

Неоднозначность термина «модель», огромное число типов моделирования и их быстрое развитие затрудняют в настоящее время построение логически законченной, удовлетворяющей всех классификации моделей. Любая подобная классификация условна в силу того, что она отражает, с одной стороны, субъективную точку зрения авторов, а с другой — ограниченность их знаний в конечном числе областей научного познания.

Данную классификацию следует рассматривать как попытку построения некоторого инструмента или модели для исследования свойств и характеристик самого процесса моделирования. Моделирование относится к общенаучным методам познания. Использование моделирования на эмпирическом и теоретическом уровнях исследования приводит к условному делению моделей на материальные и идеальные.

Материальное моделирование — это моделирование, при котором исследование объекта выполняется с использованием его материального аналога, воспроизводящего основные физические, геометрические, динамические и функциональные характеристики данного объекта. Основными разновидностями материального моделирования являются натурное и аналоговое. При этом оба вида моделирования основаны на свойствах геометрического или физического подобия.

Идеальное моделирование отличается от материального тем, что оно основано не на материализованной аналогии объекта и модели, а на аналогии идеальной, мыслимой и всегда носит теоретический характер. Идеальное моделирование является первичным по отношению к материальному. Вначале в сознании человека формируется идеальная модель, а затем на ее основе строится материальная.

Материальное моделирование

Основными разновидностями материального моделирования являются натурное и аналоговое. При этом оба вида моделирования основаны на свойствах геометрического или физического подобия. Две геометрические фигуры подобны, если отношение всех соответственных длин и углов одинаковы. Если известен коэффициент подобия — масштаб, то простым умножением размеров одной фигуры на величину масштаба определяются размеры другой, ей подобной геометрической фигуры. Два явления физически подобны, если по заданным характеристикам одного можно получить характеристики другого простым пересчетом, который аналогичен переходу от одной системы единиц измерения к другой. Изучением условий подобия явлений занимается теория подобия.

Натурное моделирование — это такое моделирование, при котором реальному объекту ставится в соответствие его увеличенный или уменьшенный материальный аналог, допускающий исследование (как правило, в лабораторных условиях) с помощью последующего перенесения свойств изучаемых процессов и явлений с модели на объект на основе теории подобия.

Аналоговое моделирование — это моделирование, основанное на аналогии процессов и явлений, имеющих различную физическую природу, но одинаково описываемых формально (одними и теми же математическими соотношениями, логическими и структурными схемами). В основу аналогового моделирования положено совпадение математических описаний различных объектов.

Модели физического и аналогового типов являются материальным отражением реального объекта и тесно связаны с ним своими геометрическими, физическими и прочими характеристиками. Фактически процесс исследования моделей данного типа сводится к проведению ряда натурных экспериментов, где вместо реального объекта используется его физическая или аналоговая модель.

Идеальное моделирование

Идеальное моделирование разделяют на два основных типа: интуитивное и научное.

Интуитивное моделирование — это моделирование, основанное на интуитивном (не обоснованном с позиций формальной логики) представлении об объекте исследования, не поддающимся формализации или не нуждающимся в ней. В качестве наиболее яркого примера интуитивной модели окружающего мира можно считать жизненный опыт любого человека. Любое эмпирическое знание без объяснения причин и механизмов наблюдаемого явления также следует считать интуитивным.

Научное моделирование — это всегда логически обоснованное моделирование, использующее минимальное число предположений, принятых в качестве гипотез на основании наблюдений за объектом моделирования.

Главное отличие научного моделирования от интуитивного заключается не только в умении выполнять необходимые операции и действия по собственно моделированию, но и в знании «внутренних» механизмов, которые используются при этом. Можно сказать, что научное моделирование знает не только, как необходимо моделировать, но и почему так нужно делать. Необходимо подчеркнуть чрезвычайно важную роль интуиции, интуитивных моделей в науке, без них не обходится не одно сколь-нибудь новое знание. Последнее недостижимо только методами формальной логики.

Интуитивное и научное (теоретическое) моделирование ни в коей мере нельзя противопоставлять одно другому. Они хорошо дополняют друг друга, разделяя области своего применения.

Знаковым называют моделирование, использующее в качестве моделей знаковые изображения какого-либо вида: схемы, графики, чертежи, наборы символов, включающее также совокупность законов и правил, по которым можно оперировать с выбранными знаковыми образованиями и элементами. В качестве примеров таких моделей можно назвать любой язык, например: устного и письменного человеческого общения, алгоритмический и т.д. Знаковая форма используется для передачи как научного, так и интуитивного знания. Моделирование с помощью математических соотношений также является примером знакового моделирования.

