Известно что sinx cosx
Известно что sinx cosx
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
а) Выполним преобразования:
Из уравнения (1) находим:
Так как решения уравнения (a) не удовлетворяют условию (2), то окончательно получаем
б) Из решений, найденных в пункте а), промежутку принадлежит только одно число:
Ответ: а) б)
Для преобразования выражения мы воспользовались приемом, называемым введением вспомогательного угла. Можно было бы использовать известное соотношение
Третий путь — свести уравнение к однородному неполному тригонометрическому уравнению второй степени, используя формулы двойных углов. А именно,
откуда либо либо
Последнее уравнение — однородное тригонометрическое первой степени, оно эквивалентно уравнению
Осталось решить полученные простейшие уравнения и отбросить корни, не лежащие в ОДЗ.
Критерии оценивания выполнения задания | Баллы |
---|---|
Обоснованно получены верные ответы в обоих пунктах. | 2 |
Обоснованно получен верный ответ в пункте а), получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Максимальный балл | 2 |
это формулы приведения
Подскажите, пожалуйста, как мы перешли к
Для чего мы умножали каждое слагаемое на
Очевидно, именно для того, чтобы совершить это преобразование при помощи формулы косинуса разности.
это задание решено неверно, вот мое решение
cosx=0 или cosx-sinx=0|:cosx≠0
Эльмира, наше решение верное.
В Вашем решении ошибка при переходе от пятой строчке к шестой. Вы умножили на выражение, содержащее неизвестное, и именно в этот момент приобрели посторонние корни
В решении этого задания ошибок нет, однако я нахожу его достаточно сложным для восприятия учеником среднестатистической школы (лично до самого дошло только с третьего раза). А потому разрешите предоставить альтернативный способ решения данного номера, который не должен вызывать затруднений:
(ОДЗ и решение до sin2x+cos2x=-1 остается неизменным)
В заключение, у нас получились те же корни, что и при решении первым способом, однако при этом мы задействовали лишь те формулы, которые даны в справочном материале ЕГЭ по математике.
P.S Буду рад, если Вы ознакомитесь с таким решением и примите его как альтернативное для данного номера.