Искусственный интеллект что это простыми словами
Искусственный интеллект, машинное обучение и глубокое обучение: в чём разница
Компьютер запросто диагностирует рак, управляет автомобилем и умеет обучаться. Почему же машины пока не захватили власть над человечеством?
Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.
Что такое искусственный интеллект
Искусственный интеллект (англ. artificial intelligence) — это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.
Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.
В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.
Хотите знать, может ли машина мыслить и чувствовать как человек? Приходите на курс «Философия искусственного интеллекта». Здесь вы получите новые знания об ИИ, обсудите актуальные вопросы с преподавателями и однокурсниками и прокачаете навык публичных выступлений.
Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.
Каким бывает искусственный интеллект
Исследователи обычно делят ИИ на три группы:
Слабый ИИ (Weak, или Narrow AI)
Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:
Это несколько примеров, в реальности применений намного больше.
Сильный ИИ (Strong, или General AI)
Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human.
Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.
Суперинтеллект (Superintelligence)
Мы не только не создали суперинтеллект, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.
Машинное обучение: как учится ИИ
Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.
Чтобы машина могла принимать решения, необходимы три вещи:
В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.
Есть байесовские алгоритмы. В их основе применение теоремы Байеса и теории вероятности. Эти алгоритмы используют для работы с текстовыми документами — например, для спам-фильтрации. Программе нужно дать наборы данных по категориям «спам» и «не спам». Дальше алгоритм будет самостоятельно оценивать вероятность того, что слова «Бесплатные туры для пенсионеров» и «Закажи маме тур, пожалуйста» относятся к той или иной категории.
А ещё есть нейронные сети, о них вы наверняка слышали. Они относятся к методам глубокого машинного обучения, и об этом чуть подробнее.
Deep learning: глубокое обучение для разных целей
Глубокое обучение — подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные (размеченные) данные.
Самый популярный, но не единственный метод глубокого обучения, — искусственные нейронные сети (ИНС). Они больше всего похожи на то, как устроен человеческий мозг.
Нейронные сети — это набор связанных единиц (нейронов) и нейронных связей (синапсов). Каждое соединение передаёт сигнал от одного нейрона к другому, как в мозге человека. Обычно нейроны и синапсы организованы в слои, чтобы обрабатывать информацию. Первый слой нейросети — это вход, который получает данные. Последний — выход, результат работы. Например, несколько категорий, к одной из которых мы просим отнести то, что было отправлено на вход. И между ними — скрытые слои, которые выполняют преобразование.
По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»
А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.
Сегодня нейронные сети могут применяться практически для любой задачи. Например, при диагностике рака, прогнозировании продаж, идентификации лиц в системах безопасности, машинных переводах, обработке фотографий и музыки.
Чтобы обучить нейросеть, нужны гигантские наборы тщательно отобранных данных. Например, для распознавания сортов огурцов нужно обработать 1,5 млн разных фотографий. Не получится просто слить рандомные картинки или текст из интернета — их нужно подготовить: привести к одному формату и удалить то, что точно не подходит (например, мы классифицируем пиццу, а в наборе данных у нас фото грузовика). На разметку данных — подготовку и систематизацию — уходят тысячи человеко-часов.
Чтобы создать новую нейросеть, требуется задать алгоритм, прогнать через него все данные, протестировать и неоднократно оптимизировать. Это сложно и долго. Поэтому иногда проще воспользоваться более простыми алгоритмами — например, регрессией.
Подведём итоги
Искусственный интеллект — одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.
Машинное обучение — одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.
А глубокое обучение — лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя подспудно, с помощью данных.
Если чувствуете, что вас привлекает проектирование машинного интеллекта, продолжить образование можно на нашем курсе. Вы научитесь писать алгоритмы, собирать и сортировать данные и получите престижную профессию Data Scientist — специалист по машинному обучению.
Первичное, обычно регулярное, обследование тех, у кого нет клинических симптомов. Проводится с целью ранней диагностики заболевания.
До покупки Google, Waymo cars была самостоятельной компанией по производству самопилотируемых автомобилей.
Умный облачный помощник для устройств Apple.
Виртуальный голосовой помощник, созданный компанией «Яндекс».
Одна из основных теорем элементарной теории вероятностей. Позволяет переставить причину и следствие: по известному факту события вычислить вероятность того, что оно было вызвано этой причиной.
Что такое искусственный интеллект. Объясняем простыми словами
Искусственный интеллект — это способность компьютерных систем выполнять творческие и интеллектуальные функции, которые традиционно считаются человеческими.
Искусственный интеллект объединяет в себе несколько научных направлений: нейронные сети, машинное обучение, обработку естественного языка, когнитивные вычисления, компьютерное зрение. Однако чёткого представления, что входит в понятие искусственного интеллекта, нет, так как нет критериев разумности и соответствия человеческому интеллекту.
Пример употребления на «Секрете»
«Со временем искусственный интеллект может настолько превзойти своих создателей, что окажется за пределами нашего контроля. Для этого должны сойтись несколько предпосылок: искусственный интеллект должен обладать некими базовыми ценностями, большим количеством ресурсов и возможностью улучшать свой исходный код».
(Основатель и CEO Appodeal Павел Голубев — о будущем ИИ.)
Нюансы
Многочисленные самообучающиеся программы широко применяются в разных областях человеческой жизни, но от человеческого интеллекта они отличаются своей узкой специализированностью: голосовой помощник не обыграет вас в шахматы, а гугл-переводчик не диагностирует вам рак.
Ранее критерием искусственного интеллекта считался тест Тьюринга (когда человек, общаясь с машиной, не может понять, машина это или человек).
Сейчас некоторые исследователи связывают создание искусственного интеллекта с появлением так называемого сильного искусственного интеллекта (Artificial general intelligence), такой интеллектуальной системы, которая может выполнять как минимум любые интеллектуальные задачи, доступные для человека.
Критика
Джуда Перл, учёный, внёсший большой вклад в разработку интеллектуальных систем, указывает на их фундаментальный недостаток: неспособность отслеживать причинно-следственные связи. Так, обучаясь на большом количестве данных, программа сможет понять, что малярия и лихорадка связаны, но не сможет установить, что малярия вызывает лихорадку, а не наоборот. В математике нет средств для описания причинно-следственных связей.
Как работает искусственный интеллект
В последнее время мы все больше слышим об искусственном интеллекте. Он применяется практически везде: от сферы высоких технологий и сложных математических вычислений до медицины, автомобилестроения и даже при работе смартфонов. Технологии, лежащие в основе работы ИИ в современном представлении, мы используем каждый день и порой даже можем не задумываться об этом. Для обучения искусственного интеллекта используется машинное и глубинное обучение, а произведения, созданные нейросетями, продают за миллионы долларов. Но что такое искусственный интеллект? Как он работает? И представляет ли опасность?
BB скоро будет везде!
Что такое искусственный интеллект
Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.
Порой алгоритмы эти весьма и весьма продвинутые, но они остаются теми «рамками», в пределах которых работает ИИ. Никаких «вольностей» и уж тем более признаков сознания у машин нет. Это просто очень производительные программы. Но они «лучшие в своем деле». К тому же системы ИИ продолжают совершенствоваться. Да и устроены они совсем небанально. Даже если откинуть тот факт, что современный ИИ далек от совершенства, он имеет с нами очень много общего.
Как работает искусственный интеллект
В первую очередь ИИ может выполнять свои задачи (о которых чуть позже) и приобретать новые навыки благодаря глубокому машинному обучению. Этот термин мы тоже часто слышим и употребляем. Но что он означает? В отличие от «классических» методов, когда всю необходимую информацию загружают в систему заранее, алгоритмы машинного обучения заставляют систему развиваться самостоятельно, изучая доступную информацию. Которую, к тому же, машина в некоторых случаях тоже может искать самостоятельно.
Например, чтобы создать программу для обнаружения мошенничества, алгоритм машинного обучения работает со списком банковских транзакций и с их конечным результатом (законным или незаконным). Модель машинного обучения рассматривает примеры и разрабатывает статистическую зависимость между законными и мошенническими транзакциями. После этого, когда вы предоставляете алгоритму данные новой банковской транзакции, он классифицирует ее на основе шаблонов, которые он подчерпнул из примеров заранее.
Как правило, чем больше данных вы предоставляете, тем более точным становится алгоритм машинного обучения при выполнении своих задач. Машинное обучение особенно полезно при решении задач, где правила не определены заранее и не могут быть интерпретированы в двоичной системе. Возвращаясь к нашему примеру с банковскими операциями: по-факту на выходе у нас двоичная система исчисления: 0 — законная операция, 1 — незаконная. Но для того, чтобы прийти к такому выводу системе требуется проанализировать целую кучу параметров и если вносить их вручную, то на это уйдет не один год. Да и предсказать все варианты все-равно не выйдет. А система, работающая на основе глубокого машинного обучения, сумеет распознать что-то, даже если в точности такого случая ей раньше не встречалось.
Глубокое обучение и нейронные сети
В то время, как классические алгоритмы машинного обучения решают многие проблемы, в которых присутствует масса информации в виде баз данных, они плохо справляются с, так сказать, «визуальными и аудиальными» данными вроде изображений, видео, звуковых файлов и так далее.
Например, создание модели прогнозирования рака молочной железы с использованием классических подходов машинного обучения потребует усилий десятков экспертов в области медицины, программистов и математиков,- заявляет исследователь в сфере ИИ Джереми Говард. Ученые должны были бы сделать много более мелких алгоритмов для того, чтобы машинное обучение справлялось бы с потоком информации. Отдельная подсистема для изучения рентгеновских снимков, отдельная — для МРТ, другая — для интерпретации анализов крови, и так далее. Для каждого вида анализа нам нужна была бы своя система. Затем все они объединялись бы в одну большую систему… Это очень трудный и ресурсозатратный процесс.
Алгоритмы глубокого обучения решают ту же проблему, используя глубокие нейронные сети, тип архитектуры программного обеспечения, вдохновленный человеческим мозгом (хотя нейронные сети отличаются от биологических нейронов, принцип действия у них почти такой же). Компьютерные нейронные сети — это связи «электронных нейронов», которые способны обрабатывать и классифицировать информацию. Они располагаются как-бы «слоями» и каждый «слой» отвечает за что-то свое, в итоге формируя общую картину. Например, когда вы тренируете нейронную сеть на изображениях различных объектов, она находит способы извлечения объектов из этих изображений. Каждый слой нейронной сети обнаруживает определенные особенности: форму объектов, цвета, вид объектов и так далее.
Поверхностные слои нейронных сетей обнаруживают общие особенности. Более глубокие слои уже выявляют фактические объекты. На рисунке схема простой нейросети. Зелёным цветом обозначены входные нейроны (поступаюзая информация), голубым — скрытые нейроны (анализ данных), жёлтым — выходной нейрон (решение)
Нейронные сети — это искусственный человеческий мозг?
Несмотря на похожее строение машинной и человеческой нейросети, признаками нашей центральной нервной системы они не обладают. Компьютерные нейронные сети по-сути все те же вспомогательные программы. Просто вышло так, что самой высокоорганизованной системой для проведения вычислений оказался наш мозг. Вы ведь наверняка слышали выражение «наш мозг — это компьютер»? Ученые просто «повторили» некоторые аспекты его строения в «цифровом виде». Это позволило лишь ускорить вычисления, но не наделить машины сознанием.
Нейронные сети существуют с 1950-х годов (по крайней мере, в виде концепий). Но до недавнего времени они не получали особого развития, потому что их создание требовало огромных объемов данных и вычислительных мощностей. В последние несколько лет все это стало доступным, поэтому нейросети и вышли на передний план, получив свое развитие. Важно понимать, что для их полноценного появления не хватало технологий. Как их не хватает и сейчас для того, чтобы вывести технологию на новый уровень.
