Импеданс антенны что это
Импеданс антенны что это
Поскольку антенна потребляет от источника активную мощность (излучая её в эфир), то по аналогии с любой электрической схемой потребляющей мощность вводят сопротивление, на котором эта мощность выделяется. В данном случае оно называется сопротивлением излучения Rизл. Надо подчеркнуть, что физически этого сопротивления нет. Rизл всего лишь математический коэффициент, связывающий излученную антенной мощность с квадратом максимальной амплитуды тока в антенне. Но Rизл весьма наглядный параметр, характеризующий эффективность излучения антенны, поэтому часто используется.
Rизл весьма сложным образом зависит от размеров антенны, её геометрии, и распределения тока. В частном случае простой линейной антенны длиной до волны (при условии, что нет участков с противофазно протекающими токами) Rизл прямо пропорционально площади под распределением тока по антенне (очень наглядно это можно оценить на закладке «Вид» MMANA). Отсюда вытекает важный для практики укороченных антенн вывод: при одинаковой физической длине эффективнее излучает (то есть имеет более высокое Rизл) та антенна, по которой протекают больший ток, и по которой он равномернее распределен.
На рисунках 3.1.2 и 3.1.3 показано как зависит Rизл симметричного диполя, находящегося в свободном пространстве от его размера [2]:
рис.3.1.2 рис.3.1.3.
Как любое реальное устройство, антенна не имеет КПД=100%. То есть не вся мощность, подведенная к антенне, излучается. Часть её рассеивается в тепло в антенне и окружающих предметах. Эта часть мощности описывается сопротивлением потерь антенны Rп. Может и это математическая абстракция как Rизл? Ну нет, Rп существует настолько реально физически, что для его описания требуется несколько разных частей. Rп состоит из:
Rs – омических потерь в проводах и элементах антенны. Rs растет с частотой. Это следствие так называемого поверхностного эффекта – переменное магнитное поле вытеснят ток из центра проводника на его края. Поэтому ВЧ ток протекает только по тонкому поверхностному слою провода, не проникая вглубь. Глубина проникновения тока описывается формулой:
(3.1.6)
K– коэффициент, равный 67 для меди, 83 для алюминия, 127 для бронзы.
Rз – сопротивление потерь в земле. Для вертикальных антенн с противовесами, лежащими на земле, часть тока от источника, возбуждающего антенну, протекает через землю. Это, конечно, приводит к дополнительным потерям на обогрев земли.
Ro – характеризует тепловые потери в окружающих предметах, лежащих в ближней зоне антенны. Как описано в разделе 3.1.1 в ближней зоне антенны существует реактивное поле (напряженность которого резко растёт с укорочением антенны). В этом поле «плещется» реактивная энергия, связанная с излучателем. Она никуда не излучается, она «принадлежит» излучателю точно так же, как, например поле рассеяния вокруг катушки П-контура передатчика. Если в ближней зоне антенны нет ничего, то эта реактивная энергия «плещется» без потерь. Но как только в реактивное поле попадает предмет с потерями, он немедленно переводит часть энергии поля в тепловые потери (расположите рядом с выходной катушкой мощного передатчика сердечник с потерями и посмотрите, как он нагреется). В практических конструкциях КВ антенн, как правило, в ближней зоне (напомню, её радиус составляет l/2p ) находятся предметы с потерями – дома, деревья, металлоконструкции, крыша, земля (это не те потери, что в предыдущем пункте за счет непосредственного протекания тока антенны через землю, это тепловые потери реактивного поля в земле).
Итого, сопротивление потерь:
Ясно, что подведенная к антенне мощность выделяется как на Rизл, так и на Rп. Поэтому КПД антенны h А определяется как:
(3.1.8)
Для получения приемлемого КПД надо стараться, чтобы Rизл было бы в несколько раз выше Rп. При использовании укороченных антенн Rизл сильно падает (см. рис. 3.1.2) – до единиц Ом. Поэтому приходится всеми доступными мерами снижать Rп – использовать проводники с большим периметром сечения, с качественной изоляцией. И даже при этих условиях Rп укороченной антенны часто получается выше, чем полноразмерной. Дело в том, что в укороченной антенне (из-за повышенной добротности) всегда более сильно реактивное поле, и соответственно выше составляющая Rо.
На практике Rп в зависимости от конструкции антенны составляет единицы (в тяжелых случаях – десятки) Ом и увеличивается с ростом частоты, уменьшением высоты над землёй и с укорочением антенны (рост Rо!). Поэтому КПД антенны резко падает с её укорочением.
Напротив, при использовании полноразмерных (от полуволны и больше) антенн с высоким Rизл (см. рис. 3.1.3) КПД получается довольно большим. На фоне высокого Rизл (несколько десятков … сотен Ом) доля потерь приходящихся на Rп становится невелика и не имеет особого смысла бороться за снижение сопротивления потерь. Но даже полноразмерную антенну нежелательно располагать близко (радиус ближней зоны 0,16 l ) к поглощающим местным предметам из-за опасности заметного возрастания Rо.
