какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты

Клетки осуществляющие фагоцитоз

Фагоцитоз – это явление захвата и переваривания чужеродных вредных частиц, попавших в организм, особыми клетками-защитниками. Притом к фагоцитозу способны не только «специально обученные» фагоциты, цель жизни которых заключается в защите здоровья человека, но и клетки, выполняющие в нашем теле совершенно иные задачи… Итак, какие же существуют клетки, способные к фагоцитозу?

Моноциты

Моноциты – одно их первых названий, которые всплывают какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть картинку какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Картинка про какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоцитыв памяти при упоминании о фагоцитозе. Эти осуществляющие фагоцитоз лейкоциты непрерывно перемещаются в крови, «сканируя» окружающее пространство на предмет наличия в нем вредоносных объектов. Найдя «обидчика», они захватывают и уничтожают его. После этого, избавившись от продуктов расщепления бактерии, микропаразита или вируса, они продолжают свою работу в аналогичном направлении.

При фагоцитозе моноцит справляется с вредными объектами всего за 9 минут. Иногда он поглощает и расщепляет клетки и субстраты, превышающие его по размерам в несколько раз.

Нейтрофилы

Фагоцитоз нейтрофилов осуществляется похожим образом, с той лишь разницей, что они работают по принципу «Светя другим, сгораю сам». Это значит, что, захватив патоген и уничтожив его, нейтрофил погибает.

Макрофаги

Макрофаги – это осуществляющие фагоцитоз лейкоциты, образовавшиеся из моноцитов крови. Они располагаются в тканях: как непосредственно под кожей и слизистыми, так и в глубине органов. Существуют особые разновидности макрофагов, которые находятся в конкретных органах.

Например, в печени «живут» клетки Купфера, задача которых состоит в разрушении старых компонентов крови. В легких располагаются альвеолярные макрофаги. Эти клетки, способные к фагоцитозу, захватывают вредные частицы, проникшие в легкие с вдыхаемым воздухом, и переваривают их, разрушая своими ферментами: протеазами, лизоцимом, гидролазами, нуклеазами и т.д.

Обычные тканевые макрофаги обычно погибают после встречи с патогенами, то есть в этом случае происходит то же, что и при фагоцитозе нейтрофилов.

какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть картинку какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Картинка про какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоцитыДендритные клетки

Эти клетки – угловатые, ветвистые – совершенно не похожи на макрофаги. Тем не менее, они являются их родственниками, так как тоже образуются из моноцитов крови. К фагоцитозу способны только молодые дендритные клетки, остальные в основном «работают» с лимфоидной тканью, обучая лимфоциты правильно реагировать на некоторые антигены.

Тучные клетки

Помимо того, что тучные клетки запускают реакцию воспаления, эти лейкоциты способны к фагоцитозу. Особенность их работы состоит в том, что они уничтожают только грамотрицательные бактерии. Причины такой «разборчивости» не совсем понятны, видимо, у тучных клеток есть к этим бактериям особое сродство.

Они могут уничтожить сальмонеллу, кишечную палочку, спирохету, многих возбудителей ЗППП, но совершенно равнодушно воспримут возбудителя сибирской язвы, стрептококка и стафилококка. Борьбой с ними займутся другие лейкоциты.

Перечисленные выше клетки – это профессиональные фагоциты, об «опасных» свойствах которых известно всем. А теперь несколько слов о тех клетках, для которых фагоцитоз – не самая типичная функция.

Тромбоциты

Тромбоциты, или кровяные пластинки, занимаются главным образом тем, что отвечают за свертываемость крови, прекращают кровотечения, формируют тромбы. Но, помимо этого, у них обнаружены и фагоцитарные свойства. Тромбоциты могут образовывать ложноножки и уничтожать некоторые вредные компоненты, попавшие в организм.

Клетки эндотелия

Оказывается, клеточная выстилка сосудов тоже представляет какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть картинку какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Картинка про какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоцитыопасность для бактерий и прочих «захватчиков», проникших в организм. В крови с чужеродными объектами борются моноциты и нейтрофилы, в тканях их поджидают макрофаги и другие фагоциты, и даже в стенках сосудов, находясь между кровью и тканями, «враги» не могут «чувствовать себя в безопасности». Воистину, возможности защиты организма чрезвычайно велики. При увеличении содержания в крови и тканях гистамина, что происходит при воспалении, фагоцитирующая способность клеток эндотелия, почти незаметная до этого, возрастает в несколько раз!