Для чего используется глубокое обучение и нейросети
Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.
Пределы глубокого обучения и нейросетей
Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.
Будущее глубокого обучения, нейросетей и ИИ
Ясное дело, что работа над глубоким обучением и нейронными сетями еще далека от завершения. Различные усилия прилагаются для улучшения алгоритмов глубокого обучения. Глубокое обучение — это передовой метод в создании искусственного интеллекта. Он становится все более популярным в последние несколько лет, благодаря обилию данных и увеличению вычислительной мощности. Это основная технология, лежащая в основе многих приложений, которые мы используем каждый день.
Схемы и пути решения задач скоро заменят очень многое.
Но родится ли когда-нибудь на базе этой технологии сознание? Настоящая искусственная жизнь? Кто-то из ученых считает, что в тот момент, когда количество связей между компонентами искусственных нейросетей приблизиться к тому же показателю, что имеется в человеческом мозге между нашими нейронами, что-то подобное может произойти. Однако это заявляение очень сомнительно. Для того, чтобы настоящий ИИ появился, нам нужно переосмыслить подход к созданию систем на основе ИИ. Все то, что есть сейчас — это лишь прикладные программы для строго ограниченного круга задач. Как бы нам не хотелось верить в то, что будущее уже наступило…
А как считаете вы? Создадут ли люди ИИ? Поделитесь мнением в нашем чате в Телеграм.
На что способен искусственный интеллект сегодня и каков его потенциал
Три типа искусственного интеллекта
На сегодняшний день искусственный интеллект ученые определяют, как алгоритмы, способные самообучаться, чтобы применять эти знания для достижения поставленных человеком целей. Системы машинного обучения (основной подраздел ИИ) автоматизировали процессы во всех жизненно важных областях, включая банкинг, ретейл, медицину, безопасность, промышленность.
Выделяют три вида искусственного интеллекта: слабый (Narrow AI), сильный (AGI) и супер-ИИ (Super AI).
Первый вид используются повсеместно (включая голосовых ассистентов, рекламу в соцсетях, распознавание лиц, поиск романтических партнеров в приложениях и так далее); эти системы слабого ИИ единственные доступные на сегодня.
Сильный ИИ максимально приближен к способностям человеческого интеллекта и наделен по классическому определению Тьюринга самосознанием; по мнению экспертов, AGI сформируется примерно к 2075 году, а спустя еще 30 лет придет время для супер-ИИ.
Супер-ИИ мог бы не просто стать подобным людям, но и превзойти лучшие умы человечества во всех областях, при этом перепрограммируя самого себя, продолжая совершенствоваться и, вероятно, разрабатывая новые системы и алгоритмы самостоятельно.
На что способен искусственный интеллект уже сейчас
Оценить динамику может каждый, кто пользуется автоматическими переводчиками. Еще лет пять назад Google Translate более-менее сносно справлялся с отдельными наборами фраз и предложениями, тогда как сегодня программа переводит большие смысловые блоки, нейросети учитывают контекст, оперируют огромными массивами статистических данных. Сейчас можно читать статьи на хинди, китайском, арабском, не зная языка.
ИИ давно используется в финансовой сфере для оценки платежеспособности заемщика. Есть вам отказали в выдаче кредита на первом этапе ― вас отсеял именно искусственный интеллект. В США в некоторых штатах ИИ применяют в судебной системе для оценки продолжительности тюремных сроков для обвиняемых.
Алгоритмы помогают врачам ставить диагнозы. Например, «СберМедИИ» (входит в экосистему «Сбера») и Лаборатория по искусственному интеллекту Сбербанка совместно разработали приложение AI Resp: нейросеть анализирует голос пациента, дыхание и кашель, чтобы определить вероятность коронавирусной инфекции. Ранее Лаборатория по ИИ и «СберМедИИ» представили онлайн-сервис «КТ Легких», определяющий локализацию и степень поражения легких для диагностики вирусной пневмонии, в том числе COVID-19, по снимкам компьютерной томографии. Также при использовании этого сервиса ИИ позволяет выявлять онкологические заболевания на ранней стадии при анализе КТ грудной клетки и может помогать врачам при диагностике.