Интуитивное знание является генератором нового знания. Однако далеко не все догадки и идеи выдерживают последующую проверку экспериментом и методами формальной логики, свойственными научному подходу, выступающему в виде своеобразного фильтра для выделения наиболее ценных знаний.

Источник

Идеальная модель что это

Тема 2. Обобщенность научного знания.

Называя и характеризуя объекты, научное знание работает с понятиями. За каждым именем-понятием стоит не индивидуальный объект, а класс с его сущностными характеристиками (например, электрон, атом и т.д.). Это предъявляет к субъекту действия определенные требования: оперируя словами как понятиями, он несет ответственность за то, чтобы в его рассуждениях были соблюдены все правила работы с понятиями.

Что же такое понятие?

В языке понятие выражается словом или группой слов. Например, атом, электрический заряд, электромагнитное взаимодействие и т.д.

Каждый предмет настолько сложен, что обычно имеется возможность указать относительно понятия об одном и том же предмете не одну единственную, а несколько групп существенных признаков. Например, по-разному определяют воду физик и химик. Почему это возможно? Потому, что химические свойства воды отличны от физических.

Совокупность существенных и отличительных признаков предмета, мыслимых в понятии, называется содержанием понятия. Например, в понятии «квадрат» содержатся признаки: «прямоугольность» и «равенство всех сторон».

Совокупность предметов, мыслимых в данном понятии, называется объемом этого понятия. Чем шире объем понятия, тем уже его содержание, и наоборот.

Объектом экспериментального естествознания является тот или иной фрагмент живой и неживой природы, например, кислород как химический элемент, океан, птицы и т.д. Теоретическое естествознание имеет дело не непосредственно с фрагментами реального мира, а с их идеальными представлениями, выраженными на языке науки. Идеально представить какой-то фрагмент природы означает выразить его в понятиях. В теоретическом естествознании субъект отрывается от мира чувственных вещей и уходит в область понятийного действования, т.е. работы с понятиями, которые заменяют ему реальные объекты. Но любое понятие надситуационно, ибо не все свойства конкретного объекта оно отражает, а лишь его существенные и отличительные признаки. Поэтому теоретическое естествознание дает надситуационное знание. Развитие теоретического естествознания связано в первую очередь с развитием его понятийного аппарата.

Абстрактные объекты, которые воспроизводят в мыслях лишь некоторые черты реальных объектов, называются идеальными моделями объектов. Примеры идеальных моделей: модель атома Резерфорда, модель атома Бора, кварковая модель структуры сильновзаимодействующих элементарных частиц и т.д.

Идеальные модели, например, физических объектов строятся на основании экспериментальных данных и теоретических представлений о данной области физических объектов. Однако идеальные модели формально-логически из этих данных не выводятся. Они как бы «навеиваются» этими данными.

При построении идеальной модели объекта использование как математических средств, так и содержательных идей должно постоянно контролироваться данными эмпирического изучения объекта. Это означает, что идеальные модели изучаемых объектов должны, как уже подчеркивалось, обладать способностью быть соотносимыми с данными экспериментального анализа моделируемых объектов.

Ученый-теоретик задает вопросы реально существующим объектам, а ответы на них ищет на их идеальных моделях, так как у него просто нет иного представления об объекте. Он также исходит из того, что идеальная модель изучаемого объекта воспроизводит лишь некоторые свойства реального объекта. Поэтому, оперируя идеальными моделями реальных объектов, теоретическое естествознание обязательно должно учитывать следующее.

Идеальные модели объектов могут содержать и такие компоненты, которым ничего не соответствует в действительности непосредственно. Например, магнитное поле модельно можно представить через силовые линии (графическое представление силовых линий поля). В действительности их нет. Но это не означает, что они не отражают никакой закономерности.

Естествознание требует с вводом идеальной модели объекта в познание устанавливать максимально точные границы ее применимости. Но задача это чрезвычайно трудная. И решается она, как правило, задним числом.

Никакое явление не может быть полностью объяснено какой-либо одной моделью. Часто бывает и так, что одну и ту же задачу можно решать на разных моделях одного и того же объекта.

Чем наука теоретически более развита, тем большее число идеализаций она использует. Так, в физике идеализации встречаются буквально на каждом шагу. Можно в форме идеализации представлять тела, процессы, условия.

Относительно тех сторон идеализаций, которые для исследователя несущественны, можно делать любые предположения. Например, идеальным газом может быть в принципе газ любого типа (кислород, азот, смесь газов и т.д.). Это следует из сути данной идеализации: статистическая система, частицы которой взаимодействуют друг с другом только в процессе столкновений, а все остальное время движутся как свободные, называется идеальным газом.

