Инфракрасный фонарик для чего
Инструменты
Инфракрасное освещение всегда было актуально для разработки различных охранных систем, так как оно позволяет видеть объекты даже в полной темноте. В последнее время проявление позитивного влияния ИК-света замечено и при выращивании тепличных растений. Стоимость профессионального оборудования достаточно высока, а комплектующие далеко не всегда соответствуют поставленным целям. Поэтому рассмотрим, как своими руками сделать инфракрасный фонарь.
Оглавление
Принцип работы инфракрасного фонаря
В первую очередь определим, что такое инфракрасный фонарь и для каких целей его используют. Подобные фонари предоставляют возможность осуществить дополнительную подсветку объектов для наблюдения с помощью лучей в инфракрасном диапазоне.
Подобное освещение будет оптимальным выбором, поскольку такие фонари обладают рядом преимуществ:
Комплектующие для сборки инфракрасного фонаря
Собрать инфракрасный фонарь своими руками не так уж и сложно. Для начала понадобятся простейшие инструменты:
Кроме этого, следует использовать изоленту и взять основу для фонаря. Сгодится и простой фонарь, который будет переоборудован в инфракрасный. Для создания такого прибора не требуется что-то специфическое, любые комплектующие возможно приобрести в первом же магазине электротехники.
Процесс сборки инфракрасного фонаря
Желательно добавить возможность отключения подачи питания на светодиоды. Несмотря на их малый расход энергии, попросту нецелесообразно подавать питание, когда в ИК-подсветке (особенно в светлое время) нет потребности.
Области применения инфракрасного фонаря
Как уже было написано несколько выше, основная среда применения инфракрасных фонарей и прожекторов пролегает в сфере безопасности. Фонари наиболее оптимально подходят для следующих целей:
Отдельно стоит выделить еще один занятный аспект использования инфракрасных фонарей, раз уж речь зашла о видеонаблюдении. В силу каких-либо причин не каждый человек пожелает, чтобы видеокамера могла его зафиксировать. В таком случае существует простой и крайне дешевый вариант, как можно обеспечить себе камуфляж и скрыть лицо от камер видеонаблюдения. Для этого достаточно создать простейшее устройство, работающее по принципу инфракрасного фонаря. По указанной методике сборки такого фонаря следует закрепить на головном уборе (подойдет обычная кепка) несколько инфракрасных светодиодов, подключаемых к девятивольтовой батарейке. Подобная система совершенно не будет выделяться своим внешним видом, однако для камер видеонаблюдения верхняя часть корпуса человека будет представлять собой яркое пятно, в котором нельзя будет различить лицо.
Злоумышленники могут не спешить радостно потирать руки, указанный способ действует лишь против бюджетных камер видеонаблюдения, более дорогие модели не столь чувствительны к влиянию на них ИК-излучения. Поэтому на хорошую систему видеонаблюдения подобные трюки не подействуют, лицо человека будет хорошо различимо даже при использовании нескольких рядов ИК-светодиодов.
Техника безопасности при работе с инфракрасным фонарем
Важно помнить, что использование указанной технологии может нанести вред здоровью человека при неправильном выполнении требований по технике безопасности.
Инфракрасные фонари
Инфракрасные фонари бывают необходимыми во многих ситуациях, они используются в неосвещенных помещениях, в охранной деятельности, при охоте, а также в других не менее важных сферах гражданского использования. Одной из самых популярных и востребованных марок ИК фонарей является Pulsar. Большой ассортимент инфракрасных фонарей для охоты вы сможете найти на странице https://opticstore.com.ua/catalog/infrakrasnye-fonari.
Какие бывают и зачем нужны инфракрасные фонари?
Инфракрасные осветительные приборы необходимы во многих сферах и отраслях нашей жизни. Охотники уже давно оценили их эффективность и незаменимость, ведь инфракрасный свет невидим людям и многим животным. С таким фонарем очень удобно перемещаться по местности, при этом не пугая животных и не привлекая к себе внимания. ИК фонарь имеет большое количество преимуществ перед обычным, используя специальные приспособления (например, очки ночного видения), можно хорошо видеть в темноте, такой осветительный прибор позволяет лучше отследить движение животного.
Инфракрасные фонари бывают двух основных видов:
Принцип работы первых основан на когерентном излучении, увидеть его можно только при помощи специальных очков. Такие приборы необходимы если требуется тщательно скрыть местонахождение человека или направление цели. Светодиодные фонари более просты в эксплуатации, они излучают свет, который улавливается специальным приемником. Именно последний вариант и пользуется большим спросом, их стоимость доступна, эксплуатация проста и не требует специальных навыков.