На данный момент разработано несколько значимых технологий в сфере искусственного интеллекта.
Искусственный интеллект превосходит людей по IQ и креативности: в викторинах он набирает на 40% больше баллов, по вопросам SAT (тест для оценки знаний абитуриентов США) — на 15% больше баллов, чем средний абитуриент колледжа.
Роль ИИ в экономике
Влияние пандемии на внедрение ИИ в бизнесе
Кризис только ускорил внедрение ИИ, и этот импульс сохранится в дальнейшем, показывают опросы: большинство компаний (52%) стали быстрее внедрять ИИ из-за пандемии, 86% респондентов утверждают, что ИИ становится «основной технологией» в их компании.
Почти три четверти бизнес-лидеров положительно оценивают роль ИИ после пандемии и сопутствующего кризиса. Большинство руководителей (74%) не только ожидают рост эффективности бизнес-процессов, но и создание новых бизнес-моделей (55%), новых продуктов и услуг (54%) — благодаря внедрению ИИ.
По мнению экспертов Оксфордского университета, к 2026 году ИИ напишет эссе, которое сойдет за написанное человеком, заменит водителей грузовиков к 2027 году и станет выполнять работу хирурга к 2053 году. Также ИИ превзойдет людей во всех задачах в течение 45 лет и автоматизирует все рабочие места в течение 120 лет.
Консалтинговая компания Accenture утверждает, что ИИ способен увеличить прибыль компаний в среднем на 38%. По словам экспертов и представителей бизнеса, ИИ помогает компаниям прогнозировать и выявлять проблемы, а также восполняет нехватку навыков сотрудников, хотя до построения бизнес-стратегии искусственным интеллектом еще далеко.
Большинство опрошенных компаний инвестируют в ИИ (90%) и согласны с тем, что данные технологии способствуют развитию бизнеса, выяснили MIT Sloan Management Review и BCG. Тем не менее, компании так и не научились извлекать из ИИ реальную выгоду. И это не единственный проблемный момент в сфере искусственного интеллекта.
Основные вызовы технологии ИИ
Бизнес-процессы
Чтобы компания извлекала прибыль, недостаточно вложить средства в алгоритм и получить первые успешные результаты после запуска пилотного проекта. Внедрение ИИ — это многоуровневый процесс, включающий культурные изменения в компании, найм и обучение специалистов по data science, автоматизацию и построение бизнес-процессов с учетом алгоритмов, и на этом весь список не заканчивается.
«Говоря о внедрениях, необходимо приложить усилия в пропорциях 10–20–70. То есть, примерно 10% усилий должно уйти на создание алгоритма, 20% на построение технологии и 70% на организацию бизнес-процессов. Компания должна быть на определенном уровне технологической зрелости для того, чтобы внедрение ИИ приносило пользу», — говорит Леонид Жуков, генеральный директор Института Искусственного Интеллекта AIRI, старший управляющий директор Лаборатории по искусственному интеллекту Сбербанка.
Выступая на международной конференции Сбера AI Journey 2021, Юрген Шмидхубер, ученый в области искусственного интеллекта, главный научный советник Института Искусственного Интеллекта AIRI и научный руководитель компании NNAISENSE отметил, что компании в основном сосредоточены на своих частных проблемах, а не на развитии технологий искусственного интеллекта: большая часть их прибыли от ИИ приходится на маркетинг и продажу рекламы.
Такие гиганты как Alibaba, Amazon, Facebook, Google массово используют глубокие искусственные нейронные сети, например, Long-Short-Term Memory, чтобы предсказать спрос пользователей и дольше удерживать их на своих платформах, заставляя переходить по большему количеству рекламных объявлений.
Нехватка специалистов
ИИ развивается с высокой скоростью, и то, что называлось полгода назад state-of-the-art (высшим уровнем развития), сегодня может оказаться средней разработкой. Если раньше в сфере искусственного интеллекта была занята узкая прослойка специалистов, сейчас при таком огромном спросе попросту не хватает квалифицированных кадров, способных справиться с постоянно развивающейся технологией, отмечает Жуков.
Спрос на ИИ-специалистов вырос на 74% за 2016–2019 годы, сейчас две из пяти компаний, использующих ИИ на продвинутом уровне, отмечают острую нехватку специалистов, трудности с наймом также возглавляют список проблем в области ИИ.
Проблемы машинного обучения
Качество данных — второе по значимости препятствие для внедрения ИИ, после нехватки специалистов. Для успешных результатов алгоритмам необходимы качественные «вводные», включая размеченные и чистые данные. Неправильно заданные паттерны могут провоцировать систему делать ложные выводы: например, ошибочно сигнализировать о мошеннической транзакции, или осудить невиновного.
На качество влияет и степень предвзятости, или bias, включая гендерные и расовые предрассудки, которым может быть подвержен человек, работающий с алгоритмом.
Количество данных. Помимо качества, компьютеру все еще требуется большой объем данных и ресурсов для выполнения простейших задач. Отличать собак от кошек ИИ научится за три дня, задействуя 10 млн изображений и 16 000 компьютеров, в то время как ребенку хватило бы пары фотографий и нескольких минут. Если бы модель GPT-3 обучали читать и писать статьи не на суперкомпьютере, а на обычном ПК, весь процесс занял бы примерно 500 лет.
«На данный момент перед исследователями ИИ стоят несколько вызовов. Это умение искусственного интеллекта ставить перед собой новые задачи на основе имеющихся знаний; способность обучаться, не забывая полученные знания; и умение учиться разбивать цель на подцели. Преодоление этих проблем приблизит ученых к созданию таких машин, которые смогут лучше понимать человека и помогать достижению все более амбициозных целей», — отмечает Михаил Бурцев, директор по фундаментальным исследованиям Института Искусственного Интеллекта AIRI, заведующий Лабораторией нейронных систем и глубинного обучения МФТИ.
Применение в другом контексте. Хотя искусственный интеллект сегодня способен выполнять различные функции — от распознавания кошек и собак до предсказания поломок на нефтяных платформах, — это все еще узконаправленные задачи. ИИ пока что не умеет применять полученные навыки в непривычных условиях.
Влияние на климат
Проблема потребления энергии искусственным интеллектом напрямую связана с количеством ресурсов, задействованных в обработке данных. Обучение же одной NLP-модели (подобной GPT) требует столько же энергии, сколько автомобиль за весь его срок службы, и производит в пять раз больше CO2.
Во всем мире центры обработки данных потребляют около 200 ТВт·ч электроэнергии в год — больше, чем некоторые страны. В то же время, есть и противоположный эффект — ИИ поможет снизить выбросы парниковых газов на 1,5–4% к 2030 году, согласно отчету Европейского парламента.
Использование ИИ в науке
Машинное обучение стало ключевым инструментом исследователей из разных областей, однако потенциал ИИ в науке еще предстоит раскрыть, отмечает Леонид Жуков. Стимулирование новых открытий с помощью ИИ актуально, например, в области создания новых материалов при помощи вычислений или в прогнозировании изменений климата для разработки стратегий повышения устойчивости к изменениям окружающей среды. Например, в рамках стремления к достижению углеродной нейтральности, ученые из группы поиска новых материалов Института AIRI совместно со Сбербанком разработали прототипы моделей, позволяющих оптимизировать контроль качества на производстве солнечных батарей.
В перспективе машинное обучение может активнее применяться для охраны дикой природы в малодоступных регионах и подсчете особей, понимания сложной органической химии и в исследовании темной материи.