Инжекторный двигатель что это
Принцип работы инжекторного двигателя
Что такое инжекторный двигатель? Это разновидность двигателя с инжекторной системой подачи топлива. Данный вид двигателя обеспечивает экономичный расход топлива и уменьшение выбросов продуктов его сгорания в атмосферный воздух.
Основное его отличие от других типов состоит в особенностях работы системы подачи топлива. А именно, впрыскивание топлива осуществляется принудительно при помощи специального элемента для его дозирования (форсунки) в цилиндр или систему трубок и заслонок (впускной коллектор).
Инжекторные двигатели начали устанавливать с 1930х годов, но популярность они смогли завоевать только в конце 90хх годов.
Типы инжекторных систем
Различают несколько типов данных систем в зависимости от способа подачи топлива, а именно:
Выделяют также двух- и четырехтактные системы. Такт – это все процессы, которые происходят в цилиндре за время одного ходя поршня.
Принцип работы инжекторного двигателя основан на сборе и оценке информации о состоянии двигателя и его работы с помощью специальных датчиков:
Как работает инжектор
Каждый двигатель оснащен поршнями и цилиндрами. В них происходит преобразование тепловой энергии в механическую.
Для осуществления этого процесса в инжекторном двигателе существует несколько этапов:
1 этап – такт впуска. Поршень в начале этого этапа находится в верхней мертвой точке. С началом работы двигателя стартер проворачивает посредством маховиков коленчатый вал. Датчик коленвала посылает блоку управления инжектора информацию о положении конкретного цилиндра. Датчик фаз анализирует такты. Блок управления получив данную информацию, открывает в нужном цилиндре форсунку на строго определенное время.
А вы знаете, что у некоторых двигателей имеется несколько клапанов впуска? Они увеличивают мощность двигателя, а соответственно и скоростные характеристики автомобиля;
2 этап – сжатие топливовоздушной смеси. Когда поршень достигает нижней мертвой точки, он начинает снова подниматься. Что приводит к сжатию смеси топлива и газов до размеров камеры сгорания. Клапаны в этот момент закрыты;
Клапаны впуска и выпуска закрыты для того, чтобы сила давления на поршень была достаточной для проворачивания коленчатого вала. После взрыва блок управления регулирует момент зажигания для последующего цилиндра. А так же нормирует газовый состав топливовоздушной смеси. Это позволяет предельно эффективно использовать топливо и его сгорание;
4 этап – такт выпуска. Предыдущий этап приводит к открытию выпускного клапана. Поршень начинает двигаться вверх, выбрасывая газы, образовавшиеся в результате взрыва и сгорания.
Важно! Прогрев двигателя не оказывает влияния на показания датчика массового расхода воздуха и датчика взрыва, так как блок управления работает по специальным запрограммированным таблицам.
Чем отличается инжекторный двигатель от карбюраторного
В работе и устройстве инжектора и карбюратора можно выделить следующие отличия:
Применение инжекторных двигателей
Изначально инжекторные двигатели устанавливали в авиации. Особую популярность получили во времена Второй Мировой войны. Авиамоторы тогда создавали именно с этой системой. Затем инжекторы стали устанавливать в автомобили. В процессе ввода в широкие круги, инжекторы стали вытеснять карбюраторные варианты двигателей. И с 2005 года автомобильные двигателя оснащены именно инжекторной системой подачи топлива.
Достоинства и недостатки инжекторного двигателя
К его плюсам можно отнести:
К недостаткам относят:
Заключение
Не смотря на перечисленные недостатки, инжекторные двигатели представляют собой современный вариант топливной системы, обеспечивающий большую мощность и экономичное расходование топлива. А также более безопасную комплектацию двигателей в плане влияния на экологию.
Как работает инжекторный двигатель?
Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.
Прежде чем начать разговор об этом чуде техники, развеем некоторые мифы. Инжекторный двигатель работает по тому же принципу, что и дизельный, за исключением системы зажигания, однако, это не придает ему гораздо большей мощности, чем карбюраторному. Прибавка составит максимум 10%.