Гистиоциты

Под этим собирательным названием объединяют все клетки тканей: соединительной ткани, кожи, подкожной клетчатки, паренхимы органов и так далее. Раньше этого никто не мог предположить, но оказывается, при определенных условиях многие гистиоциты способны менять свои «жизненные приоритеты» и тоже приобретать способность к фагоцитозу! Повреждения, воспаление и другие патологические процессы пробуждают в них эту способность, которая в норме отсутствует.

Фагоцитоз и цитокины:

В процессе фагоцитоза клетки образуют цитокины. Это так называемые сигнальные молекулы, при помощи которых фагоциты передают информацию другим компонентам иммунной системы. Самыми важными из цитокинов являются трансфер факторы, или факторы передачи – белковые цепочки, которые можно назвать самым ценным источником иммунной информации в организме.

Чтобы фагоцитоз и другие процессы в иммунной системе проходили благополучно и полноценно, можно использовать препарат Трансфер Фактор, действующее вещество которого и представлено факторами передачи. С каждой таблеткой средства организм человека получает порцию бесценных сведений о правильной работе иммунитета, полученных и накопленных многими поколениями живых существ.

При приеме Трансфер Фактора нормализуются процессы фагоцитоза, ускоряется ответ иммунной системы на проникновение возбудителей, повышается активность клеток, защищающих нас от агрессоров. Кроме того, через нормализацию работы иммунитета улучшаются функции всех органов. Это позволяет повысить общий уровень здоровья и, если это необходимо, помочь организму в борьбе с практически любым заболеванием.

Источник

Клетки крови: эритроциты, лейкоциты, тромбоциты

» data-image-caption=»» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/05/kletki-krovi.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/05/kletki-krovi.jpg» title=»Клетки крови: эритроциты, лейкоциты, тромбоциты»>

Алена Герасимова (Dalles) Разработчик сайта, редактор

Общеизвестно, что основными клетками крови являются эритроциты, лейкоциты и тромбоциты. Приглядимся к ним поближе.

Эритроциты — строение и функции

Эритроциты — это основная часть состава клеток крови. Количество их у здоровых людей колеблется от 4,5 до 5,5 миллиона в 1 куб.мм. Если расположить их все в одну линию, то она протянется на 187000 км, более чем в 4,5 раза больше земного экватора. Ежесекундный распад 10 миллионов эритроцитов возмещается поступлением в кровь такого же их количества из кроветворных органов.

Эритроциты человека — безъядерные тельца, похожие на двояковогнутые диски, с диаметром, равным в среднем 7 микронам (0,007 мм).

По современным представлениям эритроцит имеет губчатую структуру, пропитанную гемоглобином — носителем кислорода. В составе эритроцитов его более 90%.

Из гемоглобина и кислорода (Нв) образуется непрочный оксигемоглобин. Именно из-за него кровь такого цвета. Основная часть его состава белковая — глобин и небелковая — гем. Успехи современной биохимии позволили изучить этапы его образования, очень сложного и многоступенчатого. Гем способствует гемоглобину “рыхло” соединяться с кислородом, этим он обязан железу, которое присутствует в нем.

Связи кислорода и гемоглобина целиком зависит от содержания (концентрации, или «напряжения») этого газа в окружающей среде. Если раствор гемоглобина окружен воздухом, содержащим 20% кислорода, то гемоглобин почти полностью насытится кислородом, т. е. превратится в оксигемоглобин.

Но если его поместить в безвоздушное пространство или атмосферу азота, то кислород полностью отщепится и гемоглобин окажется восстановленным.

Как эритроциты переносят гемоглобин в организме

Проходя через капилляры легких, где имеется наибольшее напряжение кислорода, гемоглобин крови целиком насыщается кислородом. Этот процесс совершается по законам диффузии газов.

Затем оксигемоглобин переносится в капилляры других тканей организма, где напряжение кислорода очень низкое благодаря чему он легко отделяется от гемоглобина. Освободившийся кислород используется клетками для поддержания их энергетического обмена.

Отечественный ученый П. А. Коржуев на примерах особей животного мира различного уровня развития показал, что расстановка разных видов животных в эволюционном ряду зависит от обеспеченности их гемоглобином (следовательно, и кислородом).

Что происходит с погибшими эритроцитами

Основная задача эритроцитов — переноска кислорода. Они обладают минимальным обменом веществ. В среднем они живут 100—120 дней. Старея, эритроциты подвергаются распаду: в конце своей жизни в селезенке, и печени приклеиваются к особым клеткам на стенках сосудов.

Такие клетки обладают способностью захватывать различные высокомолекулярные и чужие частицы, попадающие в кровь. Этот процесс поглощения (фагоцитоз) распространяется также и на состарившиеся эритроциты, которые для организма стали уже чужеродными.

Непосредственное отношение к процессу кроворазрушения имеет селезенка. Этот орган — «губчатый мешок» из очень рыхлой ткани, переполненной кровью, способен разрушать красные кровяные тельца, что дало повод уже давно называть ее «кладбищем» этих клеток. (По некоторым данным, свыше 70% всех эритроцитов, закончивших свой жизненный цикл, оказываются именно в ней).

Следует отметить, что у здорового человека селезенка разрушает лишь старые или случайно поврежденные красные тельца. Каков же механизм освобождения крови от тех из них, что уже отжили или повреждены? Это удалось открыть с помощью интересных опытов на животных с использованием современной электронной микроскопии.

Крысам вводили токсические для эритроцитов вещества и наблюдали прохождение их через стенку сосудов селезенки. Нормальные клетки легко фильтруются через сосудистые поры: при прохождении через них «гибкие» эритроциты меняют свою форму и проскальзывают в общем токе крови.

Но, старея или повреждаясь, становясь менее эластичными они больше неспособны проникать через капилляры, фильтруются в селезенке и поглощаются (фагоцитоз) ретикуло-эндотелиальными клетками. При распаде в печени эритроцитов образуется пигмент билирубин, который в кишечнике, под влиянием микробов подвергается дальнейшему химическому превращению.

При этом образуется пигмент стеркобилин, который окрашивает кал таким коричневым цветом. Количество этого пигмента в кале говорит об объемах распадающихся эритроцитов.

Нормы эритроцитов по полу и возрасту

Пол, возрастНорма, клеток/л
У взрослых мужчин3.9•10 12 –5,5•10 12
У взрослых женщин3,9•10 12 –4,7•10 12
В пуповинной крови плода3,9•10 12 –5,5•10 12
1-3 дня от рождения4,0•10 12 –6,6•10 12

ретикулоциты — 3–51%7 дней3,9•10 12 –6,3•10 1214 дней3,6•10 12 –6,2•10 1230 дней3,0•10 12 –5,4•10 1260 дней2,7•10 12 –4,9•10 126 месяцев3,1•10 12 –4,5•10 12

ретикулоциты — 3–15%до 12 лет3,5•10 12 –5,0•10 12

ретикулоциты — 3–12%Девочки-подростки 13–19 лет3,5•10 12 –5,0•10 12

ретикулоциты 2-11%Мальчики-подростки 13–16 лет4,1•10 12 –5,5•10 12

ретикулоциты 2-11%16 — 19 лет3,9•10 12 –5,6•10 12Пожилые люди4,0•10 12Беременные3,5•10 12 –5,6∙10 12

ретикулоциты — примерно 1%

Что происходит с железом, накопившемся в эритроцитах

Сейчас сложилось твердое убеждение, что железо, освободившееся при гибели эритроцитов, полностью используется для построения его новых молекул, предварительно отложившись в печени и селезенке в резерве. Из резерва оно в костном мозге принимает участие в гемоглобинообразовании.

Помимо использования резервного железа, открыт механизм непосредственной утилизации гемоглобинового железа кроветворными клетками.

Здоровый человек ежесуточно при распаде эритроцитов теряет 20—30 мг железа, что равно суточной потребности. 90% этого железа вновь идет на построение нового гемоглобина в процессе созревания новых эритроцитов. Потери железа организмом ничтожны.

Лейкоциты — строение и функции

Лейкоциты — вторая основная составляющая крови, имеют ядро, протоплазму, или цитоплазму (от «цито» — клетка). Отдельные из них способны активно двигаться, наподобие простейших организмов, например, амеб.

В крови человека содержится в 1000 раз меньше лейкоцитов, чем эритроцитов.

Виды лейкоцитов

Лейкоциты бывают зернистыми и незернистыми. Зернистые лейкоциты или гранулоциты имеют протоплазму нагруженную зернами. Незернистые лейкоциты или агранулоциты зерен не содержат или содержат очень мало.

Незернистые и зернистые лейкоциты отличаются друг от друга несколькими признаками:

Так, например, цитоплазма эозинофила в окрашенном мазке содержит крупную зернистость, напоминающую кетовую икру, а базофильные лейкоциты имеют зерна, окрашивающиеся в фиолетово-синий цвет.

Ядра различных клеток имеют своеобразную форму, позволяющую отличать одни от других. Ядро зрелого нейтрофила, например, состоит из сегментов, соединенных между собой мостиками, а у лимфоцита ядро круглое и занимает большую часть клетки.

Защитная функция лейкоцитов

Некоторые формы лейкоцитов (прежде всего нейтрофилы и моноциты) поразительно способны к фагоцитозу, т. е. к поглощению и перевариванию различных микробов; простейших организмов, отживших клеток и всяких чужеродных веществ, попадающих в организм.

Присущая лейкоцитам защитная функция проявляется лишь после выхода из кровеносных сосудов. При кровотоке лейкоциты обволакивают внутренние стены капилляров и во множестве уходят из сосудов, протискиваясь между эндотелиальными клетками. При своем следовании они обнаруживают и переваривают в себе микробы и различные инородные тела.

Процесс движения лейкоцитов из сосудов в ткани совершается при посредстве вытягивания протоплазмы и образования ее выростов — так называемых ложноножек (псевдоподий). Лейкоциты активно проходят через неповрежденные стенки сосудов, легко проникают через оболочки (мембраны), двигаются в соединительной ткани.

Роль эозинофилов и базофилов остается еще недостаточно изученной. Больше сведений мы имеем в отношении лимфоцитов. Они образуются в лимфатических узлах, разбросанных по всему организму и в селезенке. (Количество лимфоидной ткани составляет около 1% веса тела!) Изучение продолжительности жизни лимфоцитов с использованием радиоактивной метки доказало, что они циркулируют в крови 100—200 дней, и лишь небольшая их часть исчезает из кровяного русла через 3—4 дня.

Есть основания считать, что лимфоциты участвуют в формировании иммунной системы организма и, таким образом, очень важны в процессах борьбы с микробами и действием их токсинов.

Нормы лейкоцитов по полу и возрасту

Пол, возрастНорма, единиц на литр (Ед/л)
Малыши до 3-х дней7 – 32 × 109
До 1 года6 – 17,5 × 109
1-2 года6 – 17 × 109
2-6 лет5 – 15,5 × 109
6-16 лет4,5 – 13,5 × 109
16-21 год4,5 – 11 × 109
Взрослые мужчины4,2 – 9 × 109
Взрослые женщины3,98 – 10,4 × 109
Пожилые мужчины3,9 – 8,5 × 109
Пожилые женщины3,7 – 9 × 109

Тромбоциты — строение и функции

В крови есть еще третий форменный элемент—тромбоциты (кровяные пластинки).

Тромбоциты, как бы осколки протоплазмы производящих их гигантских клеток костного мозга — мегакариоцитов. Оказывается, что из одного мегакариоцита может образоваться до 400 пластинок. В 1 мм3 крови их насчитывается 250—400 тыс.

Размер кровяных пластинок очень мал — от 2 до 5 микрон. Они формой круглые или овальные, не имеют ядра. Сроки пребывания их в крови от 3 до 5 дней.

Клетки эти играют огромную роль в процессах свертывания крови и занимают ключевую позицию в процессе остановки кровотечения.

Основное, значимое свойство тромбоцитов — прилипать и покрывать чужеродную поверхность. Они при этом становятся больше размером и растягиваются принимая звездчатую форму. При повреждении мелких кровеносных сосудов тромбоциты устремляются к месту повреждения, прилипают кучкой и образуют собой тромб закрывающий место дефекта сосуда.

Вокруг него оседают нити фибрина и эритроциты, цвет тромба меняется на красный. Благодаря выпадению фибрина головка тромба плотно фиксируется к поврежденному сосуду и задерживает переход крови из сосуда наружу.

Таким образом, тромбоциты успешно организуют первичный, «пусковой» этап остановки кровотечения при повреждении сосуда. Поэтому при заболеваниях, которым свойственно отсутствие, малое количество или неполноценность тромбоцитов, наблюдаются самопроизвольные кровотечения и кровоизлияния.

Источник

Фагоцитоз эритроцитов

Как известно, фагоцитоз – процесс поглощения и расщепления чужеродных частиц, проникших внутрь организма – очень интенсивно происходит в кровеносном русле. В связи с этим логично предполагать, что к фагоцитозу способны клетки крови. Так как большая часть этих клеток представлена эритроцитами, то периодически звучат мнения, будто эритроциты фагоцитоз и осуществляют. Так ли это? Возможна ли у них такая функция?

Что такое эритроциты и способны ли они к фагоцитозу:

Эритроциты – основной пул клеток крови, они придают ей какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть картинку какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Картинка про какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоцитыокраску, имеют вид округлых двояковыпуклых линз и содержат дыхательный пигмент – гемоглобин, переносящий кислород. Ядром эритроциты не обладают и фактически представляют собой оболочки, заполненные гемоглобином. Каких-то других выраженных органелл у них тоже нет.

Продолжительность жизни эритроцита составляет порядка 120 дней. Эти клетки непрерывно перемещаются с током крови, разнося по телу кислород и собирая из тканей углекислый газ. Важность их функции сочетается с высокой скоростью обновления. Как подсчитали ученые, ежесекундно (!) костный мозг человека продуцирует свыше 2 миллионов новых эритроцитов.

В общем, к фагоцитозу способны клетки крови, но это точно не эритроциты. Основная роль в уничтожении агрессоров принадлежит другим форменным элементам – лейкоцитам, и в небольшой степени ею обладают тромбоциты. А эритроциты фагоцитоз не осуществляют, хотя при этом сами постоянно нуждаются в том, чтобы стать его объектами. Как же происходит процесс «утилизации» красных кровяных клеток?

Как происходит фагоцитоз эритроцитов:

какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть картинку какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Картинка про какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоцитыВ организме за протекание фагоцитоза отвечает как минимум десяток разновидностей клеток. Многие из них могут участвовать в уничтожении отживших эритроцитов, однако главным образом это виды лейкоцитов, относящиеся к ретикуло-эндотелиальной системе, прежде всего, макрофаги, выстилающие синусоидные сосуды селезенки. Вообще, селезенка служит основным местом, где не способные к фагоцитозу эритроциты сами подвергаются этому процессу. Изредка эритрофагия происходит в других структурах системы: клетках Купфера печени, макрофагах лимфоузлов и так далее. Фагоциты, устраняющие отжившие эритроциты, также в избытке находятся в костном мозге – там, где происходит «рождение» красных кровяных клеток.

А если человеку удалить селезенку (иногда это практикуется при ее травмах: разрыве, угрозе разрыва), то какие клетки, способные к фагоцитозу, возьмут на себя функции селезеночных макрофагов? Эту работу разделят между собой все остальные компоненты ретикуло-эндотелиальной системы. Кроме того, активируются моноциты, которые присутствуют в кровеносном русле наряду с эритроцитами. После того как все они распределят между собой обязанности по утилизации погибших компонентов крови, человек будет вполне комфортно существовать и без селезенки.

Механизм эритрофагии:

Итак, мы ответили на вопрос, какие клетки способны к фагоцитозу эритроцитов. Теперь нужно рассмотреть следующее: как именно происходит загадочный процесс эритрофагии? Он и в самом деле загадочен, потому что однозначного мнения относительно данного момента нет. Вернее, мнение-то есть, но их целых три.

Одни эксперты считают, что клетки-фагоциты способны пожирать целые, неизмененные эритроциты, и разрушение последних происходит внутриклеточно. Об этом свидетельствуют наблюдения, в которых ученые обнаруживали фагоциты, «набитые» почти целыми красными кровяными клетками.

Другие настаивают на том, что поглощению предшествует процесс частичного разрушения: из эритроцитов вымывается гемоглобин, они перестают полноценно функционировать и становятся прозрачными. Макрофаги и прочие, зафиксировав в кровотоке такие бесполезные эритроциты, нападают на них и «добивают».

Наконец, третье мнение говорит, что распад эритроцитов на отдельные глыбки (гемолиз) происходит в крови, а фагоциты просто находят их остатки в виде «мусора» и убирают его.

Возможно, право на существование имеют все три предположения.какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Смотреть картинку какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Картинка про какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты. Фото какие клетки крови осуществляют фагоцитоз ответ ученика 1 эритроциты 2 тромбоциты 3 лейкоциты

Каким бы образом ни протекали процессы образования и уничтожения эритроцитов, важно, чтобы они происходило своевременно и полноценно. В этом может помочь препарат Трансфер Фактор. Средство представляет собой продукты фагоцитоза, происходящего в животных клетках (он добывается из молозива коров и яичного желтка). Таблетки содержат информационные молекулы, обладающие способностью обучать иммунную систему правильной работе и через этот механизм оказывать положительное влияние на все протекающие в нашем теле процессы. Это значит, что препарат повышает эффективность фагоцитоза эритроцитов и кроветворения, баланс между протеканием которых очень важен для сохранения здоровья.

Фагоциты уничтожают неполноценные клетки крови

Источник

МИКРОСКОПИЯ НАТИВНОЙ КРОВИ

Методические указания по МНК

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

О.О. Анисимова, О.Н. Морылева

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ЛАБОРАТОРНАЯ ДИАГНОСТИКА

МИКРОСКОПИЯ НАТИВНОЙ КРОВИ

Для медицинских работников различных специальностей, преподавателей и студентов медицинских вузов

МОСКВА

Утверждено
Редакционно-издательским советом факультета
повышения квалификации медицинских работников
Университета

Методические указания подготовлены
на факультете повышения квалификации
медицинских работников РУДН

Анисимова О.О., Морылева О.Н.
Лабораторная диагностика. Микроскопия нативной крови: методические указания.

В пособии рассматриваются наиболее актуальные вопросы метода микроскопии нативной крови, указания по методике проведения данного исследования и интерпретации его результатов.

Пособие предназначено для медицинских работников различных специальностей, преподавателей и учащихся медицинских образовательных учреждений.

Фотографии нативной крови, наглядно отражающие содержание методических указаний, опубликованы в пособии «Атлас нативной крови».

© Анисимова О.О., Морылева О.Н., 2010

Содержание

Список сокращений

— биологически активные добавки к пище

— биологически активные вещества

— микроскопия нативной крови

— полимеразная цепная реакция

Введение

Кровь – это уникальная субстанция нашего организма. От ее состава и физико-химических свойств зависит здоровье человека. В свою очередь, состояние крови является отражением всех обменных процессов, протекающих в организме, функциональной активности его органов и систем и, конечно же, патологических нарушений в них.

Со времен изобретения Антонием Левенгуком микроскопа, в изучении свойств крови наука прошла большой путь развития. За этот период создано колоссальное количество методов исследования этой важнейшей жидкой среды организма. Различные типы микроскопии, окраски препаратов, цитохимические и радиоизотопные методы, ИФА, ПЦР – это лишь очень неполный перечень существующих на сегодняшний день способов ее изучения. Но наиболее часто в клинической лабораторной практике для исследования крови используется микроскопия окрашенного мазка. Для этого мазок крови предварительно высушивается, фиксируется и окрашивается, а затем производится подсчёт форменных элементов и описывается морфология клеток. Нативную или живую кровь (без фиксации и окраски) микроскопируют достаточно редко. А между тем исследование «живой» капли – самый простой, информативный и минимально затратный метод исследования крови, который известен давно и широко использовался еще в прошлые века. В силу различных обстоятельств, на определенном этапе медицинская практика отошла от повсеместного использования данного метода. Но, как говорится, «все новое – это хорошо забытое старое».

И вот сегодня, в эру компьютеров и цифровых технологий, внимание к методу исследования нативной крови вновь возрастает и приобретает все большую популярность. Микроскоп удалось соединить с цифровой видеокамерой, телевизором и компьютером, что увеличило его разрешающую способность и дало возможность визуализировать на экране объекты крови, трудно различимые в обычный световой микроскоп, и, что очень важно, сохранять изображения для дальнейшей работы. Это позволило не только просматривать клеточные элементы крови, но и оценивать их динамические функциональные характеристики, выявлять биологические контаминанты в плазме, а также производить демонстрацию исследования пациенту. Последнее обстоятельство очень важно, поскольку включение пациента в диагностический процесс и получение им возможности оценки собственного состояния имеет огромное значение для привлечения его к эффективному сотрудничеству с врачом в вопросах восстановления его собственного здоровья.

В тоже время существуют определенные сложности с адаптацией исследования нативной крови к требованиям стандартизации и контроля качества по системе ФСФОК. В практическом же использовании метода возникает ряд вопросов по идентификации визуализируемых объектов вследствие недостаточного количества научно обоснованных данных по интерпретации результатов. Данные методические указания, опирающиеся на фундаментальную теоретическую базу и обширный исследовательский материал[1], в определенной мере восполнят существующий пробел и помогут упорядочить работу.

Вопросы терминологии

Метод исследования нативной крови под микроскопом не является новым в полном смысле этого слова. Обычная световая микроскопия, применяемая в лабораторной практике сегодня, максимально позволяет увеличивать просматриваемые объекты не более чем в 1500 раз. Этого достаточно для просмотра структуры окрашенных препаратов, но не дает возможности оценки динамических процессов в крови. Современная техника позволила модернизировать световую микроскопию и получить значительно больше информации о визуализируемых объектах. Но суть метода от этого не поменялась. Тем не менее целый ряд практикующих сегодня врачей называет это исследование по-разному: «темнопольник», функциональное гемосканирование и т.д. Эти формулировки ошибочны и затрудняют лицензирование деятельности.

Поэтому обращаем внимание специалистов на тот факт, что в приказах Министерства здравоохранения и социального развития РФ данный метод прописан и значится как микроскопия нативной крови, что полностью согласуется с общепринятой в лабораторной диагностике терминологией и отражает суть данного исследования. Таким образом, исследование под микроскопом капли интактной капиллярной крови в настоящих методических указаниях будет обозначаться в соответствии с официально принятой терминологией, как микроскопия нативной крови или МНК.

Общие вопросы

Метод микроскопии нативной крови подразумевает исследование образца крови сразу после взятия в течение не более 10-15 минут, после чего в крови происходят необратимые изменения. Капельку крови под покровным стеклом изучают сначала обзорно при малом увеличении, затем анализируют морфологию клеток и содержимое плазмы под иммерсией при максимальном увеличении. Важным отличием данного метода от обычных анализов является проведение исследования образца крови без какой-либо его предварительной обработки и в присутствии пациента. Пациент имеет уникальную возможность видеть свои клетки и в процессе исследования получать важнейшую для него информацию.

Перечень необходимого оборудования:

— световой микроскоп с увеличением в 1000-1500 раз с тринокуляром;

— конденсор для темнопольной микроскопии (необходимой опцией не является, т.е. его наличие для работы необязательно);

— адаптированная к микроскопу видеокамера (цифровая или аналоговая) с видеотюнером и S-video-выходом;

— устройство приёма и обработки изображений (компьютер или ноутбук – для приёма и сохранения фотоснимков и видеоизображений и/или телевизор для воспроизведения картинки на экране);

— пакет программного обеспечения.

Методика приготовления препарата

Кровь для исследования берут капиллярную, полученную обычным способом, из безымянного или среднего пальца пациента. Капля крови помещается на идеальное по чистоте, обезжиренное стекло и накрывается покровным стеклом, также тщательно обработанным.

Недопустимо использовать стекла сразу из упаковки без обработки и обезжиривания, а также предварительного визуального контроля на микроскопе при 400-кратном увеличении! Грязь великолепно видна на стекле при темнопольном микроскопировании (ТПМ).

Прокол пальца производится с использованием одноразовых скарификаторов, одноразовых спиртовых и стерильных салфеток с учетом правил санитарно-эпидемиологического режима при работе с кровью.

Капельку крови помещают на середину предметного стекла. Обращаем ваше внимание на то, что первые 1-2 капли нужно снять (их можно расположить на стекле сбоку, поскольку они для исследования не используются). Далее необходимо аккуратно накрыть основную каплю крови покровным стеклом таким образом, чтобы кровь равномерно распределилась под стеклом монослоем. Это очень важный момент для качественного приготовления препарата и получения максимально объективных результатов исследования.

Данный образец помещают на предметный столик микроскопа и просматривают сначала на малом (объективы 4, 10), затем на большом увеличении (объективы 40, 60, 100).

Артефакты

В результате использования некачественно обработанных стёкол, нарушения правил взятия крови и приготовления препарата можно неправильно интерпретировать результаты исследования и сделать ошибочные заключения. Это тем более недопустимо, поскольку анализ проводится в присутствии пациента.

Врач, производящий диагностику, должен учитывать, что предметное стекло, взятое из упаковки, загрязнено (см. фото, Атлас нативной крови). На предметных стёклах, взятых из упаковки, можно наблюдать частички пыли, ворсинки, сколы, нити, слущенный эпителий, жир и т.д.

Предметные стекла для исследования необходимо предварительно эффективно обрабатывать. Для этого они первоначально промываются моющими средствами и тщательно ополаскиваются в проточной воде, после чего помещаются в смесь Никифорова (смесь этилового спирта и эфира). Смесь должна храниться в стеклянной емкости с хорошо притёртой крышкой. Вместо смеси Никифорова можно использовать специальные готовые растворы для обработки предметных стёкол.

Далее стекла натирают нетканными салфетками и перед исследованием тестируют под микроскопом (без иммерсионного масла!).

Аналогичным образом обрабатываются покровные стекла.

Таким образом, подготовка стёкол перед исследованием имеет колоссальное значение для максимально объективной и информативной диагностики.

Клетки крови

В периферической капиллярной крови в норме можно наблюдать три различных группы клеток: эритроциты, лейкоциты и тромбоциты.

Эритроциты

Эритроциты – самая многочисленная популяция клеток крови. Количество эритроцитов в крови в норме поддерживается на постоянном уровне и составляет 3,5–5,0х10 12 в одном литре.

Продолжительность жизни эритроцита человека в среднем 120 суток.

Для описания эритроцитов в клинической лабораторной практике принята специальная терминология. Обозначим сейчас основные наиболее часто встречающиеся термины.

Анизоциты – эритроциты разного размера.

Анизоцитоз – состояние, при котором явно выражена вариация размеров эритроцитов.

Анизохромия – различная окраска эритроцитов.

Гиперхромия – интенсивная окраска эритроцитов, связанная с повышенным насыщением гемоглобином (микропрепарат: отсутствие или уменьшение центрального просветления у эритроцита).

Гипохромия – снижение плотности окраски эритроцитов (микропрепарат: увеличение размера центрального просветления и уменьшение интенсивности окраски эритроцита).

Дакриоциты (каплевидные эритроциты) – эритроциты в виде капли.