Человек всегда хотел большего, включая видение в темноте, как хищники. В этой статье я расскажу о сути приборов ночного видения, разных их видах и как собрать свой собственный всего за 50$ (данная оценка включает среднюю стоимость компонентов).
Чтобы получить возможность видеть в темноте, человечество стало использовать искусственные способы обеспечения дополнительных возможностей для своих органов зрения.
В древности, этими средствами выступали разнообразные костры, факелы и другие способы подсветки окружающей среды.
Далее появились ещё более совершенные средства, в числе которых выступают шахтерские ацетиленовые лампы, которые обладая малым размером, обеспечивали шахтёров хорошим (на тот момент) освещением, в течение продолжительного времени, с минимальными затратами рабочего вещества (карбида кальция).
Венцом среди средств освещения окружающего пространства, с использованием сжигания вещества, можно назвать водородные лампы, так называемый «друммондов свет».
Друммо́ндов свет (также свет рампы, англ. limelight) — тип сценического освещения, использовавшийся в театрах в 1860—1870 годах. Интенсивное свечение получалось с помощью кислородно-водородного пламени, направленного непосредственно на цилиндр из оксида кальция (негашёной извести, англ. lime), которая может нагреваться до 2572 °C (белого каления) без расплавления. Свет производится сочетанием теплового излучения и калильного свечения. Друммондов свет давно заменён электрическим освещением, однако, например, в английском языке название прочно укоренилось: к примеру, существует выражение «to be in the limelight», означающее «быть на виду; в центре внимания».
Устройство друммондовой лампы
Эффект яркого свечения раскалённой детали из оксида кальция (негашёной извести) впервые был открыт в 1820-х годах британским учёным Голдсуорси Гёрни (англ. Goldsworthy Gurney), на базе его работ с кислородно-водородными горелками, авторство которых обычно приписывают Роберту Хэйру (англ. Robert Hare (chemist))).
В 1825 году шотландский инженер Томас Друммонд увидел демонстрацию световых эффектов у Майкла Фарадея и понял, что тщательное изучение этих эффектов может быть полезным. Друммонд построил работающий прототип устройства в 1826 году, тогда и появилось понятие «друммондов свет».
Впервые такое освещение было использовано в Королевском театре Ковент-Гарден в Лондоне в 1837 году и с удовольствием использовалось театрами в 1860-х и 1870-х годах. Друммондов свет в основном использовался для освещения сольных исполнителей на манер прожектора: сцена была затемнена, и свет падал только на исполнителя. Дуговые электрические лампы очень быстро вытеснили друммондов свет в конце XIX века.
Но, как сказали бы сейчас, «это всё было не то». Человек стремился видеть в ночное время своими глазами и (желательно) не привлекая к себе повышенного ненужного внимания.
И в настоящее время, с развитием современной электронной элементной базы, а также миниатюрных интегральных микросхем, стало возможным создавать миниатюрные средства ночного видения, которые являются достаточно компактными для переноски их одним человеком и обеспечения его устойчивым видением окружающей обстановки в условиях ночного времени суток или момент нахождения в неосвещенных местах.
Особую популярность данные устройства получили у военных. К слову сказать, это и неудивительно, так как именно военная сфера, в течение всего периода эволюции человечества, обеспечивала ускоренное течение научно-технического прогресса.
Приборы ночного видения и их принцип работы
Прибор ночного видения (ПНВ) — класс оптико-электронных приборов, обеспечивающих оператора изображением местности (объекта, цели и т. п.) в условиях недостаточной освещённости. Приборы данного вида нашли широкое применение при ночных боевых действиях, для ведения скрытного наблюдения (разведки) в тёмное время суток и в тёмных помещениях, вождения машин без использования демаскирующего света фар и т. п. Несмотря на ряд преимуществ, которые они дают своему обладателю, отмечается, что подавляющее большинство имеющихся моделей не способно предоставить возможность периферийного зрения, что обуславливает необходимость специальных тренировок для эффективного их применения.
Существует несколько подходов к построению ПНВ:
Усиление очень слабого видимого света, не различаемого глазом человека. Идея реализуется в электронно-оптических преобразователях (ЭОП) и, в некоторой степени, в современных видеокамерах для систем охраны с т. н. ночным режимом.