Центром всей системы является ЭБУ (электронный блок управления). Он носит много названий, «мозги», «компьютер» и так далее. По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего. Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.
Датчики инжекторного двигателя
Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.
Датчик массового расхода воздуха (ДМРВ)
Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.
Датчик абсолютного давлении и температуры двигателя (ДАД)
Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.
Датчик положения коленчатого вала (ДПКВ)
Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.
Датчик фаз (ДФ)
Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.
Датчик детонации
Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.
Датчик положения дроссельной заслонки (ДПДЗ)
По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.
Датчик температуры охлаждающей жидкости (ДТОЖ)
Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.
Датчик кислорода
Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.
Исполнительные элементы
Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.
Топливный насос
Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.
Форсунка
После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.
Дроссельная заслонка
Все мы когда-то видели карбюратор, заглядывали в него сверху. Так вот в нем имелись заслонки, которые перекрывали воздух. Здесь принцип тот же. Пожалуй, и рассказать больше нечего.
Регулятор холостого хода (РХХ)
Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.
Модуль зажигания
В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.
Принцип работы инжекторного двигателя
Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.
Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания
После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.
Прогрев двигателя и датчик температуры двигателя
Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.
Что лучше, инжекторный или карбюраторный двигатель?
Этот вопрос достаточно спорный, у каждой точки зрения есть много противников и приверженцев как среди простых водителей, так и среди специалистов, которые полностью понимают принцип работы инжекторного двигателя. Итак, карбюраторный двигатель отличает простота и прозрачность работы. То есть, если механик отрегулировал холостые обороты, то они такими и остались.
Что касается инжекторного двигателя, то ту все дело сводится к своевременному обслуживанию, а так же к качеству применяемых деталей.
Что такое инжекторный двигатель
Инжекторный двигатель (двигатель с инжектором, англ. electronic fuel injection engine) — современный тип ДВС, оснащенный инжекторной системой топливного впрыска, которая пришла на смену моторам с карбюратором. Сегодня новые бензиновые автомобили оснащаются исключительно инжектором, так как данное решение способно обеспечить силовой установке необходимое соответствие строгим нормам касательно экономичности и токсичности отработавших газов.
Карбюратор проигрывает инжектору по общим показателям эффективности, так как инжекторные двигатели стабильнее работают, автомобиль получает улучшенную динамику разгона. Инжекторный агрегат потребляет меньше топлива, содержание вредных веществ в выхлопе снижается, так как топливо сгорает более полноценно. Управление системой полностью автоматизировано (в отличие от карбюратора), то есть не требует ручной подстройки во время эксплуатации. Что касается дизельных двигателей, система впрыска дизтоплива на таких моторах имеет ряд конструктивных отличий, хотя общий принцип работы инжектора на дизеле остается похожим на бензиновые аналоги.
Чем отличается инжекторный двигатель от карбюраторного
Инжектор представляет собой принципиально другой способ подачи топлива в камеру сгорания по сравнению с карбюратором. Другими словами, в инжекторном моторе наибольшие конструктивные изменения коснулись системы питания и топливоподачи. В карбюраторном двигателе бензин смешивается с определенной частью воздуха во внешнем устройстве (карбюраторе).
После образовавшаяся топливно-воздушная смесь всасывается в цилиндры двигателя. Инжекторный двигатель имеет специальные инжекторные форсунки, которые дозировано впрыскивают горючее под давлением, после чего происходит смешение порции топлива с воздухом. Если сравнивать эффективность подачи горючего инжектором и карбюратором, мотор с инжектором оказывается до 15% мощнее. Также отмечается существенная экономия топлива на разных режимах работы двигателя.