От идеализаций легче переходить к изучению реальных объектов, ибо они позволяют «схватить» определенные стороны сущности реальных объектов. Поэтому они так широко применяются в современном естествознании.

Это уравнение получается как результат корректировки уравнения состояния идеального газа.

Таким образом, можно сделать следующие общие выводы:
1. И идеальные модели, и идеализации объектов существуют лишь в головах людей, над ними нельзя ставить эксперименты. Их нельзя наблюдать. С ними можно работать лишь теоретически.
2. Мы всегда вопросы адресуем реально существующим объектам, а ответы (теоретические) ищем, или оперируя их идеальными моделями, или анализируя определенного рода идеализации.
3. Если объект в теоретическом естествознании представлен в виде идеальной модели, то при этом подчеркивается, что эта идеальная модель воспроизводит определенные свойства оригинала, а если в виде идеализации, то подчеркивается, какие реальные свойства реальных объектов отбрасываются или какие свойства, в принципе не присущие реальному объекту, ему приписываются.
4. Если теория основана на идеальной модели объекта, то ее можно и нужно непосредственно применять к действительности, но, конечно, лишь в строго определенных рамках. Они задаются принципиальными возможностями используемых идеальных моделей реальных объектов. Если же теория описывает идеализацию, то ее непосредственно к действительности применять нельзя.

Источник

Идеальная модель

Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это

Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это

Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это

Наличие следующего уровня обусловлено тем, что при продолжении исследования поименованных объектов выделяются и изучаются некоторые их свойства и отношения между ними.

Для конкретного примера возьмем атомы. Атом – наименьшая составная часть вещества, в которой сохраняется индивидуальность химического элемента. В современной науке доминирует взгляд, согласно которому в обычных земных условиях любые твердые, жидкие и газообразные вещества составлены из атомов (или молекул) одного или нескольких химических элементов. Поэтому можно утверждать, что атомы выступают в роли строительных «кирпичей» вещества. Значит, они должны быть ответственны за его механические, химические, электрические, магнитные и другие свойства.

Хорошо известно, что идея атомистического строения вещества зародилась в Древней Греции. Однако научное обоснование эта идея получила лишь в XIX веке, в результате исследования химических превращений, явления электролиза, разработки кинетической теории материи.

Вплоть до XX века атом рассматривался как неделимая, бесструктурная частица вещества. В 1897 году Дж. Дж. Томсон при исследовании катодных лучей открыл электрон. Однако еще в 1880-х гг. на основе законов электролиза Г. Гельмгольц и Дж. Стони независимо предсказали существование «атома электричества», то есть неделимого количества электрического заряда.

К началу XX века был поставлен вопрос о внутреннем строении атома. В то время не существовало технических устройств, которые позволяли бы заглянуть вовнутрь атома. В то же время, было необходимо объяснить удивительную периодичность химических свойств элементов, открытую Д.И. Менделеевым, и закономерности оптических спектров. Остался один путь: мысленно конструировать структуру атома, другими словами, создавать его идеальную модель. Под идеальной моделью реального объекта будем понимать логический конструкт (иначе, абстрактный объект), построенный на базе реальных знаний об объекте, который позволяет объяснить то, что наблюдаемо в опыте, эксперименте. Когда мы называем идеальную модель реального объекта логическим конструктом, то тем самым подчеркиваем, что она существует только в головах людей. Ее нельзя наблюдать. С ней можно работать только в мыслях и при помощи мысли. Но это такой логический конструкт, который позволяет объяснить то, что происходит с реальным объектом. Это позволяет предположить, что в идеальной модели реального объекта воспроизведены определенные свойства реального объекта. Конечно, не все, а лишь некоторые. Идеальные модели строятся лишь по отношению к тем сторонам реальных объектов, которые ненаблюдаемы, то есть их нельзя воспринять ни с помощью органов чувств, ни с помощью приборов. Все, что наблюдаемо, ни в каких идеальных моделях не нуждается. Развитие науки раскрывает перед исследователем, сконструировавшим идеальную модель реального объекта, систему возможностей:

1. То, что сконструировано исследователем, в процессе развития приборной техники становится наблюдаемым. Тогда становится ясным, правильно ли была сконструирована модель, и что не уловил исследователь в структуре реального объекта. Это редко встречающийся в научной практике вариант.