Наблюдение в ближнем инфракрасном диапазоне (длина волны 0,7—1,5 мкм). Чувствительностью в этом диапазоне обладают ЭОП и видеокамеры без инфракрасного фильтра. В ближнем ИК нет естественных источников, кроме солнца, поэтому в полной темноте такие ПНВ ничего не увидят без подсветки. Для таких ПНВ существуют специальные источники подсветки (инфракрасные прожекторы, например на базе инфракрасных светодиодов), не видимые невооружённым глазом.
Наблюдение в среднем (тепловом) инфракрасном диапазоне (длина волны 7—15 мкм). В этом диапазоне излучают все твёрдые тела, нагретые до температур нашего мира: от −50 °C и выше. Такие ПНВ называются тепловизорами. Они показывают картинку разницы температур и не требуют никакой подсветки.
Возможно наблюдение в ультрафиолетовом спектре. Однако отсутствие естественных источников ультрафиолета (кроме солнца) и практическое отсутствие не видимых невооружённым глазом искусственных источников ультрафиолетовой подсветки сдерживает распространение ультрафиолетовых ПНВ.
Технически есть несколько популярных способов построения ПНВ:
Конструкция простейшего ЭОП
Конструкция ЭОП с микроканальной пластиной
Изображение собаки, сделанное тепловизором
Прибор ночного видения состоит из следующих основных частей:
Для чего обычно используются приборы ночного видения
Современные приборы ночного видения выпускаются в нескольких основных форм-факторах.
Наиболее простым является ночной монокуляр — удерживаемая в руке оператора зрительная труба, обычно невысокой кратности.
Бинокли ночного видения имеют два ЭОП и выводят увеличенное стереоскопическое изображение.
Очки ночного видения — закрепляются на голове, имеют широкое поле зрения и не увеличивают изображение (либо имеют переменное увеличение от 1× до более высокого значения, что позволяет использовать их как бинокль). Очки могут иметь два ЭОП либо быть псевдобинокулярными, когда изображение с одного ЭОП поступает на оба окуляра. Монокуляр кратности 1×, закреплённый на оголовье, может использоваться как дешёвая альтернатива очкам.
Альтернативным вариантом прицеливания через ПНВ является использование закреплённого на оружии инфракрасного лазерного целеуказателя, невидимый глазу луч которого наблюдается через очки ночного видения.
Приборы ночного видения также устанавливаются на боевую технику, где они интегрированы в прицельные комплексы.
Какой прибор ночного видения мы будем собирать?
Исходя из всего вышесказанного, теперь, когда мы знаем, как устроен прибор ночного видения и какие типологии их существуют, мы можем задуматься и о построении своего собственного.
Как показывает анализ информации, наиболее доступным способом, — является удаление инфракрасного фильтра, с имеющийся в наличии видеокамеры бытового назначения.
Если двигаться по данному направлению, существует три наиболее перспективных на наш взгляд способа создания данного устройства:
Дотошный читатель наверняка захочет спросить, а почему именно смартфон? Почему нельзя взять видеокамеру?
Дело в том, что, так как мы проектируем систему, которая будет предназначена для использования в качестве «ночных глаз» человека, — следует предусмотреть возможность ношения данной системы прямо на голове, как обычные очки.
В связи с множеством попыток различных компаний каким-либо образом «оседлать» виртуальную реальность (особенно с появлением в своё время очков виртуальной реальности Google Cardboard), имеет смысл рассматривать создание устройств, которые базируются на современных смартфонах и вставляются в специальные крепежные системы, одевающиеся на голову. Кроме того, само использование в качестве центрального устройства смартфона, — позволяет расширять и видоизменять функционал данной системы ночного видения в довольно широких пределах и с достаточной гибкостью.
Сборка прибора ночного видения
Сначала сделаем оговорку: рассматриваемый ниже алгоритм не является детальным «пошаговым, обязательным к исполнению». Это скорее основные принципы, которыми следует руководствоваться, при разработке своего устройства.
В качестве объектива и одновременно средства для ночного видения, мы можем использовать практически любой тип бытовой веб-камеры, доступной на рынке.
При выборе веб-камеры следует руководствоваться тем, что чем выше её разрешение, тем более четким будет изображение в ваших виртуальных очках.