Разновидности инжекторов
Инжекторные системы топливного впрыска делятся на несколько подвидов:
Такое деление напрямую зависит от общего количества установленных форсунок, а также от места впрыска самого топлива. Одноточечная система является самой ранней разработкой и предполагает наличие только одной инжекторной форсунки во впускном коллекторе. Другими словами, форсунка одна для всех цилиндров двигателя. Данное решение имеет ряд недостатков, что и привело к ее быстрому исчезновению.
Также каждая из систем дополнительно делится по типу впрыска. Что касается распределенного впрыска, такое решение может быть одновременным (все форсунки впрыскивают горючее). Также впрыск может быть попарно-параллельным (форсунки открываются парами), когда одна форсунка начинает открытие перед впрыском топлива, а другая перед тактом выпуска. Также отмечается фазированный впрыск (форсунка открывается перед тактом впуска) и прямой впрыск непосредственно в цилиндр.
Как устроен и работает инжектор
Устройство инжектора предполагает в основе наличие следующих базовых компонентов системы:
Для лучшего понимания принципа работы инжектора давайте поверхностно рассмотрим, как компоненты системы взаимодействуют между собой на примере распространенного типа инжекторных двигателей с многоточечным распределенным впрыском. После поворота ключа зажигания питание подается на электрический бензонасос, который находится в топливном баке и погружен в горючее. Указанный насос подает топливо в топливную магистраль под определенным давлением. Инжекторные форсунки установлены в топливной рампе (рейке), через которую реализован подвод топлива к форсункам, а также осуществлена фиксация самих форсунок на впускном коллекторе. В рампе также установлен регулятор давления топлива, который служит для поддержания разницы между давлением воздуха во впуске и в самих инжекторах.
Благодаря установленным датчикам электронной системы управления двигателем (ЭСУД) контроллер ЭБУ получает информацию, на основании которой удается синхронизировать впрыск в соответствии с режимами и условиями работы ДВС. Блок управления получает показания от датчика температуры двигателя, кислородного датчика, датчика детонации, датчика положения распердвала (датчика Холла) и датчика коленвала. Так удается скорректировать количество подаваемого топлива в каждый цилиндр, гибко и динамично изменять состав топливно-воздушной смеси и т.д.
Датчики фиксируют различные изменения в работе двигателя и меняющиеся условия, постоянно передавая сигналы на блок управления. Данная схема позволяет затрачивать строго определенное количество топлива во время запуска, прогрева, работы на холостых оборотах, спокойной или динамичной езды и т.д.
Указанная точность во время дозирования горючего возможна только благодаря работе управляющей электроники автомобиля в виде совокупности датчиков и ЭБУ двигателем. В блоке управления прошиты микропрограммы, а сама работа основывается на так называемых топливных картах. Датчики непрерывно подают информацию о режиме работы двигателя, о скорости движения ТС и т.д. Контроллер получает и обрабатывает данные, после чего определяет необходимое количество впрысков топлива и их продолжительность по времени. Любые изменения в работе ДВС считываются датчиками и заставляют ЭБУ динамично вносить коррективы в работу инжектора.
Выдающаяся экологичность инжектора стала возможной благодаря наличию кислородного датчика (лямбда зонда). Указанный датчик находится в выпускной системе и «оценивает» состояние выхлопных газов. На основании его показаний ЭБУ обедняет или обогащает топливно-воздушную смесь (изменяет соотношение количества воздуха и топлива в составе рабочей смеси) во время работы двигателя в большинстве стандартных режимов.
Преимущества и недостатки инжекторных двигателей
Если сравнивать инжектор с карбюратором, тогда первое решение удобнее эксплуатировать, но определенно дороже и сложнее ремонтировать. Простой карбюратор представляет собой механическое устройство, которое требует периодического обслуживания. Двигатели с карбюратором сильнее коксуются, могут с трудом запускаться в холодное время года, перерасходуют горючее, также мотор может нестабильно работать в сильную жару и т.д.
Карбюратор имеет меньший ресурс по сравнению с инжектором. По этой причине карбюратор нужно постоянно чистить, промывать и подстраивать. Неоспоримым плюсом карбюратора является его простота и неприхотливость к качеству топлива, благодаря чему научиться ремонтировать и настраивать карбюратор своими руками может практический каждый автовладелец у себя в гараже.
В случае с инжекторными ДВС главными плюсами являются: экономичность, легкий запуск двигателя и стабильность работы мотора в любых условиях, а также низкий расход топлива. Мотор с инжектором лучше реагирует на педаль газа, свечи зажигания не так часто и сильно заливает бензином, двигатель меньше подвержен коксованию. При этом определить неисправность инжектора в случае неисправности бывает намного сложнее.
Частые неисправности инжектора
Так как инжектор является сложной многокомпонентной системой, со временем отдельные элементы могут выходить из строя. Главной задачей инжектора является максимально возможная эффективность сгорания топлива, которая достигается благодаря поддержанию строго определенного состава рабочей смеси топлива и воздуха.
Для предотвращения неисправностей инжектора форсунки необходимо периодически очищать. Дело в том, что наличие фракций и примесей в бензине постепенно загрязняет инжекторы, что и снижает их производительность, а также нарушает качество распыла топлива. Почистить форсунки можно двумя способами: со снятием или прямо на машине. Процедура очистки инжекторных форсунок на автомобиле предполагает то, что через инжекторы пропускается специальная промывочная жидкость для чистки инжектора. Способ заключается в том, что от топливной рампы отсоединяется топливная магистраль, после чего вместо бензонасоса в систему начинает качать промывочную жидкость специальный компрессор вместо бензонасоса.
Еще одним вариантом чистки инжектора является очистка со снятием форсунок в ультразвуковой ванне или на специальном промывочном стенде. Что касается ультразвука, форсунки помещаются в специальный аппарат или ванну, где волновые колебания «разбивают» отложения. Промывка форсунок со снятием на стенде представляет собой процедуру, когда имитируется работа форсунок в двигателе, при этом вместо бензина через них пропускается промывочная жидкость. Отметим, что каждый из этих способов имеет свои преимущества и недостатки, о которых можно прочитать в нашей отдельной статье о промывке форсунок.
Советы и рекомендации
Эксплуатация автомобиля на топливе в условиях СНГ обязывает владельца осуществлять замену топливного фильтра каждые 10-15 тыс. км. пробега и периодическую чистку инжекторных форсунок. Данную процедуру желательно производить каждые 30-35 тыс. км. пробега. Дополнительно рекомендуется приобретать топливо только на крупных АЗС с хорошей репутацией.
Не следует ждать того момента, когда проявятся симптомы загрязнения инжектора в виде проблем с работой двигателя. Лучше промывать форсунки заранее. Например, перед каждым вторым плановым ТО. Обратите внимание, в случае использования способа очистки промывочными жидкостями оптимально осуществлять данную процедуру до замены моторного масла.
Напоследок добавим, что снижение производительности форсунок может быть вызвано неполадками бензонасоса. В этом случае необходимо замерить давление в топливной рампе. Если показатели окажутся ниже рекомендуемых, тогда потребуется снять насос для диагностики. Также следует учитывать, что установка более производительных форсунок во время тюнинга и форсирования двигателя может потребовать обязательной замены топливного насоса.
Настройка холостых оборотов на карбюраторном и инжекторном моторе. Особенности регулировки ХХ карбюратора, регулировка холостого хода на инжекторе.
При резком нажатии на педаль газа двигатель дергается, появились рывки и провалы, авто не набирает скорость: основные причины неисправности и диагностика.
Что дает впрыск воды в двигатель, принцип работы, основные преимущества и недостатки. Как самостоятельно сделать впрыск воды в мотор, доступные способы.
Установка карбюратора вместо инжектора, особенности процесса замены системы впрыска. Замена карбюратора на инжекторный электронный впрыск. Рекомендации.
Тюнинг топливной системы атмосферного и турбо двигателя. Производительность и энергопотребление бензонасоса, выбор топливных форсунок, регуляторы давления.