Кажется, что входной импеданс антенны (Zа=Rа+jXа) – понятие настолько очевидное, что не требуется никаких пояснений. Za – это то, что покажет измеритель импеданса (ВЧ-мост например), подключенный непосредственно ко входным зажимам антенны.
Но к сожалению, в литературе очень часто путают активную часть входного импеданса антенны Ra и сопротивление излучения Rизл. Причем грешат этим не только любители. А на базе этой путаницы делаются далеко идущие, но ошибочные выводы.
Многое станет яснее, если представить антенну в виде эквивалентной схемы: сложного колебательного LC-контура в который включены резисторы Rизл и Rп. Разберем несколько примеров.
Антенна диполь от полуволны и короче. Её эквивалентная схема представляет собой обычный последовательный LC-контур, в который последовательно же включены Rизл и Rп. Если Rп пренебрежимо мало по сравнению с Rизл, то в этом случае Ra действительно равно Rизл.
Волновой диполь с питанием посередине. Эквивалентной схемой антенны является параллельный колебательный контур с резисторами Rизл и Rп в одной из ветвей. На резонансе входное сопротивление Ra достигает нескольких тысяч Ом. А для Rизл график рис. 3.1.3 даёт величину чуть более 200 Ом. То есть в данном случае Rизл и Rа отличаются почти на порядок.
Сильно укороченный диполь (несколько сотых l ) с настроечной катушкой и большой ёмкостной нагрузкой в виде сходящихся широких пластин (это коммерческая антенна ISOTRON производители которой вещают о её «чудесных» свойствах). Эквивалентная схема: последовательный LC-контур с последовательно включенным Rизл менее 1 Ома (см. рис 3.1.2) и малой ёмкостью. Параллельно этому контуру включен большой конструктивный конденсатор ёмкостной нагрузки пластин. Получающаяся сложная эквивалентная схема имеет два близких по частоте резонанса – последовательный и параллельный (очень похоже на эквивалентную схему кварцевого резонатора). На параллельном резонансе входное сопротивление сложного контура достигает нескольких десятков Ом. Которое её авторы ошибочно принимают за Rизл и на этом основании делают вывод о аномально высоком КПД антенны, и ссылаются на некую «таинственную» (для них, вероятно) физику этой антенны. На самом же деле несколько десятков Ом это входное сопротивление Ra. А сопротивление излучения как было 1 Ом, так и осталось. И КПД антенны, исходя из именно из 1 Ома сопротивления излучения, на самом деле оказывается очень низким.
Запомним: сопротивление излучения Rизл (определяющее КПД) это одно, а активная часть входного сопротивления антенны Ra – это совершенно другое. В некоторых частных случаях они могут совпадать но, как правило, Rизл меньше Ra.
Импеданс антенны что это
Что такое входное сопротивление антенны и что с ним делать?
Все знают, что входное сопротивление (импеданс) антенны редко когда бывает равный волновому сопротивлению фидерной линии. Здесь постараюсь показать, как согласовать нагрузку с фидером эффективными методами. Далее все примеры будут даны для коаксиального кабеля с волновым сопротивлением 50 ом, но принцип расчёта действителен и для других как несимметричных, так и симметричных линий передач.
Например, пересчитаем последовательное соединение Zs=40+j30 W в параллельное Zp.
Чаще используют эквивалент последовательного включения, но и эквивалент параллельного включения имеет такое же практическое значение. Zs называется импедансом последовательного включения, R – резистансом, X – реактансом, а Zp импедансом параллельного включения. В параллельном включении часто используется админтанс, но это проводимость, и наглядность при его использовании сильно уменьшается. Обычно термин „импеданс“ указывает, что речь идёт о последовательном соединении эквивалентного активного и реактивного сопротивлений. Однако, пересчёт последовательного соединения сопротивлений в параллельное соединение довольно часто нужен для компенсации реактивной составляющей. Только следует иметь в виду, что при последовательной и параллельной компенсации получаем разные активные составляющие сопротивления. Для пересчёта Zs в Zp и наоборот очень хорошо подходит программа NETCALK. Можно посчитать и здесь.
Rs = Xs = Zp» onclick=»skaiciuok(‘zszp’)»>
Rp = Xp = Zs» onclick=»skaiciuok(‘zpzs’)» />
SWR =
Возникает вопрос, как измерить параметры комплексной нагрузки. К сожалению, простой измеритель КСВ тут мало пригоден. Я для этого пользуюсь векторным анализатором VA1, который на дисплее показывает все нужные цифровые значения.
Компенсация реактивной составляющей
Реактивную составляющую сопротивления (импеданса) полезно компенсировать. Это уменьшает КСВ. Суть компенсации есть выравнивания фаз напряжения и тока. Менять угол фазы между напряжением и током можно подключая реактивный элемент последовательно или параллельно. Чтобы разница в углах фаз стала равна нулю, надо подключить такое реактивное сопротивление, какое присутствует в эквивалентной схеме нагрузки, только с противоположным знаком. Известно, что реактивное сопротивление ёмкости имеет отрицательный знак, индуктивности – положительный. В случае последовательной компенсации дополнительный эквивалентный реактивный элемент с противоположным знаком включается последовательно и получается последовательный контур, а в случае параллельной компенсации – параллельно, получается параллельный контур. В случае последовательного соединения сопротивлений они просто складываются
А в случае параллельного соединения
Как видим, согласовать можно, подключив индуктивность 1,35 m H параллельно нагрузке, а сигнал на нагрузку подавать через конденсатор 68,5pF.
