Игнитронный сварочный аппарат что это такое
Игнитрон
Ртутный выпрямитель В.П. Вологдина создавался в чрезвычайных условиях. Пережившая Гражданскую войну Советская Россия остро нуждалась в энергетических ресурсах. Уцелевшие в период разрухи и восстановленные электрические сети не могли обеспечить эту потребность. Возникала и другая проблема: для получения энергии при имеющихся мощностях использовался только постоянный ток, поскольку подача переменного тока выводила из строя существующие генераторы. При наличии сети переменного тока выпрямление является наиболее экономным и удобным способом получения постоянного тока.
Этот процесс представляет собой преобразование переменного тока в постоянный при помощи вентилей или коммутационных устройств, пропускающих ток только в одном направлении. Выпрямитель состоит из трансформатора, вентиля и электрического фильтра, сглаживающего пульсации выпрямленного тока. Существовавшие до того времени выпрямители не могли обеспечить надлежащей работы трансформаторов. В 1919 г. В.П. Вологдин решил использовать для получения постоянного тока вып-рямитель с жидким (ртутным) катодом в стеклянном исполнении (в виде колбы). В этом устройстве два нулевых трехфазных выпрямителя были соединены параллельным способом.
В.П. Вологдин сделал свои ртутные выпрямители однополупериодными и двухполупериодными. В первых использовалась только одна полуволна переменного тока, выпрямленный ток сильно пульсировал (возникали остаточные вихревые токи), что заставляло использовать дорогостоящие и громоздкие фильтры. При двухполупериодном выпрямлении постоянная составляющего тока увеличивалась вдвое, а пульсации соответственно уменьшались. Поэтому ртутный выпрямитель, предложенный В.П. Вологдиным, получил высокую оценку специалистов. Он предназначался для питания анодных ламп радиотелефонных передатчиков. Оригинальный прибор мощностью 10 кВт позволял получить постоянный ток с напряжением более 3500 В. Коэффициент полезного действия (КПД) при этом достигал 99 %, а напряжение внутри колбы падало незначительно.
Ртутный выпрямитель, созданный В.П. Вологдиным, предназначался в первую очередь для радиотелефонных и радиотелеграфных станций. В 1930 г. В.П. Вологдину удалось создать более мощные ртутные выпрямители в металлическом исполнении. Самый первый из них достигал мощности в 1000 кВт (при напряжении 12 ООО В). Он изготавливался на ленинградском заводе «Электросила» под руководством В.П. Волошина. Изобретение В.П. Вологдина практически в неизмененном виде используется на современных электростанциях и в трансформаторах большого масштаба. Этого человека заслуженно называют пионером высокочастотных технологий в отечественной энергетике.
Технологические особенности игнитронов
На границе между зажигателем и ртутью образуется электрическое поле напряженностью порядка 10 6 В/см, достаточное для появления электростатической эмиссии с поверхности катода. Если поджигающий импульс подается при положительном напряжении на аноде, то в игнитроне начинается дуговой разряд и образуется плазма, а на поверхности ртути — катодное пятно.
При отрицательном полупериоде напряжения на аноде происходит деионизация паров ртути, поэтому во время каждого следующего положительного полупериода анодного напряжения необходимо подавать на зажигатель очередной поджигающий импульс. Они должны подаваться синхронно с анодным напряжением. Изменяя фазу поджигающих импульсов можно изменить длительность горения дуги, а следовательно, и величину выпрямленного напряжения, если игнитрон работает в выпрямительной схеме. Роль зажигателя в игнитроне подобна роли управляющей сетки и тиратроне. Стеклянный игнитрон типа И-100/1000, рассчитанный на выпрямленный ток 100 А при допустимом обратном напряжении 1000 В, изготовляют в виде сварной конструкции из медного цилиндра 4, охлаждаемого водой и являющегося выводом катода, и стеклянного (молибденовое стекло) цилиндра 2 — анодной камеры. Графитовый анод 3 имеет форму цилиндра или полусферы. Вывод зажигателя 1 сделан в боковой части стеклянного цилиндра.