2. Сконструированная модель реального объекта объясняет определенные явления, но и одновременно противоречит другим явлениям, относящимся к этому же объекту. Здесь раскрываются два пути: а) переходить к более совершенным моделям реального объекта, сохраняя основы предыдущей; б) отказаться от введенной модели.

3. Нередки случаи, когда разные исследователи создают разные модели одних и тех же объектов, порой несовместимые друг с другом. Но они позволяют объяснить одни и те же факты, решать один и тот же класс задач. В принципе это означает, что эти две модели «воспроизвели» разные свойства реального объекта, но среди них есть и общие. Пусть мы имеем в реальном мире некий объект А и пусть в процессе его познания созданы его две идеальные модели: модель А1, которая воспроизводит свойства Б, С, М, Т, О объекта А, и модель А2, которая воспроизводит свойства Б, С, Т, К, Н, Е, Г объекта А. Если задача сформулирована так, что для ее решения достаточно знать свойства Б, С, Т объекта А, то эта задача может быть решена и на модели А1, и на модели А2.

Идеальная модель что это. Смотреть фото Идеальная модель что это. Смотреть картинку Идеальная модель что это. Картинка про Идеальная модель что это. Фото Идеальная модель что это

4. Идеальная модель может представлять собой такое построение, которое никогда и ни при каких условиях не будет поддаваться прямому наблюдению, но обладает объективным существованием. Подчеркнем, что в определенном смысле идеальных моделей как определенной репрезентации нет ни в субъекте, ни вне объекта. «Идеальное возникает в пространстве между объектом и субъектом… Носителем идеального (как и виртуального) является не вещь (субъект как тело и объект), а взаимодействие, контакт субъекта и объекта, человеческая деятельность».

Идеальные модели, например, физических объектов строятся на основании экспериментальных данных и теоретических представлений о данной области физических объектов. Однако идеальные модели формально-логически из этих данных не выводятся. Они как бы “навеиваются” этими данными. Воображение здесь, как правило, обгоняет соображение. Воображение может больше, чем происходит на самом деле. Человек нередко придумывает всякого рода соответствия и отношения, которых в действительности нет. Поэтому нужны ограничители воображения. Они создают определенный механизм направления мысли ученого-естественника в определенное русло. Так, например, в физике ряд принципов выполняет функцию ограничения фантазии ученых. Примером могут служить принципы симметрии, понимаемые как требование инвариантности физических законов относительно определенной группы преобразований (симметрий). Например, галилеевский принцип симметрии требует инвариантности законов относительно пространственных перемещений. Так, одно и то же явление должно подчиняться одним и тем же законам, независимо от того, где оно происходит: в Солнечной системе или в далекой галактике. Тем самым этот принцип из всех возможных для классической физики законов отбирает только те, которые остаются неизменными (инвариантными) при пространственных перемещениях явлений. Это позволяет выделять действительные модели из множества возможных.

Опыт использования таких ограничений накоплен и продолжает расти. Так, например, в создании физических моделей ограничителями являются законы сохранения, второй закон термодинамики, в химии это принцип Ле-Шателье, и т.д. Академик Н.Н. Моисеев обратил внимание на принцип минимума диссипатии энергии в мировом эволюционном процессе. Такие примеры можно продолжить.

Необходимо учитывать, что всеми ограничениями надо пользоваться так, чтобы не закрывать для теоретика путь поиска новых смыслов и, следовательно, новых форм понимания. Без этого трудно надеяться на возникновение в естествознании новых, «сумасшедших» идей.

Идеальное моделирование должно удовлетворять всем требованиям, предъявляемым к научным гипотезам:

1. Обязательное согласие с тем фактическим материалом, для объяснения которого идеальная модель строится. Здесь есть одна существенная тонкость. Как правило, с первого захода такую идеальную модель реального объекта создать не удается. Возникает вопрос: что делать? Не публиковать работу? Или довольствоваться на первоначальном этапе и тем, что определенные факты она объясняет? Думается, что перспективен второй путь. И поэтому развитие теоретической физики – это и совершенствование идеальных моделей одних и тех же объектов. Однако здесь необходимо учитывать: как бы ни была совершенна идеальная модель реального объекта, все факты (тем более, что с развитием науки их становится все больше и больше), относящиеся к реальному объекту, она никогда объяснить не может, так как идеальная модель «воспроизводит» не все, а лишь некоторые ненаблюдаемые характеристики реального объекта. Мало того, в науке часто бывает и так, что появляющаяся модель противоречит некоторым фактам. Это еще не означает, что сделанное предположение принципиально неверно, если другие факты она объясняет. Дело в том, что всякое схватывание целостности оказывается все же условным. Это случай, когда модель надо совершенствовать, сохраняя ее основу. До тех пор, пока существующей модели не противопоставлена другая, более устойчивая, от прежней модели нельзя просто так отказаться. Ученый-теоретик задает вопросы реально существующим объектам, а ответы на них ищет на их идеальных моделях, так как у него просто нет иного представления об объекте.