Шлейфы
Шлейфами называются закороченые или открытые отрезки фидера. В идеальном фидере (фидере без потерь) сопротивление таких отрезков есть чисто реактивное, активной части нет. Такими отрезками фидера можно пользоваться при компенсации реактивной составляющей. Это удобно, если применяется параллельное компенсирование. Часто используется отрезки до четверти длины волны. Они могут быть и длиннее, но реальные фидеры имеют потери и, чем длиннее линия, тем больше. Замкнутый шлейф электрической длины до 1/4 l имеет на конце индуктивное реактивное сопротивление, разомкнутый – ёмкостное. Такими отрезками фидера можно имитировать как индуктивность, так и ёмкость. Но надо не забыть, что индуктивность или ёмкость шлейфа зависят от частоты. В приведённом примере мы видим, что надо подключить индуктивность 1,352 m H. С помощью MMANA получаем, что такую индуктивность на 14 MHz имеет закороченный на конце шлейф с кабеля RG58/U длиной 2,62м.
На том же примере попробуем то же согласовать с помощью MMANA другим способом, используя только шлейф.
Таким образом, если короткозамкнутый шлейф длиной 67,5см. подключить параллельно фидеру на расстоянии 2,57м. от нагрузки, то так же полностью согласуем фидер с нагрузкой. Или же, можно параллельно подключить разомкнутый шлейф длиной 2,84м. на расстоянии от нагрузки 3,82м. Возможны и другие варианты согласования. Но следует помнить, что потери в низкоомных (коаксиальных) фидерах при больших величинах КСВ значительны, так что желательно выбирать такой способ согласования, при котором получаются самые короткие отрезки фидера с большим КСВ и применять толстые качественные кабеля.
Как видите, практически можно согласовать все и по-разному. Только для этого нужен измерительный прибор, ну, и конечно, компьютер. Комплексное сопротивление антенны не измеришь ни тестером, ни измерителем КСВ. Без этих данных согласование превращается в трудоёмкое занятие и часто приводит к неудовлетворительным результатам. В этой статье я описал несколько методов согласования. Постарался описать суть вопроса как можно проще, но очень просто в таком вопросе не получается.
Эта статья мною написана несколько лет назад на литовском языке и сейчас переведена на русский. В настоящее время имеются другие версии программ APAK-EL и MMANA, примеры же приведены используя старые версии. APAK-EL имеет утилиту, с помощю которой тоже можно рассчитать компенсирующие реактивности. Однако сам принцип согласования от этого не меняется.
Надеюсь, что статья кое-кому будет полезна.
Как выбрать антенну
В чем разница между цифровой и радиоантенной? Что такое радиофобия? Что лучше: активный или пассивный прием? Зачем знать коэффициент усиления и импеданс? Как защитить наружную антенну?
На эти и другие вопросы ответим в нашей статье.
Типы антенн и волн
Антенны делят на 2 типа: для цифрового ТВ и радиоантенны. Они нужны для приема разных по форме сигналов. Радиоантенны уходят в прошлое, а цифровые практически незаменимы для хорошего телевидения.
Разные антенны принимают сигнал на разных частотах. Для телевизионной трансляции используются два вида волн: метровые и дециметровые. Метровые волны передаются и принимаются на частоте 30–300 Гц, а дециметровые — на частоте 300–3000 Гц. Цифровое телевидение транслируется через дециметровые волны.
В зависимости от типа принимаемых волн антенны делятся на:
Если вы собираетесь подключать только цифровое ТВ, то лучше приобрести дециметровую антенну, потому что длинные элементы всеволновой могут создавать дополнительные помехи.
Интересно знать: кто-то боится пауков, кто-то — насекомых, а кто-то боится антенн. У этого страха есть даже свое название: радиофобия. Это боязнь источников излучения. Она появилась во время «холодной войны», а позже этот термин часто звучал после аварии на Чернобыльской АЭС. В современном же мире радиофобией называют неоправданный страх перед базовыми станциями радиосвязи, антеннами, микроволновками и подобными устройствами. Эта фобия признана болезнью и лечится она тяжело.
Прием: активный vs пассивный
По способу приема сигнала антенны делятся на:
Выбирая между пассивными и активными устройствами учтите, как далеко находится ретранслятор и где расположен дом с телевизором, для которого вы приобретаете антенну. Если ретранслятор близко, то можно приобретать пассивную антенну и она справится с принятием сигнала. Если ретранслятор расположен далеко, то без усилителя при просмотре телика, вы рискуете потерять свои нервы. Также активную антенну лучше покупать, если дом находится в низине.