Стеклянный игнитрон типа И-100/1000
Металлический игнитрон монтируется в трубе 2, изготовленной из нержавеющей стали, вокруг которой расположена рубашка 1 водяного охлаждения со спиральными каналами. Графитовый анод 3, укрепленный на металлическом стержне 4, выводится наружу через стеклянный изолятор 5, сваренный с крышкой игнитрона. Вывод 7 зажигателя 6 осуществлен через стеклянный изолятор 5, проходящий через корпус игнитрона. Ртутный катод 9 не имеет отдельного вывода, так как ртуть не изолирована от корпуса игнитрона. Стеклянные игнитроны рассчитывают на токи до 100 А при величине допустимого обратного напряжения 10. 12 кВ, металлические игнитроны — на токи 300. 500 А и выше.
Устройство металлического игнитрона и его условное обозначение
Игнитроны широко применяют в мощных выпрямительных устройствах, промышленных преобразователях тока, электросварочных установках и ряде других схем промышленной электроники. Игнитроны типа И1 выпускают для контактной сварки металлов.
Игнитрон
Содержание
Принцип действия
Испускание электронов, вызывающее основной дуговой разряд между анодом и катодом, происходит при положительном напряжении на аноде с одного или нескольких ярко светящихся участков катода (катодных пятен). Катодные пятна создаются вспомогательной дугой, которая образуется периодически перед зажиганием основной дуги пропусканием импульсов тока амплитудой до нескольких десятков ампер и длительностью несколько миллисекунд через поджигающий электрод (зажигатель) [1] из карбида бора, частично погружённый в жидкую ртуть катода. Изменяя момент зажигания вспомогательной дуги, можно управлять началом зажигания основной дуги и тем самым регулировать среднее значение силы выпрямленного анодного тока от максимальной до нуля.
См. также
Примечания
Литература
Полезное
Смотреть что такое «Игнитрон» в других словарях:
игнитрон — игнитрон … Орфографический словарь-справочник
игнитрон — вентиль Словарь русских синонимов. игнитрон сущ., кол во синонимов: 1 • вентиль (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ИГНИТРОН — один из типов ионных приборов с ртутным катодом и управляемым дуговым разрядом; используется в основном как сильноточный выпрямитель (с силой тока до 10 кА и напряжением до 5 кВ). Подробнее см. в ст. Ионные приборы. Физическая энциклопедия. В 5… … Физическая энциклопедия
игнитрон — Управляемый ртутный вентиль, в котором главный дуговой разряд происходит от игнайтера, опущенного в ртуть, на который подается электрический импульс положительной полярности по отношению к катоду. [ГОСТ 13820 77] Тематики электровакуумные приборы … Справочник технического переводчика
Игнитрон — [от лат. ignis огонь и (элек)трон (См. Электрон)], одноанодный ионный прибор (См. Ионные приборы) с ртутным катодом и управляемым дуговым разрядом. И. (рис.) применяют в качестве ртутного вентиля (См. Ртутный вентиль) в мощных… … Большая советская энциклопедия
игнитрон — газоразрядный прибор с ртутным катодом и вспомогательным (поджигающим) электродом, посредством которого можно управлять основным дуговым разрядом. Применяется в качестве вентиля в мощных выпрямительных устройствах, электроприводах,… … Энциклопедия техники
Что такое игнитрон
Игнитрон это особый тип газоразрядного прибора. Он имеет ртутный катод и электрод, осуществляющий поджиг. При помощи него происходит управление дуговым разрядом.
Эти устройства могут использоваться как вентиль для устройств выпрямления переменного тока большой мощности, например аппаратов сварки или подстанциях. Был изобретен игнитрон в 1922 году русским инженером Вологодиным В.П. Несмотря на то, что произошло это почти век назад, используются игнитроны и в настоящее время.
В данной статье пойдет речь об устройстве этого прибора, принципах его работы и сфере использования. Дополнена данная статья скачиваемым файлом с техническими особенностями этих приборов, а также двумя роликами на заданную тематику.
Схема с игнитроном
Игнитрон представляет собой электронную лампу, временем пребывания которой в открытом состоянии можно управлять. В игнитроне находится жидкая ртуть, контакт с которой имеет вывод во внешнюю цепь. Кроме того, в игнитроне находятся анод и электрод поджига; кончик электрода, изготовленный из карбида кремния или карбида бора,, погружен на небольшую глубину в ртуть.
Если между электродом поджига и ртутью есть некоторая разность потенциалов,, то образуется искра, в результате чего возникает электронная эмиссия. При положительном потенциале на аноде электроны,, двигаясь к аноду, будут сталкиваться с атомами газа в лампе,. т. е. начнется процесс ионизации.
Когда через игнитрон протекает ток, падение напряжения на нем невелико; следовательно, эта лампа имеет небольшое внутреннее сопротивление. Игнитрон обладает рядом преимуществ: опасность пробоя между анодом и катодом невелика, так как максимальное обратное напряжение имеет место только в интервалы времени, когда внутреннее сопротивление лампы имеет большую величину.
К тому же, не требуется энергии для подогрева катода. Как и в случае тиристора, запуск игнитрона может производиться в любой точке периода переменного напряжения, что позволяет осуществлять управление выходной мощностью.
Диод с указанной на рисунке полярностью включен последовательно с ограничительным резистором Ri между анодом и электродом поджига. Источник переменного тока соединен последовательно с нагрузкой Rн и игнитроном, т. е. так же, как и в схеме с тиристором.
Во время действия положительного полупериода переменного напряжения диод Д[ и игнитрон hi находятся в открытом состоянии. Однако игнитрон не может открываться до тех пор, пока электрод поджига не вызовет электронную эмиссию. Когда диод находится в открытом состоянии, происходит электрический разряд между электродом и ртутью, и возникающая в результате электронная эмиссия вызовет ионизацию и протекание тока.
Во время отрицательной полуволны переменного напряжения и игнитрон, и диод находятся в закрытом состоянии. Вместо диода Д( управляющее напряжение, как и в схеме с тиристором, может вырабатываться фазосдвигаю-щей цепью. Схема имеет невысокий к. п. д., так как в ней используется однополу-периодное выпрямление.
Полученное напряжение перед подачей в нагрузку для уменьшения пульсаций может быть отфильтровано. Для повышения к. п. д. можно применять схему с игнитронами, выполняющую двухполупериодное выпрямление, которую и рассмотрим в следующем разделе.
Этот процесс представляет собой преобразование переменного тока в постоянный при помощи вентилей или коммутационных устройств, пропускающих ток только в одном направлении. Выпрямитель состоит из трансформатора, вентиля и электрического фильтра, сглаживающего пульсации выпрямленного тока.
Существовавшие до того времени выпрямители не могли обеспечить надлежащей работы трансформаторов. В 1919 г. В.П. Вологдин решил использовать для получения постоянного тока вып-рямитель с жидким (ртутным) катодом в стеклянном исполнении (в виде колбы). В этом устройстве два нулевых трехфазных выпрямителя были соединены параллельным способом.
В.П. Вологдин сделал свои ртутные выпрямители однополупериодными и двухполупериодными. В первых использовалась только одна полуволна переменного тока, выпрямленный ток сильно пульсировал (возникали остаточные вихревые токи), что заставляло использовать дорогостоящие и громоздкие фильтры. При двухполупериодном выпрямлении постоянная составляющего тока увеличивалась вдвое, а пульсации соответственно уменьшались.
Поэтому ртутный выпрямитель, предложенный В.П. Вологдиным, получил высокую оценку специалистов. Он предназначался для питания анодных ламп радиотелефонных передатчиков. Оригинальный прибор мощностью 10 кВт позволял получить постоянный ток с напряжением более 3500 В. Коэффициент полезного действия (КПД) при этом достигал 99 %, а напряжение внутри колбы падало незначительно.