2. Принципиальная проверяемость. Так как идеальная модель дает представление о ненаблюдаемых сторонах реального объекта, то единственный путь признания ее адекватности реальному объекту – это вывод из нее следствий, которые доступны опытной проверке. Если таких следствий вывести нельзя, то такая идеальная модель реального объекта не может быть принята. Эти следствия – это, как правило, свойство реальных объектов, которые наблюдаемы. Другими словами, это то, что данная идеальная модель должна объяснить. Но исключительно важно, чтобы были и такие предсказания, которые наукой еще не зафиксированы, являются для нее новыми, порой неожиданными. Нельзя не учитывать и того, что подтвержденное опытом следствие может оказаться истинным, а идеальная модель реального объекта – неверной. Это связано с тем, что одно и то же следствие может вытекать из разных идеальных моделей одного и того же реального объекта. Это обстоятельство порождает проблему доверия к введенной идеальной модели реального объекта. И здесь ученый руководствуется следующим: тем большая система разнообразных следствий оправдывается практически, тем менее вероятным становится то, что все они могли бы также хорошо выведены из другой идеальной модели реального объекта.

3. Идеальная модель реального объекта считается надежной, если она не содержит формально-логических противоречий, не противоречит установленным наукой законам природы и предсказывает новые явления.

При построении идеальной модели объекта использование как математических средств, так и содержательных идей должно постоянно контролироваться данными эмпирического изучения объекта. Это означает, что идеальные модели изучаемых объектов должны обладать способностью быть соотносимыми с данными экспериментального анализа моделируемых объектов.

А теперь вернемся к эволюции идеальных моделей атома. Одна из первых моделей структуры атома была предложена в 1904 г. Дж. Дж. Томпсоном. Согласно Томпсону, Z электронов, каждый из которых обладает зарядом –е, находятся в определенных равновесных положениях внутри непрерывно распределенного по объему атома положительного электрического заряда +Zе, образуя электрически нейтральную систему. Электроны могут колебаться около своих равновесных положений и испускать и поглощать электромагнитное излучение. В сложном атоме электроны распределены по кольцам определенного радиуса, что определяет периодичность свойств атома.

Эта модель атома объяснила (практически, позволила глубоко понять) химические и большинство физических свойств (оптические, электрические, магнитные) вещества. Однако, по законам классической электродинамики вращающийся вокруг ядра электрон должен непрерывно излучать электромагнитные волны и вследствие этого терять свою энергию. Радиус его орбиты должен непрерывно уменьшаться. Электрон через короткое время должен упасть на ядро. Это противоречит наблюдаемой стабильности атома. Кроме того, спектр атома не непрерывен, а состоит из узких спектральных линий. Это означает, что атом испускает и поглощает электромагнитные волны лишь избранных, определенных частот, характерных для данного химического элемента.

Наука требовала совершенствования модели атома Резерфорда. Его произвел Н. Бор. В основу идеальной модели атома Н. Бор положил два постулата:

1. Существуют стационарные (не изменяющиеся со временем) состояния атома, характеризуемые дискретным набором «разрешенных» значений энергии: Е1, Е2, Е3… В этих состояниях атом не излучает. Изменение энергии атома возможно лишь при квантовом (скачкообразном) переходе из одного стационарного состояния в другое.

2. Атом испускает и поглощает электромагнитное излучение определенной частоты в виде кванта света (фотона) с энергией hnik (где h – постоянная Планка), переходя из одного стационарного состояния с энергией ei в другое с энергией ek, при этом

При испускании фотона атом переходит в состояние с меньшей энергией, при поглощении – с большей. Набор возможных дискретных частот

Теория Н. Бора встретилась с принципиальными трудностями при попытках описания сложных (содержащих более одного электрона) атомов. Например, она не могла объяснить соединение атомов в молекулы. Окончательное решение всех вопросов и противоречий, вскрывшихся при исследовании атомных явлений, было достигнуто в результате создания квантовой механики.

Такова вкратце эволюция идеальных моделей атома.

Из всего сказанного можно сделать следующие выводы.

1. Создание идеальных моделей в физике – это путь перехода физики к пониманию физических явлений.

2. Идеальные модели строятся в физике только по отношению к ненаблюдаемым сторонам изучаемых объектов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *