какие клетки человека имеют гаплоидный набор хромосом
Научная электронная библиотека
§ 3.1.4. Строение клетки
Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).
Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения
Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.
1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.
Повреждение наружной оболочки приводит к гибели клетки (цитолиз).
2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране
участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).
Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.
Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).
транспортировка питательных веществ и утилизация продуктов обмена клетки;
буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;
поддержание тургора (упругость) клетки;
все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.
4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).
Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления
Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.
При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери
Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.
В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.
В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.
Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.
– хранение генетической информации;
– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.
4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.
Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.
5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.
Функция рибосом: обеспечение биосинтеза белка.
6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).
Функции эндоплазматической сети:
– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;
– транспортировка продуктов синтеза ко всем частям клетки.
Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).
7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).
Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент
Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1
При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:
АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.
Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.
АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].
Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).
Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).
Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!
8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.
Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.
9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).
Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.
10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:
Пластиды бывают трех типов:
1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.
2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.
3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).
Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.
11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.
Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:
– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);
– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;
– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).
Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).
Более общая классификация клеток представлена на рис. 3.16.
Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.
Плоидность
Пло́идность — число одинаковых наборов хромосом, находящихся в ядре клетки или в ядрах клеток многоклеточного организма.
Иногда этот термин применяют и в отношении прокариотических клеток, лишённых ядра. Большинство прокариот гаплоидны, то есть имеют одну копию бактериальной хромосомы, однако встречаются диплоидные и полиплоидные бактерии.
Различают клетки гаплоидные (с одинарным набором непарных хромосом), диплоидные (с парными хромосомами), полипло́идные (их нередко называют, в зависимости от того, сколько раз в ядре клетки повторяется гаплоидный набор, конкретно три-, тетра-, гексаплоидными и т. д.) и анеуплоидные (когда удвоение или утрата — нулисомия — охватывает не весь геном, а лишь ограниченное число хромосом). Полиплоидию (увеличение числа хромосом в ядре клетки, кратное гаплоидному набору) не следует путать с увеличением количества ядер в клетке и увеличением числа молекул ДНК в хромосоме (политенизацией хромосом).
Содержание
Гаплоиды
В настоящее время, гаплоиды найдены у большинства культурных растений.
Классификация гаплоидов
Общепринятой классификации гаплоидов не существует. Различными исследователями выделяются следующие группы:
Чередование гаплоидной и диплоидной фаз в жизненном цикле
В норме у большинства организмов, для которых известен половой процесс, в жизненном цикле происходит правильное чередование гаплоидной и диплоидной фаз. Гаплоидные клетки образуются в результате мейотического деления диплоидных клеток, после чего у некоторых организмов (растения, водоросли, грибы) могут размножаться при помощи митотических делений с образованием гаплоидного многоклеточного тела или нескольких поколений гаплоидных клеток-потомков. Диплоидные клетки образуются из гаплоидных в результате полового процесса (слияния половых клеток, или гамет) с образованием зиготы, после чего могут размножаться при помощи митотических делений (у растений, водорослей и некоторых других протистов, животных) с образованием диплоидного многоклеточного тела или диплоидных клеток-потомков.
Полиплоидия
Полиплоиди́ей (др.-греч. πολύς — многочисленный, πλοῦς — зд. попытка и εἶδος — вид) называют кратное увеличение количества хромосом в клетке эукариот.
Искусственно полиплоидия вызывается ядами, разрушающими веретено деления, такими как колхицин.
Различают автополиплоидию и аллополиплоидию.
Нарушения плоидности у человека
У человека, как и у подавляющего большинства многоклеточных животных, большая часть клеток диплоидны. Гаплоидны только зрелые половые клетки, или гаметы. Нарушения плоидности (как анеуплоидия, так и более редкая полиплоидия) приводят к серьёзным болезненным изменениям. Примеры анеуплоидии у человека: синдром Дауна — трисомия по 21-й хромосоме (21-я хромосома представлена тремя копиями), синдром Кляйнфельтера — избыточная X хромосома (XXY), синдром Тернера — нулисомия по одной из половых хромосом (X0). Описаны также трисомия по X хромосоме и случаи трисомии по некоторым другим аутосомам (помимо 21-й). Примеры полиплоидии редки, однако известны как абортивные триплоидные зародыши, так и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней) и диплоидно-триплоидные мозаики. [7]
Хромосома: понятие, диплоидный и гаплоидный хромосомные наборы
Дети получают в наследство от родителей не только материальное имущество, но и определенные гены, которые делают их похожими на родственников формой головы, лица, рук, цветом глаз и волос, а иногда даже характером.
Передача характерных признаков от родителей к детям происходит с помощью информации, закодированной в дезоксирибонуклеиновой кислоте (ДНК). Вся биологическая информация хранится в хромосомах, представляющих собой молекулы ДНК, покрытые гистонной (белковой) оболочкой. В зависимости от типа клетки и ее фазы жизненного цикла генетическая информация в виде хромосом может находится в нескольких вариантах: гаплоидном, диплоидном и, реже, тетраплоидном.
Понятие хромосомы
Ядро эукариотической клетки содержит несколько видов составляющих, одной из которых является нуклеопротеидная структура, называемая хромосомой. Теория о наследственной информации впервые была выдвинута еще в XIX веке, но, опираясь на фактические данные, полностью сформировалась лишь спустя столетие,.
С помощью ДНК происходит хранение, реализация и передача наследственной информации. Различить хромосомы под микроскопом возможно только во время деления клетки. Совокупность всех структурно-функциональных единиц, содержащихся в клетке, называется кариотипом.
Диплоидный хромосомный набор
Диплоидный набор хромосом — это двойной кариотип, в котором элементы разделены на пары по сходным признакам. Такой набор наблюдается в соматических клетках и зиготах.
В человеческих клетках содержится по 46 хромосом, которые разделяются на 23 пары со своим «двойником» по длине и толщине. Но 45-я и 46-я единицы отличаются от других тем, что представляют собой половые хромосомы, определенное сочетание которых влияет на пол будущего человека:
Остальные структуры называются аутосомами.
Гаплоидный набор хромосом
Диплоидный и гаплоидный кариотипы могут существовать в одно время. Такое явление наблюдается при половых процессах. В этот период происходит чередование фаз гаплоидного и диплоидного наборов: с делением полного набора происходит образование одинарного кариотипа, а затем происходит слияние пары одинарных наборов, которые преобразуются в диплоидный кариотип.
Возможные нарушения в кариотипе
В период развития на уровне клеток имеет возможны сбои и нарушения в работе хромосом. При изменениях в хромосомных наборах у человека возникают генетические заболевания. Известными болезнями с нарушением кариотипа являются:
Поскольку ученые еще не нашли способы защиты клеток от нарушений в кариотипах, хромосомные изменения приводят к неизлечимым болезням, при которых наблюдаются низкая степень жизнеспособности, отклонения в умственном и половом развитии, задержка роста.
С помощью многочисленных исследований ученые установили, что на изменения в хромосомных наборах воздействует влияние экологии, плохой наследственности, дефицита сна и неправильного образа жизни. Но нарушения могут встречаться и у людей, ведущих абсолютно правильный образ жизни и не страдающих никакими заболеваниями. На данный момент люди не могут влиять на изменения в кариотипах.
Видео
Эта видеоподборка поможет вам лучше разобраться в том, что такое хромосомный набор человека.
Диплоидный набор хромосом: понятие и особенности формирования
Диплоидный набор хромосом
Понятие диплоидного набора хромосом
Под диплоидным набором хромосом понимают кариотип.
Термин «кариотип» произошел от греческих слов, обозначающих ядро (karyon) и форму (typhe).
В 1924 году отечественный цитолог Г. А. Левитанский ввел этот термин в общенаучный обиход.
Человеческий кариотип включает 46 хромосом (в норме): 22 пары этих хромосом — это аутосомы, а еще две хромосомы — гаметы или гетерохромосомы.
Есть определение диплоидного набора хромосом как совокупности хромосом, которая характерна для всех соматических клеток, включенных в состав организма представителей разнообразных биологических видов.
Расположение хромосом — попарное.
В ходе мейоза происходит обмен участками между гомологичными хромосомами или бивалентами. В результате кроссинговера возникает разнообразие генетического материала. Лучше понять суть диплоидного набора хромосом помогает определение термина плоидность.
Плоидность — это количество хромосомных наборов, содержащееся в ядрах клеток.
Кариотипы живых организмов содержат парные и непарные хромосомы. Соматические клетки отличаются диплоидным набором хромосом, парными по своей структуре. В отличие от него, гаплоидный набор хромосом состоит из непарных структурно-функциональных компонентов, входящих в состав половых клеток.
Интересно, что диплоидный и гаплоидный наборы хромосом могут находиться в одном и том же организме одновременно.
Так как такое присутствие характерно для полового процесса, происходит чередование гаплоидной и диплоидной фаз. Диплоидный набор хромосом образует гаплоидный — при помощи процесса деления. После этого хромосомный набор восстанавливается до диплоидного.
У зиготы, как у продукта оплодотворения, характеризуется диплоидным набором хромосом. Исключения — анзуплоидные, гаплоидные и полиплоидные клетки.
Иногда набор структурно-функциональных единиц нарушается. Это приводит к различным отклонениям:
В результате жизнеспособность новорожденных снижается, возникают отклонения в интеллектуальном развитии. Дети с аномалиями хромосомного набора отстают в развитии, их органы не могут развиваться в соответствии с возрастом. Одна из задач современной медицины — поиск эффективных методов защиты клеток от возникновения аномального набора хромосом.
Причины генетического сбоя диплоидного набора хромосом:
Как формируется диплоидный набор хромосом
Система развития диплоидного набора хромосом непредсказуема. Даже родители, ведущие здоровый образ жизни и проживающие в экологически чистом месте, не могут на 100% быть уверенны, что у них родятся здоровые дети.
Главное отличие диплоидной клетки от гаплоидной заключается в неодинаковом количестве хромосом в ядре. Воспроизведение гаплоидных клеток осуществляется при помощи мейоза, а диплоидных — при помощи митоза.
Диплоидный набор хромосом имеет определенными правила:
Из перечисленного выше следует, что кариотип — это также единство всех хромосом набора в соматической клетке, сходных между собой неизменяемыми размерами, формой, положением центромер.
Все хромосомы диплоидного набора включают в состав две хроматиды, содержащие по одной молекуле ДНК. К слову, каждая хроматида является копией этой молекулы. Распределение сестринских хроматид по дочерним клеткам происходит в ходе митоза. По этой причине хромосомы в клеточном цикле двуххроматидны от репликации до деления (речь идет о фазе цикла G2) и однохроматидны от деления до репликации (речь идет о фазе цикла G1).
Восстановление диплоидности клеток в жизненном цикле происходит за счет процесса оплодотворения или слияния гамет. Соотношение гаплоидной и диплоидной фаз у различных организмов разное.
Животным свойственна единственная диплоидная фаза. Для сравнения, хламидомонада имеет только диплоидную зиготу, которая мгновенно вступает в мейоз. У растений есть обе фазы развития: и гаплоидная, и диплоидная.
Отдельно стоит упомянуть мхи. На них происходит формирование органов полового размножения: антеридий (дают мужские гаметы) и архегоний (дают женские гаметы).
После того как произошло оплодотворение, диплоидный набор хромосом содержится в протонеме или «зеленой нити». Взрослые растения характеризуются коричневой диплоидной стадией. Это объясняется тем, что растение не содержит хлорофилл и не способно к фотосинтезу — диплоидная стадия живет за счет гаплоидной части растения.
В расширении, которое получило называние коробочка, многочисленные клетки делятся при помощи мейоза и образуют гаплоидные споры. Последние дают начало зеленым гаплоидным растениям. Но основании описанного выше, можно заключить, что основная стадия мхов — гаплоидная.
Возникновение диплоидного набора хромосом — результат стремления организмов к биологическому прогрессу. При этом формирование этого набора существенно различается у представителей крупных и небольших таксономических единиц.