Известно что а и б отрицательные числа и а меньше б
Известно что а и б отрицательные числа и а меньше б
Найти все значения параметров а и b, при которых среди корней уравнения
есть два различных корня с равными абсолютными величинами.
Пусть у заданного уравнения имеются корни m и −m, причем
Тогда будем иметь равенства:
Последнее равенство мы вправе переписать так:
Вычитая равенство (***) из равенства (*), получим:
Рассмотрим равенство
Покажем, что в последнем равенстве Действительно, если
то
тогда как
Следовательно, мы вправе разделить обе части равенства
на
Получим:
Это равенство имеет место при
Рассмотрим левую часть последнего равенства как функцию f(m), правую часть — как функцию g(m).
На есть монотонно возрастающая функция, g(m) — монотонно убывающая. Cледовательно, равенство f (m)=
возможно лишь при единственном значении m, т. е. при
Однако такое значение m условию задачи не удовлетворяет. Отсюда вывод: в контексте предложенной задачи
Но тогда непременно должно выполняться равенство Коли это так, то равенство (***) примет вид:
что возможно лишь при одновременном выполнении двух условий:
и
Заметим, что среди корней исходного уравнения есть такая пара значений m, например, и
при которых условие
выполняется как при
так и при
Теперь нам осталось найти такие значения параметров a и b, которые удовлетворяют системе уравнений
то
(последнее не имеет смысла).
Полученным значениям а будут соответствовать значения
и
в соответствии с равенством
а) Докажите, что объем пирамиды с вершинами в точках A, B1, B, C1 составляет третью часть объема призмы.
б) Найдите угол между прямыми AB1 и BC1, если известно, что AB = 2, AA1 = 4.
а) Пусть
тогда
У пирамиды
основанием служит
высотой — высота треугольника
проведенная к стороне
Пусть K — основание высоты.
Ясно, что т. е.
что и требовалось доказать.
б) Поместим заданную призму в декартову систему координат, как показано на рис. Выпишем координаты нужных точек:
Другое решение пункта а).
так как
но
Ответ: б)
Натуральные числа a, b, c и d удовлетворяют условию a > b > c > d.
а) Найдите числа a, b, c и d, если a + b + с + d = 15 и a 2 − b 2 + с 2 − d 2 = 27.
б) Может ли быть a + b + с + d = 19 и a 2 − b 2 + с 2 − d 2 = 19?
в) Пусть a + b + с + d = 1000 и a 2 − b 2 + с 2 − d 2 = 1000. Найдите количество возможных значений числа a.
а) Из условия получаем:
Поскольку получаем:
или
В первом случае из равенства учитывая, что
и числа
и
имеют разную чётность, находим
чего не может быть.
Во втором случае из неравенства учитывая, что
находим
откуда получаем:
б) Из условия получаем:
Поскольку получаем, что
то есть
Аналогично,
последнее равенство выполняется только при
и
Значит,
что невозможно.
в) Из равенства получаем:
Значит,
Получаем четвёрку чисел
Поскольку
получаем:
Кроме того,
откуда
Значит, a принадлежит промежутку (251; 500). Более того, для любого целого a из этого промежутка найденная четвёрка чисел удовлетворяет условию задачи. Таким образом, a может принимать 248 значений.
Ответ: а) a = 7, b = 5, c = 2, d = 1; б) нет; в) 248.
Натуральные числа a, b, c и d удовлетворяют условию a > b > c > d.
а) Найдите числа a, b, c и d, если a + b + с + d = 15 и a 2 − b 2 + с 2 − d 2 = 19.
б) Может ли быть a + b + с + d = 23 и a 2 − b 2 + с 2 − d 2 = 23?
в) Пусть a + b + с + d = 1200 и a 2 − b 2 + с 2 − d 2 = 1200. Найдите количество возможных значений числа a.
а) Из условия получаем:
Поскольку получаем:
или
В первом случае из равенства находим
и
откуда получаем:
и
Второй случай не реализуется, поскольку а
б) Из условия получаем:
Поскольку получаем, что
то есть
Аналогично,
последнее равенство выполняется только при
и
Значит,
что невозможно.
в) Из равенства получаем:
Значит,
Получаем четвёрку чисел
Поскольку
получаем:
Кроме того,
откуда
Значит, a принадлежит промежутку (301; 600). Более того, для любого целого a из этого промежутка найденная четвёрка чисел удовлетворяет условию задачи. Таким образом, a может принимать 298 значений.
Ответ: а) a = 6, b = 5, c = 3, d = 1; б) нет; в) 298.
Аналоги к заданию № 512887: 512893 Все
Даны натуральные числа и
такие, что
Среднее арифметическое этих чисел делится на 13.
а) Найдите наименьшую сумму такую, что она является квадратом натурального числа.
б) Найдите наибольшее число c, если а сумма
имеет наименьшее значение.
в) Найдите наименьшее число b, если числа c, b и a в указанном порядке составляют арифметическую прогрессию с разностью n.
г) Известно, что числа c, b и a в указанном порядке составляют возрастающую арифметическую прогрессию с разностью n. Найдите наименьшее n, при котором число c будет наименьшим, и все члены арифметической прогрессии будут являться квадратами натуральных чисел.
а) По условию, где k — натуральное число. Значит,
Таким образом, сумма
является точным квадратом и делится на
Поэтому минимальное возможное значение
б) Из пункта а) получаем, что Если сумма
минимальна, то и сумма
минимальна, значит,
По условию,
поэтому
Искомое наибольшее значение c = 3.
в) По условию, а из того, что
— арифметическая прогрессия, следует равенство
Значит,
Число b должно быть минимально, поэтому
г) Пусть
тогда
Из предыдущего пункта следует, что q кратно 13. Если разность прогрессии n наименьшая и её первый член c при этом минимален, то и второй член прогрессии b минимален. Значит, он равен 169, и тогда
Подбором получаем, что единственная пара чисел
такая, что
и удовлетворяющая последнему равенству, это пара
Тогда получаем, что
Ответ: а) 1521; б) 3; в) 13; г) 120.
Задание г) имеет два различных прочтения: найти наименьшее возможное n, при котором будут выполнены остальные требования условия, или найти наименьшее возможное c, при котором будут выполнены остальные требования. Выше приведено решение первой из этих задач: из решения следует, что наименьшее возможное n равно 120, при этом числа, составляющие прогрессию, суть 49, 169 и 289. Решение второй задачи — поиска наименьшего возможного с — очевидным образом сводится к рассмотрению наименьшего натурального числа с = 1 и отысканию для этого с наименьшего значения n, обеспечивающего выполнение оставшихся требований. Иными словами, пусть
тогда
и необходимо найти натуральные решения полученного уравнения, зная, что
делится на 13.
Можно показать (указания о том, как это сделать, приведены в статье В. А. Сендерова и А. В. Спивака «Уравнения Пелля» в журнале «Квант» (№ 3, 2002 год), что все решения уравнения даются тривиальным решением
и рекуррентными формулами
то есть являются множеством упорядоченных пар