Ртутный выпрямитель, созданный В.П. Вологдиным, предназначался в первую очередь для радиотелефонных и радиотелеграфных станций. В 1930 г. В.П. Вологдину удалось создать более мощные ртутные выпрямители в металлическом исполнении.
Самый первый из них достигал мощности в 1000 кВт (при напряжении 12 ООО В). Он изготавливался на ленинградском заводе «Электросила» под руководством В.П. Волошина. Изобретение В.П. Вологдина практически в неизмененном виде используется на современных электростанциях и в трансформаторах большого масштаба. Этого человека заслуженно называют пионером высокочастотных технологий в отечественной энергетике.
Технологические особенности игнитронов
В отличие от обычных ртутных вентилей, в которых для поддержания горения дуги служат аноды возбуждения, в игнитроне «поджигание» дуги происходит во время каждого положительного полупериода анодного напряжения с помощью вспомогательного электрода, называемого игнитором или зажигателем.
Игнитрон представляет собой стеклянный или металлический баллон, в котором создан вакуум и расположены ртутный катод, анод и зажигатель, являющийся наиболее ответственным элементом игнитрона.
Он имеет форму конического стержня, изготовленного из намачиваемого ртутью полупроводникового материала, например корунда или карбида бора, погруженного на 3+5 мм в ртутный катод. Между зажигателем и катодом образуется изоляционная микропленка. На зажигатель подаются импульсы напряжения порядка 170+200 В при токе до 30 А.
При отрицательном полупериоде напряжения на аноде происходит деионизация паров ртути, поэтому во время каждого следующего положительного полупериода анодного напряжения необходимо подавать на зажигатель очередной поджигающий импульс.
Они должны подаваться синхронно с анодным напряжением. Изменяя фазу поджигающих импульсов можно изменить длительность горения дуги, а следовательно, и величину выпрямленного напряжения, если игнитрон работает в выпрямительной схеме. Роль зажигателя в игнитроне подобна роли управляющей сетки и тиратроне.
Стеклянный игнитрон типа И-100/1000, рассчитанный на выпрямленный ток 100 А при допустимом обратном напряжении 1000 В, изготовляют в виде сварной конструкции из медного цилиндра, охлаждаемого водой и являющегося выводом катода, и стеклянного (молибденовое стекло) цилиндра — анодной камеры. Графитовый анод имеет форму цилиндра или полусферы. Вывод зажигателя сделан в боковой части стеклянного цилиндра.
Устройство металлического игнитрона и его условное обозначение
Игнитроны широко применяют в мощных выпрямительных устройствах, промышленных преобразователях тока, электросварочных установках и ряде других схем промышленной электроники. Игнитроны типа И1 выпускают для контактной сварки металлов.
Особенности строения игнитрона
Игнитроны обладают не только важным достоинством ртутных вентилей – их способностью переносить перегрузки, но и всеми положительными свойствами тиратронов, как управляемых выпрямителей. Существенным недостатком игнитронов является ограниченный срок службы зажигателя.
Последний нагревается при работе, его поверхность с течением времени загрязняется и на ней образуются пятна ртути, что в конечном счете приводит к пропускам в зажигании дуги и к увеличенному потреблению тока. К недостаткам игнитронов относится также необходимость искусственного охлаждения, что значительно усложняет их конструкцию.
Игнитрон используется в устройствах, потребляющих токи до нескольких десятков ампер. Для исключения возможности возникновения обратного тока в цепи зажигателя в нее включают полупроводниковый или иной диод. Игнитрон имеет существенные недостатки, заключающиеся в ограниченном сроке службы зажигателя. Эти недостатки приводят к пропускам зажигания.
Игнитроны имеют анодные характеристики тиратронов, но обеспечивают большую мощность в нагрузке. Их применяют для управления точечной сваркой, электродвигателями, для преобразования больших мощностей постоянного тока в мощности переменного тока и для преобразования частоты мощных электрических устройств. В настоящее время мощные полупроводниковые управляемые диоды – тиристоры – начинают успешно заменять игнитроны.
Игнитрон представляет собой лампу с ртутным катодом. Прерывателем ( зажигате-лем) в лампе является стержень из тугоплавкого материала с большим электрическим сопротивлением, погружаемый в ртуть. При соответствующем напряжении порядка более 100 в / см, поданном на зажигатель, возникает дуговой разряд между стержнем и зеркалом ( поверхностью) ртути.
Дуга становится источником электронов для главного разряда между катодом и анодом, происходящего через несколько микросекунд после возникновения дуги. Дуга в цепи зажигателя может образоваться через цепь конденсатора.
Игнитрон запускается каждый раз при подаче на пусковой электрод положительного по отношению к катоду импульса порядка сотен вольт, если анодное напряжение в этс время также положительное. При отрицательном напряжении на основном аноде происходит деионизация паров ртути и игнитрон закрывается. Регулируя время поступления импульсов на пусковой электрод относительно момента появления положительного напряжения на аноде, можно управлять анодным током через игнитрон.
Игнитроны находят широкое применение: 1) в эле ктро-сварке, где требуются периодические и значительные по величине импульсы тока; 2) в качестве ионных выключателей, сочетающих высокую перегрузочную способность с большой скоростью включения и выключения; 3) в качестве реле, обладающего чувствительным элементом и в то же время мощными контактами для непосредственного включения больших сил токов.
Разновидности ингитрона
Ведущей научно-исследовательской организацией по разработке новых типов преобразователей электрической энергии является Всесоюзный электротехнический институт имени Ленина (ВЭИ). В четвертой пятилетке в ВЭИ была разработана конструкция цельнометаллического запаянного ртутного выпрямителя с воздушным охлаждением, а в 1957 г. создана серия цельнометаллических запаянных игнитронов как с воздушным, так и с водяным охлаждением.
Все электровозы перечисленных серий предназначены для работы на постоянном токе. Но для продолжения опытов применения однофазного переменного тока, начатых еш,е перед войной, Новочеркасский завод построил в 1953—1954 гг. два опытных шестиосных грузовых электровоза серии НО, работавших на однофазном токе промышленной частоты и оборудованных игнитронными ртутными выпрямителями.
Кроме указанных сварочных машин промышленного типа для сварки сильфонов широко применяются более простые установки с игнитронными прерывателями типа ИП-5, ИП-7 и ИП-8. Эти установки чрезвычайно компактны, просты и могут быть изготовлены любой экспериментальной мастерской.
Поскольку время разряда конденсатора зависит от величины сопротивления 5 в его цепи, то оказывается возможным регулировать и частоту зажигания игнитрона в пределах от 2 до 20 гц. Благодаря регулировке угла отсечки длительность горения (импульса) игнитрона составляет 0,01—0,003 сек.
Как видно из схемы, сеть замыкается через игнитрон и сварочный трансформатор накоротко. Однако время замыкания настолько мало, что любая из имеющихся защит сработать не успевает. Мощные импульсные токи, протекающие через игнитрон и сварочный трансформатор, и служат для сварки сильфонов с арматурой.
Область применения
Игнитроны находят широкое применение
Ионный электропривод постоянного тока и его механические характеристики. Электропривод этого типа состоит из ионных выпрямляющих аппаратов и двигателя постоянного тока. Для выпрямления переменного тока при больших мощностях двигателей используются ртутные выпрямители с регулируемой сеткой, при меньших мощностях — тиратроны (стеклянные или металлические) и игнитроны.
Подводимое к двигателю напряжение ионных аппаратов можно регулировать в широких пределах, изменяя момент зажигания игнитронов посредством подачи соответствующих потенциалов на сетки ртутных выпрямителей или тиратронов. Этим создаётся возможность производить пуск и широко регулировать скорость так же, как и в системе Леонарда. Пределы регулирования скорости двигателя — от 1 20 и выше.
Автоматическая аппаратура состоит из различных контакторов, реле управления, реле защиты, командоаппаратов, путевых выключателей, тормозных электромагнитов, регуляторов, ионно-электронной аппаратуры, усилительных ламп, ртутных выпрямителей, тиратронов, игнитронов, неоновых ламп, фотоэлементов, электронно-лучевых трубок и т. д. Комплектные аппараты автоматического управления для различных электроприводов носят название станций управления.
Синхронный игнитронный прерыватель для точечной сварки дозирует время протекания тока с помощью силовых игнитронов, регулируемых конденсаторно-ламповыми и электромагнитными устройствами. Замыкание и размыкание первичной цепи сварочного трансформатора осуществляются через силовые игнитроны I и II путём зажигания и гашения дуги в игнитроне.
Цепь управления игнитронами состоит из вспомогательных ламп (тиратронов) 1, 2, 3, 4 и 5, конденсаторов б и 7, пик-трансформатора 8, нормальных трансформаторов, серии регулируемых и нерегулируемых сопротивлений и специального асинхронного таймера, производящего в определённые моменты времени замыкание и размыкание цепи управления выключателя 9.
Синхронный игнитронный (электронно-ионный) прерыватель. В этом прерывателе периодическое замыкание и размыкание цепи первичной обмотки сварочного трансформатора осуществляются путём периодического зажигания и гашения дуги в игнитронах.
Моменты зажигания и гашения дуги и соответственно продолжительность импульсов тока и пауз между ними определяются настройкой цепи управления игнитронами. В цепь зажигания каждого игнитрона включены последовательно по два вспомогательных тиратрона. Управление тиратронами осуществляется двумя отдельными цепями, каждая из которых периодически меняет потенциал на сетке связанного с ней тиратрона.
Устройство машин контактной сварки
Аппаратура управления Асинхронный игнитронный контактор КИА (рис. 17, а) включает сварочный трансформатор в любой момент времени, не связанный по фазе с изменением напряжения питающей сети, в результате чего возможны несимметрия и нечетное число положительных и отрицательных полупериодов (полуволн) тока, а следовательно, намагничивание сердечника трансформатора и нестабильность сварочного тока. Управляющим элементом контактора является замыкающий контакт Р, который должен быть замкнут на время протекания сварочного тока. При замыкании контакта Р (реле в регуляторе цикла сварки) и полярности, при которой на анод игнитрона И2 подан положительный полупериод питающего напряжения (клеммы Л1, Л2), ток in потечет от Л1 через диод В2, предохранитель ПР, контакт Р, контакт РГ гидравлического реле, диод ВЗ и поджигатель игнитрона И2 к JI2. Игнитрон загорится и в первичной обмотке сварочного трансформатора потечет ток i1. В конце полупериода течение тока iп прекратится и с этого момента (плюс на клемме Л2) начнет проходить ток in по цепи поджигателя игнитрона И1, что приведет к зажиганию последнего и прохождению второго полупериода тока i1. Такое поочередное горение игнитронов будет происходить до размыкания контакта Р, после чего игнитронный контактор отключит первичную обмотку ТС от сети при нулевом значении тока, протекающего через последний горящий игнитрон. В последние годы вместо игнитронов в контакторах используют только тиристоры. В синхронном тиристор-ном контакторе (рис. 17, б) применено фазовое управление током, протекающим через первичную обмотку трансформатора ТС, а следовательно, и сварочным током. Контактор включает трансформатор ТС всегда в строго определенный момент времени, связанный с изменением напряжения питающей сети ис. Поочередное включение тиристоров Т1 и Т2 обеспечивается подачей на их управляющие электроды кратковременных импульсов тока iy от трансформаторов ТИ. Положение импульсов iy по отношению к нулю напряжения сети ис (рис. 17, в), определяемое углом а, можно регулировать специальным фазорегулирующим устройством. Если а = ф (ф — угол сдвига между напряжением и током), то ток, протекающий через первичную обмотку трансформатора ТС, имеет полнофазное (наибольшее) значение i1a. При а>ф длительность включения тиристора (Т1 или Т2) в течение каждого полупериода уменьшается, в результате чего уменьшается действующее значение тока i1a> и сварочного тока. Изменяя плавно угол а, получают регулирование сварочного тока. Цепочка R3, С служит для снижения скорости нарастания напряжения на тиристорах и исключения их самопроизвольного включения (рис. 17, б). При наличии этой цепочки на первичную обмотку ТС даже до включения сварочного тока подается небольшое напряжение, что может вызывать искрение при размыкании электродов машины. Для устранения этого нежелательного явления параллельно первичной обмотке включают резистор R4. Сварочные машины в зависимости от мощности комплектуют тиристорными контакторами КТ-1 (на тиристорах ТВ-200), КТ-03 (на тиристорах ТВ-500) и КТ-04 (на тиристорах ТВ-800). Тиристоры имеют внутреннее водяное охлаждение. Таким образом, при использовании в машинах синхронных контакторов с фазовым управлением сварочный ток можно изменять ступенчато переключением витков первичной обмотки трансформатора и плавно, регулируя момент включения управляемых вентилей (игнитронов или тиристоров) в каждом полупериоде тока. Синхронный контактор с фазовым управлением и электронным реле времени, обеспечивающим регулирование длительности протекания сварочного тока и паузы (при шовной сварке), называют синхронным прерывателем тока. Применение получили синхронные игнитронные прерыватели тока типов ПИТ и ПИШ. Точечные прерыватели ПИТ позволяют получать одиночные импульсы тока, шовные прерыватели ПИШ — равные по величине и длительности импульсы тока через одинаковые паузы. Длительность импульса (ПИТ и ПИШ) и паузы (ПИШ) независимо регулируются в пределах 1—19 периодов частоты сети (0,02—0,38 с) ступенчато через один период. Прерыватели имеют фазовое управление (рукоятка «Нагрев») для плавного изменения действующего значения (теплового действия) сварочного тока в пределах 40—100% — тока данной ступени трансформатора машины (изменением угла а). Электрическая схема прерывателей ПИТ и ПИШ выполнена с применением электровакуумных приборов (электронных ламп и тиратронов), в результате старения которых при длительной эксплуатации возможно нарушение стабильности работы прерывателей. В прерывателях типа ПСЛ этот недостаток устранен применением полупроводниковых логических элементов. Длительность импульсов тока и пауз регулируется дискретно от 1 до 20 периодов с частотой питающей сети, что обеспечивает практически абсолютно точный отсчет времени. Прерыватели ПСЛ являются универсальными и пригодны для точечной (рельефной) и шовной сварки. Их выпускают в двух вариантах: с тиристорным контактором (ПСЛ-200, ПСЛ-700, ПСЛ-1200) и игнитронным (ПСЛ-1500). Они также позволяют плавно регулировать сварочный ток (40—100%). Кроме того, все прерыватели ПИТ, ПИШ, ПСЛ обеспечивают автоматическую стабилизацию сварочного тока при колебаниях напряжения сети, питающей машину. Изменение тока, вызываемое колебанием напряжения, может снизить качество получаемых сварных соединений, поэтому в прерывателях предусмотрено специальное компенсирующее устройство, которое автоматически изменяет момент включения управляемых вентилей-игнитронов или тиристоров (угол а, рис. 17, в), благодаря чему поддерживается заданный сварочный ток. Работа сварочной машины по заданной циклограмме не может быть обеспечена применением одного только контактора или прерывателя тока. Для этой цели необходима аппаратура, которая выдает в нужные моменты времени команды на включение и выключение соответствующих исполнительных элементов, управляющих всеми электрическими и механическими устройствами машины. Эту аппаратуру принято называть регулятором цикла сварки (РЦС), _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |