Ионизированное излучение что это
Ионизирующее излучение, последствия для здоровья и защитные меры
Основные факты
Что такое ионизирующее излучение?
Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.
Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.
Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).
Источники излучения
Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.
Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения. Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.
На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.
Воздействие ионизирующего излучения
Воздействие излучения может быть внутренним или внешним и может происходить различными путями.
Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.
Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.
Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.
Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).
Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.
Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.
Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.
Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.
На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население. Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.
Последствия ионизирующего излучения для здоровья
Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).
Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.
Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.
Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).
Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.
Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).
Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.
Деятельность ВОЗ
ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.
В соответствии с основной функцией, касающейся «установления норм и стандартов, содействия в их соблюдении и соответствующего контроля» ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.
«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».
Настоящий материал – обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.
Опасность РАДИАЦИИ реальная и мнимая
«Один из первых открытых природных радиоактивных элементов был назван «радием»
— в переводе с латинского-испускающий лучи, излучающий».
Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.
Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.
Ионизирующее излучение
Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.
Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.
Источники радиации
Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.
Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.
Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).
ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА
Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.
Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.
Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.
Заряженные частицы.
Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).
Электрические взаимодействия.
За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.
Физико-химические изменения.
И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как «свободные радикалы».
Химические изменения.
В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.
Биологические эффекты.
Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.
ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ
Представляют собой число распадов в единицу времени.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.
Представляют собой дозу полученную организмом за единицу времени.
Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).
Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.
ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ
Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании «Кварта-Рад»
Ионизирующее излучение
Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.
Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей, представляющих собой одну из составляющих естественного ионизирующего излучения.
Результат действия ионизирующего излучения называют облучением. Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения.
Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.
В быту и в некоторых отраслях науки, техники и медицины ионизирующее излучение принято называть просто радиацией. Строго говоря, это не совсем верно, т.к. сам по себе термин «радиация» охватывает все виды излучения, включая самые длинные радиоволны и потоки частиц любой сколь угодно малой энергии, а также волны деформации в веществе, например, звуковые волны. Тем не менее, употребление слова «радиация» применительно к ионизирующему излучению настолько вошло в привычку, что в науке прижились термины, сформированные на его основе, такие, как, например, радиология (наука о медицинских применениях ионизирующего излучения), радиационная защита (наука о методах снижения доз облучения до приемлемых уровней), естественный радиационный фон, и т.п.
Виды ионизирующих излучений
Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно. При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти. Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.
Чаще всего ионизирующие излучения делят на:
Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:
Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага полностью защищают организм от внешних потоков альфа-частиц.
*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.
Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.
*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.
По подсчетам научного комитета по действию атомной радиации ООН, средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет приблизительно 350 мкЗв, то есть немного больше средней дозы облучения через радиационный фон, который образуется космическими лучами.
Для улучшенной консервативной оценки эквивалентной дозы, в целях индивидуальной дозиметрии профессионально облучаемых работников и мониторинга рабочих мест вводят модельную, т.н. рабочую величину, именуемую амбиентным эквивалентом дозы.
Что такое ионизирующее излучение?
Виды, источники и влияние ионизирующего излучения на человека
Ионизирующее излучение – это электромагнитное излучение (рентгеновское, гамма) и излучение частиц (альфа, бета), сопровождающиеся выделением энергии. Ионизирующее излучение появляется только при наличии источника излучения (изотопа радиоактивного элемента или рентгеновской трубки). Оно известно в медицине в форме рентгеновского излучения. Используется при диагностике заболеваний сердца и легких, а также при диагностике травм.
Виды ионизирующего излучения
Ионизирующее излучение можно разделить на два вида:
Электромагнитное ионизирующее излучение используется при проведении радиологических исследований (в просторечии рентгеновских исследований), таких как рентген или КТ (компьютерная томография). С его помощью врач может:
Ионизирующее излучение частиц можно разделить на:
По типу частиц ионизирующее излучение может быть альфа, бета, нейтронное и протонное.
Источники ионизирующего излучения
Источниками ионизирующих излучений являются искусственные и естественные явления, объекты:
Рассматриваемое излучение всегда сопровождало человека. Каждый день население поглощает радиацию, которая приходит из космоса и исходит от камней и почвы. Источником естественного ионизирующего излучения, среди прочего, является космическое пространство.
Космические лучи, которые состоят из ядер высокоэнергетических атомов (в основном протонов), были открыты в начале 20 века. Человечество и все живое на планете частично защищены от космических лучей атмосферой Земли, которая поглощает энергию падающих частиц. В результате столкновений молекул с ядрами газа (азота, кислорода) в атмосферу испускается вторичное излучение.
Чем толще слой атмосферы, через который проходит излучение, тем слабее оно становится. Следовательно, люди получают гораздо меньшую дозу радиации на уровне моря, чем люди, поднимающиеся в высокие горы.
Важно знать! Люди, летающие по трансконтинентальным маршрутам, получат дозу радиации, примерно равную дозе, связанной с рентгеновским снимком легких.
Источником ионизирующего излучения также являются поверхность и внутренние части Земли, которые содержат богатые ресурсы радиоактивных элементов. В частности, во второй половине XX века в разных регионах планеты началась добыча урановых руд.
Помимо естественных источников ионизирующего излучения, существуют также искусственные источники. Техногенное ионизирующее излучение возникает в результате изменений, происходящих внутри атомных ядер. Эти изменения сопровождаются изменением энергии ядер, а часто и числа нуклонов. Этому особенно подвержены изотопы элементов, содержащие несоответствующее количество нейтронов.
Источники искусственного ионизирующего излучения:
Для справки! Искусственные радиоактивные изотопы, являющиеся источником радиации, широко используются в медицине, промышленности и науке.
Влияние ионизирующего излучения на организм человека
Эффект зависит в основном от нескольких факторов:
Действие ионизирующего излучения на организм человека становится причиной специфических биологических эффектов. В силу основных механизмов образования их можно разделить на детерминированные и стохастические.
Детерминированные эффекты являются следствием поглощения человеческим организмом такой большой дозы ионизирующего излучения, что оно вызывает разрушение или необратимое повреждение определенного количества клеток. Проявление детерминированных эффектов – лучевая болезнь.
Стохастические (случайные) эффекты возникают в результате повреждения генетического материала отдельной клетки и проявляются в виде рака или наследственных заболеваний. Доза, вызывающая эти заболевания, может быть сколь угодно низкой, и их начало определяется случайностью.
Если ионизирующее излучение поражает живую ткань, оно может вызвать:
Естественные и искусственные источники ионизирующего излучения могут привести к прямой или косвенной ионизации материальной среды. Чтобы снизить вред, ученные разрабатывают и внедряют разные способы защиты от ионизирующего излучения – от защитных костюмов, правил использования специальной техники, до восстановления озонового слоя. Последний естественным образом защищает планету от космических лучей.