Однако это не говорит о том, что веб-камеры низкого разрешения «не имеют права на жизнь» в качестве прибора ночного видения. Их вполне можно использовать в качестве выносной камеры, которая будет снимать видео или осуществлять фотографирование в ночном режиме. Однако использование её в качестве головного средства зрения, будет сопряжена с трудностями, так как изображение будет весьма нечетким.
Модификация камеры
Мы приведем усредненную характеристику разборки – так как у разных камер процедура может отличаться, одна суть остается той же:
Присоединение камеры к смартфону
Для того чтобы смартфон увидел камеру — необходимо использовать OTG-кабель.
Внешний вид OTG-кабеля
Что такое USB OTG: Поддержка технологии On-The-Go появилась в USB в 2006 году и позволила связывать два устройства без дополнительного USB-хоста. При USB-соединении одно из устройств выступает в роли хоста, а другое – как периферия. При этом в различных условиях одно и то же устройство может быть либо хостом, либо периферией.
С USB OTG устройства стали обладать двойным назначением и возможностью определять, кем им быть. Если речь идет о смартфонах, то это возможность подключения внешних устройств без посредничества.
У современных смартфонов (не у всех еще) такая функция может быть встроена, тогда ты можешь без проблем подключать флеш-накопители, фотоаппараты, клавиатуру, принтер и так далее. Фактически ты можешь подключить любое устройство, не требующее установки дополнительных драйверов.
Если смартфон не поддерживает OTG, то можно воспользоваться переходником. С одной стороны – Micro USB / USB-C, с другой – USB-A (обычный порт).
Изготовление подсветки для прибора ночного видения
Как мы писали выше, прибор ночного видения того типа, который мы собираем, — потребует обязательной инфракрасной подсветки для своей работы. То есть, необходимо будет подсвечивать ту область, в которую смотрит камера.
Для подсветки, нам потребуется инфракрасный фонарь. Достаточно большое количество данных устройств можно приобрести на AliExpress.
Указанное выше по ссылке устройство имеет потребление в районе 0,25 Ампер.
Для его питания потребуется:
Программа для смартфона
Чтобы смартфон «увидел» камеру – неоходимо скачать и установить любую программу, для камер. Например, USB Camera (для Android).
Устройство для крепления смартфона
Для крепления смартфона, в целях ношения его на голове, следует взять один из множества видов шлемов виртуальной реальности, подобрав под размер вашего смартфона.
Следующим шагом следует тем или иным способом закрепить на выбранном шлеме — указанные выше элементы питания подсветки, саму подсветку, а также камеру (в этом деле очень хорошо может помочь 3D печать, для создания компактного крепежа, максимально совместимого с конкретным шлемом).
Вот и всё! Ваш личный прибор ночного видения – готов!
В видео ниже – показан пример сборки похожего устройства. Однако рекомендуется использовать рассмотренный выше контроллер заряда/разряда (не такой, как в видео) – так как он сочетает в одном компактном корпусе – как крепеж элемента 18650, так и средства его контроля заряда/разряда.
Пример похожего устройства:
Сфера применения подобных устройств достаточно широка — от ночной фотосъемки в полной темноте, до контроля сна спящего ребенка (если дополнить систему – любыми программными средствами анализа изображения).
What’s next?
Дальнейшее развитие микроэлектроники и программного обеспечения привело к тому, что в приборы ночного видения стали интегрировать различные интеллектуальные подсистемы, которые позволяют осуществлять не только непосредственное наблюдение в ночное время или в условиях плохого освещения, но и интеллектуальные средства оценки окружающей среды и прогнозирования. Данные новые качества позволяют, в частности, современным прицелам, — не только осуществлять наблюдение в условиях плохой видимости, но и предугадывать дальнейшее поведение цели и рекомендовать точку стрельбы – для гарантированного её поражения:
P.S. ну а мы, так как не солдаты – будем использовать сей девайс для всяких «няшных» задач ^_^
Как то: отслеживание спящих детей, ночная фото/видеосъемка, опять же котики…
P.P.S. самый дорогой компонент устройства, рассмотренного в данной статье— веб-камера с разрешением 1920×1080 (желательно использовать камеру максимального разрешения, которое вы можете себе позволить по цене)
Напишите в комментариях, для чего бы использовали данное устройство Вы?
Облачные VPS серверы от Маклауд быстрые и безопасные.
Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!
Инфракрасный фонарь для ПНВ. Свет, которого не видно
Правильно выбрать инфракрасную подсветку для прибора ночного видения – задача, которая можем вызвать немало хлопот. Длина волны, тип светящего элемента и дальность работы – раскладываем по полочкам все нюансы в этой статье.
В отличие от тепловизора, приборы ночного видения работают иным образом. Здесь нельзя увидеть тепловую сигнатуру цели, а только её реальный вид в определенной цветовой палитре с усилением яркости. Качество усиления яркости зависит от ядра прибора с ночным видением.
На сегодняшний день существует два типа приборов НВ:
Мы не зря поставили на первое место именно цифровые устройства, так как они с каждым годом становятся всё популярнее и постепенно загоняют аналоговую картинку в тень. Аналоговые приборы имеют свои плюсы и минусы. Из негатива – это определенное время наработки, так называемый «запас хода», после которого изображения начинает постепенно затухать и болезненная реакция на попадание яркого света на сетку электронно-оптического преобразователя. Из позитива – ночное изображение в аналоговых устройствах ярче, чем в цифровых приборах.
Инфракрасный фонарь – зачем он нужен?
Цифровые приборы ночного видения показывают отличный результат при полной луне или снежном покрове, но как только луна заходит за облака, изображения сразу же начинает «шуметь» и ёрничать. Улучшить ночную картинку поможет инфракрасный фонарь. Излучение этого фонаря не видно человеческим глазом, но зато сполна просматривается через окуляр прибора ночного видения.
Прибор ночного видения с ИК фонарем
Таким образом, практически каждый современный цифровой ПНВ в обязательном порядке комплектуется инфракрасным фонарем. Они бывают встроенными (как в прицелах Yukon Sightline N455 или монокулярах Yukon Signal N340 RT), или съемными (ATN X-SIGHT, Pulsar Digisight). Они также могут работать автономно и в связке с прибором.
Человеческий глаз видит световое излучение в спектре от фиолетового, до красного цвета. Три самых ярких цвета для человека: зелёный, желтый и красный (цвета светофора подбирались как раз по этому принципу). Все видимые цвета лежат в диапазоне от 380 до 760 Нм, всё что выше – глаз человека не распознает или увидите тускло. Чем выше этот показатель – тем более невидимым будет излучение. Но и здесь есть свои нюансы.
Стандартный тип установки ИК фонаря на прибор
Современные цифровые приборы ночного видения показывают более яркую картинку при инфракрасном излучении меньшей длины. Так, фонарь на 850 волне будет показывать на 20-30% ярче, чем аналогичное устройство на 970.
Инфракрасный фонарь спугнет животное?
Регулировка широты пучка света
На сегодня существует два типа инфракрасных фонарей:
Первый тип проигрывает в видимости, но выигрывает в качестве свечения. Такие фонари работают более стабильно и не так сильно расходуют заряд.
Что мы рекомендуем?
Зачастую стоковые фонари в приборах ночного видения обладают не самым сильным набором характеристик. Однако никто не запрещает попробовать самостоятельно сменить этот элемент. Среди ассортимента магазина ОПТИКС-ПРО особое место занимают фонари марки ULTRA 850. Эти осветители отечественного производства обладают улучшенными характеристиками, их не бояться животные и они очень легко монтируются практически на любой тип прибора ночного видения.
Стоковый фонарь и Ultra 850
Работает фонарь ULTRA 850 от одного аккумулятора типа 18650, заряда которого хватает на более чем 6 часов беспрерывного свечения. Этот осветитель работает в трёх разных режимах яркости свечения, а выходная линза имеет корректировку широты пучка света. Фонари ULTRA 850 прошли множественные тестирования на различных приборах. Особенно хорошо они себе проявили в работе с прицелом день/ночь ATN X-SIGHT 4K PRO 5-20X.
Подпишитесь на наши страницы в социальных сетях, чтобы всегда быть в курсе последних новинок рынка!
Как сделать инфракрасный фонарь своими руками? Обзор готовых моделей
Немного истории. Эволюция развития фонаря начинается ещё с Античных времён. Вначале для освещения в тёмном помещении использовали факелы. Через некоторое время стали использовать свечи, керосиновую лампу, стержневые лампы, лампы накаливания. С появлением сухих батарей стали разрабатывать ручные фонари разной конструкции. Все эти осветители излучали видимый свет.
Постоянное совершенствование технологий в электронной технике привело к возможности освещать предметы (объекты) инфракрасным светом, невидимым человеческим глазом, но видимый сенсором прибора ночного видения. Это позволяет скрывать от окружающих наблюдение за нужным объектом в темноте или при слабом естественном освещении. На рис. 1 показан диапазон спектра частот, излучаемых солнцем.
Для улучшения видимости этих объектов сенсором ПНВ применяется инфракрасный фонарь или прожектор. Внешний вид инфракрасного фонарика мало чем отличается от обычного. Разница будет в источнике света осветителя. Так, в обычном используются светодиоды, излучающие видимый свет, длина волны (λ) которого находится в диапазоне от 0,4 до 0,7 микрометра, а в ИК-осветителе λ = 0,7–1 мкм.
Использование ИК-фонарей в видеонаблюдении
Надо понимать, что электронно-оптический преобразователь (ЭОП) фотокамеры устроен куда проще нашего зрения. Он реагирует только на силу отражённого света от объекта. Если нет света, то нет и изображения. Для получения изображения необходим определённый уровень освещённости наблюдаемого объекта. Современные ЭОП начинают видеть при освещённости от 0,0005 люкса. На рис. 2 изображены снимки с инфракрасной подсветкой и без неё (для сравнения).
Рис. 2. Снимки без подсветки и с ИК-подсветкой
В дневное время источником света является солнце, свет которого содержит весь известный спектр частот. В тёмное время для видеонаблюдения требуется освещение видимым или невидимым светом. С видимой подсветкой всё понятно, для скрытной применяются инфракрасные фонари. ИК-подсветка используется в основном совместно с приборами ночного видения. К ним относятся:
На рис. 3 изображён монокуляр ночного видения в разрезе с указанием составляющих деталей.
Основные характеристики
Рассмотрим технические характеристики ИК-подсветки:
На рис. 4 показаны основные детали камеры видеонаблюдения с внутренней инфракрасной подсветкой.
Для надёжной работы задан начальный диапазон частоты инфракрасного спектра, то есть после частоты красного цвета. Чёткой границы нет. Выбрано 4 диапазона:
В качестве источника излучения применяются ИК-светодиоды и лазерные инфракрасные диоды. Светодиоды излучают спектр частот, то есть создают мягкое излучение, а лазерные дают более жёсткое излучение. Выпускаются лазерные излучатели с внутренней оптической системой. Такие излучатели формируют узкий луч.
Рефлектор предназначен для образования светового пучка. Геометрический размер его представляет собой равнобедренный треугольник с вершиной у источника света. Угол раскрыва определяется на уровне 0,5 по оси. Средний угол раскрыва составляет 40–80 градусов (угловых). Важно понимать, что с увеличением угла расхождения лучей расстояние подсветки уменьшается, а мощность прожектора в основном определяет не дальность, а площадь освещения. На рис. 5 показаны внешние подсветки разного вида.
В дорогих моделях есть подстройка светового пятна. Рефлектор может быть как металлическим, так и пластмассовым и соответствовать требуемой жаропрочности. Инфракрасные диоды при работе нагреваются. Чем больше их мощность, тем больше нагрев. Поверхность рефлектора бывает текстурированная или гладкая. Спереди от рефлектора находится линза, которая защищает рефлектор и инфракрасный диод от окружающей среды. Изготавливается из стекла или пластмассы.
Мощность излучателей используется от милливатт до десятков ватт.
В пункте «режим» указаны возможные варианты работы. Например, в подсветке типа «хамелеон» возможны варианты:
К корпусу предъявляются жёсткие требования. Он должен быть лёгким, ударопрочным, водонепроницаемым. Выдерживать отдачу ружья. В основном выполняется из анодированного высококачественного алюминиевого сплава, так как он работает в жёстких погодных условиях.
Преимущества и недостатки
К достоинствам можно отнести:
К недостаткам относится изображение, которое получается чёрно-белым на цветной камере. Гладкие объекты (поверхность озёр или рек, стеклянные окна, кафель или глянцевая краска, снег, яркость заднего плана) отражают ИК-лучи и создают засвеченные пятна на изображении. Затрудняют видеоизображение также пыль, дождь, туман, летающие насекомые.
Другие сферы применения
Кроме фонариков и прожекторов, инфракрасный свет используют для видеокамер при недостаточной освещённости помещений; кассы, офиса, банка, склада, кладовой. Как дежурное освещение при видеонаблюдении, где не нужно привлекать внимание к объекту. Когда свет не должен мешать людям в кинотеатрах, театрах, ночных клубах, на автостоянках и дорогах (не ослепляет водителей).
Инфракрасный свет широко применяется в таких областях:
Как сделать своими руками
При желании можно самостоятельно сделать ИК-подсветку своими руками, да и всю систему видеоконтроля. Для этого надо знать основы электротехники, принцип работы электронной аппаратуры и навыки в практической работе. Самый простой способ — переделать готовый светодиодный фонарик, излучающий видимый свет, и заменить излучатель инфракрасным светодиодом или лазерным диодом. При этом помнить, что лазерный диод лучше использовать для открытых мест (при необходимости осветить дальнее расстояние), а обычный светодиод — в замкнутых пространствах. На рис. 6 показан комплект видеонаблюдения для дачи или офиса.
Для построения системы видеоконтроля определите, какой участок нужно контролировать, где расположить видеокамеры и при необходимости внешнюю ИК-подсветку (составить примерный план). Например: видеокамеры — количество, тип. Видеорегистратор — 1 шт. Блок питания, подсветка — количество, модель. Нужный комплект подобрать в магазине. Затем смонтировать комплект на объекте.
Не рекомендуется направлять ИК-свет в глаза — может обжечь роговицу глаза. Если освещённости не хватает, можно добавить несколько инфракрасных диодов.
Для снижения нагрева излучателя и потребляемой мощности используется импульсное напряжение с регулируемой скважностью, то есть диоды моргают. Соотношение времени включенного и выключенного состояния светодиодов происходит на высокой частоте и незаметно для глаз. На рис. 7 показаны формы импульсного регулируемого напряжения для светодиодов.
В таком блоке питания применяется, как один из вариантов, схема на интегральном таймере ne555 с силовым транзистором.
На рис. 8 изображена принципиальная схема питания импульсным напряжением для подсветки.
Схему можно собрать на макетной плате. Её можно купить вместе с необходимыми радиодеталями в любом радиомагазине.
Интегральная микросхема NE555 — это управляемый генератор импульсов. Для её функционирования необходимо с помощью внешних деталей установить режим работы. Показанная схема рассчитана на работу от источника +12 вольт. Элементы С1, R1, R2 задают частотный режим подсветки. С выхода 3 напряжение подаётся через ограничительный R3 на силовой ключ T1 (полевой транзистор). Он снимает нагрузку с вывода 3. По мощности подсветки выбирают тип VT1. Мощность резисторов 0,125 ватта. Переменный R1 изменяет частоту выходного импульсного напряжения. При импульсном питании диоды отдают большую световую мощность, чем при питании постоянным напряжением. Свечение диодов можно проверить камерой сотового телефона или фотоаппарата. На экране будет светлое пятно.
Важно. При выборе надо учитывать, что ик-подсветка и ПНВ должны работать в одном частотном диапазоне.
Обзор популярных моделей
В выпуске фонарей и светильников инфракрасного спектра участвуют следующие торговые бренды:
Они выпускают разные подсветки, на любой цвет и вкус.
Модель AZISHN CCTV LEDS, перечислим его характеристики:
Прожектор KKMOON DC 12V, 12W, его характеристики:
BEWARD – LIR6 — компактный источник света, его характеристики приведены ниже:
Это устройство подойдёт для СКУД и домофонии. IP-вызывная панель Hikvision DS-KV8102-IM с инфракрасной подсветкой, камерой и микрофоном:
Мощный ИК-прожектор от известного бренда BOSCH EX26LED с 60 высокоэффективными светодиодами:
Тактический фонарь с 4Xик-светодиодами NItecore CI7, фонарь-хамелеон Nitecore CI6 с ИК-режимом:
Марка Pulsar — это бренд корпорации Yukon Advanced Optics, выпускает спектр оборудования: от ИК-фонарей и монокуляров до цифровых прицелов и тепловизоров для смартфона. На рис. 8 изображён внешний вид ИК-осветителя Pulsar.
Рис. 16. Внешний вид ИК-осветителя Pulsar
Например, осветитель pulsar al 915t. Излучение в невидимом диапазоне. По стандарту IEC 60825-2007 соответствует первому классу. Тип диода — Laser 915 нм. Работает с цифровыми ПНВ. Крепится на планке Weaver. Отсутствует эффект муара. Фокусировка — световое пятно от узконаправленного до рассеянного. Регулировка мощности и угла расхождения пучка. Пятно в форме вытянутого эллипса. Использование ИК-осветителя позволяет увидеть невидимое.