Помните, что если расположить активное устройство в зоне сильного ТВ сигнала, то велика вероятность появления помех и искажений. В случае с пассивной антенной такое тоже может происходить, если сигнал с ретранслятора слишком сильный. Но в этом случае проблема решается с помощью аттенюатора — устройства, которое приглушает получаемый сигнал до приемлемого уровня.
Характеристики: коэффициент усиления и импеданс
Коэффициент усиления показывает, какое усиление создает антенна. Измеряется этот параметр в дБ. Децибелы можно перевести в разы, чтобы лучше понимать, насколько усиливается сигнал. Так, коэффициент 3 дБ значит, что антенна усиливает сигнал в 2 раза, 15 дБ — усиление в 32 раза, а 30 дБ — в 1000 раз.
Но будьте осторожны при покупке: если на упаковке указан коэффициент усиления больше 45 дБ, скорее всего вас обманывают. Также не забывайте, что чрезмерное усиление тоже может навредить.
Импеданс — это входное сопротивление антенны. Оно должно быть согласовано с сопротивлением кабеля. Производители выпускают устройства, согласующиеся с волновым сопротивлением кабеля. Но если вдруг случилось, что эти параметры оказались не совместимы, придется применять согласующие устройства.
Установка: внутри или снаружи?
Комнатные (внутренние) антенны компактные, не требуют много места, специальных приспособлений и инструментов для установки. Бывают следующих типов:
Такого типа устройства просто ставятся на подоконник или рядом с телевизором. Подходят они лишь тем, у кого ретранслятор находится на небольшом расстоянии, не больше 20 км. В загородных домах такие устройства оказываются практически бесполезны. Также на качество сигнала влияет и количество преград между антенной и ретранслятором.
Наружные антенны лучше справляются с передачей сигнала. Места для их установки — балконы и крыши домов. Размер такого устройства зависит от количества преград на пути сигнала: чем их больше, тем выше должна быть антенна. В любом случае такие антенны ловят сигнал лучше, чем комнатные. Однако нужно учитывать, что для их монтажа нужно место и специальные крепления.
Лайфхак: чтобы наружная антенна улавливала сигнал хорошо, устанавливайте ее на максимально доступной высоте.
Защита от ветра и грозы
Сильный ветер может снести антенну, поэтому нужно позаботиться о том, чтобы у нее была защита от ветра. Нагрузка определяется скоростью ветра, а также показателем разрушения. Если дом невысокий и расположен в низине, то можно брать устройство с нагрузкой 20 м/с и показателем разрушения 40 м/с. Если дом высокий или находится на возвышенности, защита должна быть лучше.
Еще одна важная вещь — защита от молний. Разряд молнии создает магнитный импульс такой силы, что способен уничтожить электронную технику в радиусе нескольких километров от места удара. Поэтому важно не только заземление, но и дополнительная защита.
Все это очень опасно и может привести не только к поломке техники, но и к ситуациям, опасным для жизни людей.
Еще один важный элемент защиты от грозы — защита видеоцепей. Для это устанавливаются микроустройства, нейтрализующие электромагнитное влияние. Если молния попадает напрямую в антенну, то в этот момент через цепь проходит высокое напряжение. Защитный элемент — плавкая пластина или же колба с газом — разрушается, что приводит к размыканию цепи.
Выводы
Итак, чтобы выбрать антенну, нужно:
Теперь вы знаете все для того, чтобы выбрать надежную и бюджетную антенну. Покупайте и наслаждайтесь просмотром любимых передач!
Антенны и их настройка
Многие не понимают важности хорошего согласования тракта Радио-ЛинияПередачи-Антенна. Или вернее понимают важность, но совершенно не в состоянии реально оценить состояние дел. Чаще всего довольствуются показаниями встроенного КСВ метра близкими к единице. Самое неприятное при этом состоит в том, что в случае плохого положения дел, владелец радио повышает мощность до тех пор пока не станут отвечать. А сколько мощности наведется на телевизор соседа и уйдет на разогрев атмосферы — вопрос второй… Попытаемся разобраться.
На картинке схематично изображена схема из трех устройств и двух переходов между ними.
Секрет в том, что КСВ метр показывает то что он «видит» на разъёме трансивера. Остальные устройства и импедансы «прячутся за спины» впереди стоящих как одна матрёшка внутри другой. И на каждом переходе и устройстве сушествуют потери обусловленные затуханием в кабеле или линии передачи и плохим КСВ. Для начала определимся с единицами измерения. Для специалистов, например в области сельского хозяйства, термин диБи ближе к медицинскому, чем к понятию «во сколько раз». Поэтому для начала таблица потерь в Дб и расшифровка в процентах, в которых все хорошо понимают. А теперь таблица физических потерь в линиях и местах соединений в зависимости от диапазона расчитанные специальной программой моделирования линий передачи а также потери при плохом согласовании..
Глядя на эту картину легко согласиться с тем, что при неблагоприятном раскладе в антенну может вообще ничего не попасть :-).
А теперь ближе к радиотехнике. Если антенна имеет реальный импеданс равный сопротивлению линии передачи, будь то коаксиальный кабель, четвертьволновой трансформатор или настроенная линия, то на разъёме трансивера КСВ-метр измерит реальный КСВ антенно-фидерного устройства (АФУ). Если нет, то КСВ-метр покажет скорее согласование с кабелем, чем со всей системой. В связи с тем, что измерять КСВ непосредственно на антенне, уже поднятой над землей, очень неудобно, для связи с антенной часто применяют настроенные линии и четверть или полуволновые отрезки кабеля, также являющимися трансформаторами, которые точно «передают» на вход радио значение КСВ антенны (импеданс). Именно поэтому, если сопротивление антенны неизвестно, или её только настраивают, имеет смысл применять коаксиальный кабель определённой длины. Приведённые выше таблицы помогут выбрать из двух зол наименьшее — либо потери в фидере, либо потери КСВ :-). В любом случае то, что я описал выше лучше знать, чем оставаться в неведении… При выборе, установке или настройке той или иной антенны необходимо знать несколько основных их свойств, которые можно описать следующими понятиями.
Резонансная частота
Антенна излучает или принимает электромагнитные колебания с наибольшей эффективностью только тогда, когда частота возбуждающего колебания совпадает с резонансной частотой антенны. Из этого следует, что ее активный элемент, вибратор или рамка имеют такой физический размер, при котором наблюдается резонанс на нужной частоте.
Изменением линейных размеров активного элемента — излучателя, антенна настраивается в резонанс. Как правило (исходя из наилучшего соотношения эффективность/трудоёмкость и согласования с линией передачи), длина антенны равна половине или четверти длины волны на центральной рабочей частоте. Однако из-за емкостных и концевых эффектов электрическая длина антенны больше, чем ее физическая длина.
На резонансную частоту антенны влияют: близость расположения антенны над землей или какого-нибудь проводящего объекта. Если это антенна многоэлементная, то резонансная частота активного элемента может еще изменяться в ту или иную сторону в зависимости от расстояния активного элемента по отношению к рефлектору или директору. В справочниках по антеннам приводятся графики или формулы для нахождения коэффициента укорочения вибратора в свободном пространстве в зависимости от отношения длины волны к диаметру вибратора.
В действительности коэффициент укорочения определить точнее довольно сложно, т.к. существенное влияние оказывает высота подвеса антенны, окружающие предметы, проводимость почвы и т.п. В связи с этим, при изготовлении антенны, используют дополнительные элементы подстройки, позволяющие в небольших пределах изменять линейные размеры элементов. Одним словом «доводить» антенну до рабочего состояния лучше на месте её постоянного расположения. Обычно, если антенна проволочная типа диполя или Inverted V, укорачивают (или удлиняют) провод, подключенный к центральной жиле фидера. Так меньшими изменениями можно добиться большего эффекта. Таким образом настраивают антенну на рабочую частоту. Кроме этого, изменяя наклон лучей в Инвертед V, подстраивают по минимуму КСВ. Но и этого может оказаться недостаточно.
Импеданс или входное сопротивление (или сопротивление излучения)
Умное слово Импеданс обозначает комплексное (суммарное) сопротивление антенны и оно изменяется вдоль ее длины. Точка максимального тока и минимального напряжения соответствует наименьшему импедансу и называется точкой возбуждения. Импеданс в этой точке называется входным импедансом. Реактивная составляющая входного импеданса на резонансной частоте теоретически равна нулю. На частотах выше резонансной, импеданс носит индуктивный характер, а на частотах ниже резонансной — емкостной. На практике реактивная составляющая в большинстве случаев меняется от 0 до +/-100 Ом.
Импеданс антенны может зависеть и от других факторов, например, от близости расположения к поверхности Земли или каким-либо токопроводящим поверхностям. В идеальном случае симметричный полуволновой вибратор имеет сопротивление излучения 73 Ом, а четвертьволновый несимметричный вибратор (читай штырь) — 35 Ом. В реальности влияние Земли или проводящих поверхностей может изменить эти сопротивления от 50 до 100 Ом для полуволновой и от 20 до 50 Ом для четвертьволновой антенны.
Известно, что антенна Inverted V, из-за влияния земли и других объектов никогда не получается строго симметричной. И чаще всего сопротивление излучения в 50 Ом оказывается смещено от середины. (Следует одно плечо укоротить, а другое увеличить на эту же величину.) Так, например, три противовеса чуть короче четверти волны расположенные под углом в 120 градусов в горизонтальной и вертикальной плоскостях, превращают сопротивление GP в очень удобные для нас 50 Ом. И вообще сопротивление антенны чаще «подгоняют» под сопротивление линии передачи, чем наоборот, хотя известны и такие варианты. Этот параметр очень важен при конструировании узла питания антенны.
Не специалисты и не очень опытные радиолюбители, я, например, даже не догадываются, что активные элементы во многодиапазонных антеннах можно подключать физически не все! Например, очень распространенная конструкция, когда непосредственно к фидеру подключается только два, а то и один элемент, а остальные возбуждаются переизлучением. Даже жаргонное слово такое есть – «переопылением». Конечно это не лучше чем прямое возбуждение вибраторов, но очень экономно и сильно упрощает конструкцию и вес. Пример – многочисленные конструкции трехдиапазонных антенн типа Уда-Яги и Русские Яги в том числе — конструкции линейки XL222, XL335 и XL347.
Активное питание всех элементов – это классика, так сказать. Всё по науке, максимальная полоса пропускания без завалов, намного лучше диаграммы направленности и соотношения Front/Back. Но всё хорошее всегда дороже. И тяжелее 🙂 Поэтому за этим тянется более могучая мачта, такая же поворотка, площадь под растяжки и т.д. и т.п. Для нас, потребителей, стоимость – не последний аргумент.
Не следует забывать и о таком приёме как симметрирование. Оно необходимо для устранения «перекоса» при питании симметричной антенны несимметричной линией питания (в нашем случае коаксиальный кабель) и вносит значительные изменения в реактивную составляющую сопротивления приближая его к чисто активному.
На практике это или специальный трансформатор именуемый балун (баланс-унбаланс) или просто некоторое количество ферритовых колец, надетых на кабель вблизи точки подключения антенны.
Обратите внимание, что когда мы говорим «балун-трансформатор», то имеем в виду что в этом случает реально транфсормируется импеданс, а если это просто балун, то скорее это дроссель включенный в цепь оплетки кабеля.
Обычно даже для диапазона 80 метров хватает десятка колец (типоразмер по кабелю, проницаемость что-нибудь от 1000НН и меньше). На диапазонах выше и того меньше. Если кабель тонкий, и есть одно или несколько колец большого диаметра, можно поступить наоборот: намотать на колце(цах) несколько витков кабелем.
Важно: из всех витков что помещаются, половину надо намотать в другую сторону.
У меня на диполе 80-ти метрового диапазона 10 витков кабеля на кольце 1000НН, а на трехдиапазонном гексабиме(спайдере) 20 колец надетых на кабель. Их общее сопротивление (как индуктивность) на рабочей частоте должно быть более 1 килоОма. Это исключит протекание тока по оплетке кабеля, тем самым достигается симметричное возбуждение в точке подключения.
Самое практичное решение, в связи со своей простотой и эффективностью применяемое повсеместно – это 6-10 витков кабелем питания в катушку диаметром 20 сантиметров (витки следует закрепить или на каркасе или пластиковыми направляющими так, чтобы получилась индуктивность, а не бухта кабеля :-). На фото это можно хорошо рассмотреть. Этот прием отлично сработает и на вашем обычном диполе. Попробуйте, и вы сразу заметите разницу в уровне TVI.
Усиление
Если антенна излучает одинаковую мощность абсолютно во всех направлениях, она называется изотропной, т.е. диаграмма направленности – сфера, шар. Реально такая антенна не существует, поэтому её еще можно назвать виртуальной. У неё только один элемент – у неё нет усиления.
Понятие «усиление» может применить только к многоэлементным антеннам, оно образуется за счет переизлучения синфазных электромагнитных волн и сложения сигналов на активном элементе. Всем нам знакома ситуация с плохой связью мобильных телефонов в сельской местности? И как мы её решаем? Находим длинный токопроводящий предмет и подносим к нему «мобилу» как можно ближе. Качество связи возрастает. Конечно же, за счет переизлучения найденным нами токопроводящим предметом сигналов базовой станции. Те, кто постарше, может быть помнят аналогичную ситуацию с транзисторными приемниками 60-тых, слушая «Битлз». Та же ситуация. Особенно это было заметно на магнитных антеннах: из-за большого количества витков магнитной антенны суммируемое переизлучаемое напряжение было больше. Особый случай, иногда употребляют слово «усиление» в отношении одиночного штыря для определения насколько вертикальная составляющая излучения меньше излучения в горизонтальной плоскости. Априори это не есть усиление – это скорее коэффициент трансформации 🙂 Не путайте с фазированными или коллинеарными вертикалами: в них два или больше элементов, и у них есть реальный коэффициент усиления. Коэффициент усиления можно получить, сконцентрировав энергию излучения в одном направлении. Усиление образуется за счет сложения-вычитания радиоволн возбужденных в вибраторе и переизлучённых директором. На анимированном чертеже результирующая волна показана зелёным цветом.
Коэффициент направленного действия (КНД) является мерой увеличения потока мощности за счет сжатия диаграммы направленности в каком-то одном направлении. Антенна может иметь высокий КНД, но малый коэффициент усиления, если омические потери в ней велики и «съедают» полученное за счет переизлучения полезное напряжение. Коэффициент усиления рассчитывается сравнением напряжения на измеряемой антенне, с напряжением на эталонном полуволновом диполе, работающем на той же частоте, что и измеряемая антенна, и том же удалении от передатчика. Обычно коэффициент усиления выражается в децибелах по отношению к эталонному диполю — dB. Точнее это будет называться dBd. А вот если сравнивать с виртуальной, изотропной антенной, то тогда величина будет выражаться в dBi и само число будет несколько больше, потому что диполь всё-таки имеет какие-то направленные свойства – максимумы в направлении перпендикулярном полотну, если помните, а изотропная антенна нет. В знаменателе меньшее число, поэтому и отношение больше. Но вы на них не «введитесь», мы практики, смотрим всегда на dBd.
Диаграмма направленности
Антенны стараются конструировать таким образом, чтобы они имели максимум коэффициента усиления (принимали и передавали) в заранее выбранном направлении. Это свойство называется направленностью. На анимации приведен динамический чертёж сложения-вычитания возбуждаемой в вибраторе и переизлучённой рефлектором и директором радиоволн. Зелёным цветом обозначена результирующая радиоволна.
Характер излучения антенны в пространстве описывается диаграммой направленности. Кроме излучения в основном (главном) направлении, существуют побочные излучения — задние и боковые лепестки.
Диаграмму направленности передающей антенны можно построить, поворачивая ее и измеряя напряженность поля на фиксированном расстоянии и не изменяя частоту передачи. Эти измерения преобразованные в графическую форму дают представление в каком направлении антенна имеет максимальный коэффициент усиления, т.е. полярная диаграмма показывает направление, в котором концентрируется энергия, излучаемая антенной в горизонтальной и вертикальной плоскостях. В радиолюбительской практике это наиболее сложный вид измерений. Проводя измерения в ближней зоне необходимо учитывать ряд факторов влияющих на достоверность измерений. Любая антенна кроме основного лепестка имеет еще и ряд боковых лепестков, в диапазоне коротких волн мы не можем поднять антенну на большую высоту. При измерениях диаграммы направленности в диапазоне КВ боковой лепесток отразившись от земли или от ближнего здания может попасть на измерительный зонд, как в фазе так и в противофазе, что приведет к ошибке в измерениях.
Диаграмма направленности есть и у простых проволочных антенн. Например у диполя — восьмерка с глубокими провалами в диаграмме, что не есть хорошо. То же самое у популярной антенны Inverted V.
Если все хорошо помнят учебники по радиотехнике или Ротхаммеля, то инвертед ви (диполь) имеет восьмерочную диаграмму. Т.е. есть глубокие провалы. А если поменять положение полотен, поменять местами одну пару (сдвинуть полотна одной антенны например под углом 90 градусов), то диаграмма начинает приближаться к условно говоря толстой сардельке. Но самое главное — пропадают провалы, а диаграмма «округляется». У диполя достаточно изменить угол между половинками. А если сделать у волнового диполя этот угол равным 90°, то с некоторой натяжкой диаграмму излучения можно назвать круговой.
Полоса пропускания
Как правило, различают два класса антенн: узкополосные и широкополосные. Очень важно, чтобы в рабочем интервале частот поддерживалось хорошее согласование и заданное усиление. Полоса пропускания антенны не должна меняться при перестройке по частоте передатчика или приемника. К узкополосным антеннам относятся все простые резонансные антенны, а также направленные такие как «волновой канал” и «квадрат”. Меня, как заядлого телеграфиста, вполне устраивают антенны с полосой 100 кгц, но есть универсалы, любители SSB, поэтому производители антенн стараются обеспечить полосу пропускания равную ширине радиолюбительских участков. Например, антенна волновой канал” на радиолюбительский диапазон 14 МГц должна иметь полосу пропускания не менее 300 кГц (14000 — 14300 кГц) и к тому же хорошее согласование в этой полосе частот. Широкополосные антенны отличаются большим диапазоном изменения частот, в котором сохраняются рабочие свойства антенны, во много раз превосходящим в этом отношении резонансные системы. К ним относятся логопериодические и спиральные антенны.
Коэффициент полезного действия (КПД)
Часть подводимой к антенне мощности излучается в пространство, а другая часть в проводниках антенны превращается в тепло. Поэтому, антенну можно представить как эквивалентное нагрузочное сопротивление состоящее из двух параллельных составляющих: сопротивления излучения и сопротивления потерь. Эффективность антенны характеризуется ее КПД или отношением полезной (излучаемой) мощности к суммарной мощности, подводимой к антенне. Чем больше сопротивление излучения по отношению к сопротивлению потерь, тем больше КГIД антенны. Совершенно очевидно, что хорошие электрические контакты и небольшие омические сопротивления (толщина элементов) – это хорошо.
Как видите, этот параметр интересует нас в поледнюю очередь и не является главным. (Не дай бог вам подумать, что его плохому значению можно не огорчаться. Если КСВ более двух – это плохо). Если антенна настроена в резонанс и в ходе настройки мы скомпенсировали ее реактивность, и согласовали с фидером питания по сопротивлению, то КСВ будет равен единице. Только не используйте в качестве КСВ-метра встроенный в трансивер прибор. Он скорее индикатор. Плюс ко всему не всегда вылючается автотюнер. А мы ведь хотим знать правду. 🙂 И еще не забудьте про симметрирование (см. выше). Известно, что можно запитывать антенны коаксиальным кабелем любой длинны, на то он и несимметричный коаксиальный кабель, но в случае, когда по одному кабелю запитывается две антенны, лучше убедиться, что для обоих расчетных частот длинна кабеля кратна полуволне.
Например, для частоты 14,100 длина кабеля должна быть:
100 / 14,1 х 1; 2; 3; 4 и т.д. = 7,09м; 14,18м; 21,27м; 28,36м и т.д.
Для 21,100мгц соответственно:
100 / 21,1 х 1; 2; 3; 4 и т.д. = 4,74м; 9,48м; 14,22м; 18,96м; 23,70; 28,44 и т.д.
Обычно народ считает приоритетным минимальную длину фидера, а если просчитать немного большие длины, то мы увидим, что для диапазонов 15 и 20 метров первая «кратность» наступит при длине кабеля 14,18 и 14,22 метра, вторая, соответственно, 28,44 метра и 28,36 метра. Т.е. разница в 4-ре сантиметра, длинна разъема PL259. 🙂 Этой величиной пренебрегаем и имеем один фидер для двух антенн. Просчитать «кратную длину» фидера для диапазонов 80 и 40 метров для вас теперь не составит труда. Если мы не забыли про симметрирование, теперь мы можем настраивать антенну с уверенностью в том, что фидер не вносит никаких помех в чистоту эксперимента. Очень хороший вариант два двойных Инвертед Ви на двух мачтах: 40 и 80 + 20 и 15 метров. С таким вариантом (ну еще GP на 28 мгц на случай если будет прохождение) EN5R выезжает практически во все экспедиции.
Ну, вот теперь мы вооружены теоретическими знаниями о свойствах антенн и адекватно можем воспринимать советы по их исполнению и настройке. Конечно же всё теоретически, потому что вам на месте видней. Самый популярный среди антенн у радиолюбителей – диполь. Итак, исходные условия: мы можем поднять-опустить диполь в течении получаса и много раз в день. Тогда, скорее всего, нет смысла тратить время на предварительную настройку его на земле: это нетрудно будет выполнить для его работы на высоте подвеса. Из предварительных теоретических познаний вам понадобится только сведения о том, что рабочая частота диполя вблизи земли с подъемом «уйдет» вверх на 5-7 процентов. Например, для 20-ти метрового диапазона это 200-300 кгц.
Для настройки в резонанс с рабочей частотой обычного диполя можно использовать (кроме системы опустить-отрезать-поднять) или свип-генаратор (многие знают этот прибор под именем ГКЧ), или ГИР или, на худой конец, ГСС и осциллограф. Понятно, что если таких приборов нет, то придется настраивать полотно диполя в резонанс с помощью обыкновенного индикатора поля, или как его еще называют – зонд. Это обычный диполь с длинной полотен не менее чем в десять раз меньше чем расчетная длинна самой антенны, подключенный к выпрямительному мосту (лучше на германиевых диодах – будет реагировать на меньшее напряжение), нагруженному на обычный стрелочный прибор – микроамперметр с максимальным размером шкалы (чтобы лучше видно было). Лучше будет если зонд будет с контуром(фильтром) на рабочую частоту, чтобы не настроиться на мобилку соседа, и с усилителем. Например такой. Понятно, что подгоняем длину диполя по максимуму его излучения на рабочей частоте. Минимум КСВ в этом случае должен образоваться автоматом. Если нет, вспоминаем про симметрирование. Если не помогает и значение КСВ всё еще высокое – придется вспомнить о способах согласования. Хотя это бывает очень редко.
Следующая по сложности композиция – несколько диполей по одному кабелю. Ну, про кабель читайте выше, а про полотна следует знать следующее: для их минимального влияния одного на другой их следует растягивать под углом в 90 градусов. Если такой возможности нет, то после коррекции длинны одного, скорее всего, придется корректировать и другой. Несколько inv V. по одному кабелю – вариант описанный выше и отличается только тем, что «подровнять» КСВ к минимальному значению можно регулируя угол наклона полотен в вертикали (к мачте), что, конечно, проще, чем изготовление согласующего устройства и даже проще очередной подгонки динны полотна.
Итак, выясняется, что должна выполняться последовательность действий – сначала антенну настраивают в резонанс, а затем добиваются минимального КСВ в необходимой полосе частот. Всё это справедливо для простых дипольных антенн. И очень усложняется, в случае если антенна многоэлементная. В этом варианте без специальных приборов не обойтись, так как следует настроить не только систему с несколькими неизвестными, но еще и добиться вполне определённых направленных свойств.
Настройка включает в себя измерение основных параметров антенны и коррекцию их путем подгонки линейных размеров элементов антенны, расстояний между элементами, настройки согласующих и симметрирующих устройств. Совет: доверьтесь специалистам. Как говорил известный белорусский коротковолновик Владимир Приходько EW8AU, «настраивая антенну только по КСВ, можно из антенны сделать хорошую согласованную нагрузку для выходного каскада передатчика. Он хорошо будет работать в нормальном режиме, только антенна при этом может иметь плохую диаграмму направленности, низкий коэффициент полезного действия, часть мощности будет расходоваться на нагрев элементов антенны и антенно-фидерного тракта и самое неприятное, что может быть для радиолюбителя – это помехи телевидению».