Микроциты – эритроциты диаметром менее 6,5 мкм.

Микроцитоз – состояние, при котором преобладают микроциты.

Макроциты – эритроциты диаметром более 8–9 мкм.

Макроцитоз – состояние, при котором преобладают макроциты.

Мегалоциты – эритроциты диаметром более 10–12 мкм.

Монетные столбики – агрегаты эритроцитов.

Нормоцит – двояковогнутый эритроцит нормального размера (7,0–7,8 мкм) с центральным просветлением.

Нормобласт – ядросодержащий эритроцит, клетка – предшественник ретикулоцита. В норме в периферической крови не встречается.

Акантоциты – эритроциты с многочисленными шипиками различной величины.

Мишеневидные эритроциты – клетки с центральным расположением гемоглобина в виде мишени.

Овалоциты – эритроциты овальной формы.

Ретикулоциты – молодые эритроциты без центрального просветления (диаметр 7,7–8,5 мкм), образуются после потери нормобластами ядер.

Сфероциты – эритроциты сферической формы без центрального просветления.

Стоматоциты – эритроциты, центральное просветление которых имеет вид полоски или рта. При стоматоцитарной трансформации также могут образоваться сферостоматоциты, но в отличие от сфероэхиноцитов они не имеют шипов.

Шизоциты – фрагменты разрушенных эритроцитов. При прохождении через узкие сосуды и бифуркации под давлением часть эритроцитов механически повреждается и теряет форму двояковогнутого диска. Фрагменты этих эритроцитов подвергаются гемолизу или утилизируются нейтрофилами.

Шлемовидные эритроциты – фрагменты разрушенных эритроцитов в форме шлема.

Эхиноцит – эритроцит с шипами одинакового размера, расположенными равномерно по поверхности клетки. Выделяют эхиноциты трех стадий трансформации.

Наиболее часто встречающиеся ошибки в описании и интерпретации

Лейкоциты

В периферической крови встречаются три вида клеток, объединённых общим термином. Дифференцировка лейкоцитов происходит в костном мозге. Процесс выхода лейкоцитов из костного мозга высокоселективен. В норме в кровоток поступают только зрелые клетки. Это гранулоциты – клетки, содержащие гранулы, и агранулоциты – моноциты и лимфоциты. Каждый вид клеток специализирован на выполнение присущих только им задач.

Гранулоциты

По структуре гранул выделяют три группы клеток:

Нейтрофилы составляют 60–70% общего числа лейкоцитов. Нейтрофилы рассматриваются как первая линия защиты организма. Основная функция этих клеток – участие в борьбе с микроорганизмами.

В зависимости от степени зрелости и строения ядра выделяют палочкоядерные и сегментоядерные нейтрофилы.

Палочкоядерные нейтрофилы имеют диаметр 10–18 мкм. Во время движения могут вытягиваться до весьма значительных размеров. Ядро клеток выглядит, как длинная изогнутая палочка без перемычек.

Сегментоядерные нейтрофилы имеют диаметр 10–16 мкм. Их ядро состоит из 2–5 сегментов и расположено центрально. Иногда из-за перегиба ядра перемычка между сегментами бывает не видна. Такую клетку принято относить к сегментоядерной.

Неактивные нейтрофилы имеют округлую форму, малоподвижны. Если размер нейтрофила равен или меньше размера эритроцита, можно говорить о снижении иммунитета.

Базофилы составляют всего 0,5% от общего числа лейкоцитов. Это достаточно редко встречающаяся клетка. Базофилы подвижны, способны к фагоцитозу. В гранулах клеток содержатся гистамин, лейкотриены, тромбоксаны, ферменты и другие биологически активные вещества, поддерживающие реакции воспаления. Отличить базофил от эозинофила в нативной крови можно по меньшим размерам и более конденсированному ядру. Гранулы базофила крупнее, чем у нейтрофила, но мельче и нежнее, чем у эозинофила.

Как уже отмечалось, основная функция гранулоцитов – фагоцитоз, поэтому все они обладают способностью к передвижению, что и наблюдается в нативном препарате.

В норме в поле зрения (могут быть не в каждом) встречаются единичные гранулоциты. Они в 2–3 раза крупнее эритроцитов, подвижны. При угнетении иммунитета клетки становятся мельче, практически соотносимыми с размерами эритроцитов и малоподвижными.

В процессе развития воспалительной реакции происходит мобилизация костномозговых и циркулирующих лейкоцитов, развивается лейкоцитоз, что можно наблюдать в капле нативной крови.

Морфологические аномалии нейтрофилов:

Данные морфологические аномалии необходимо дифференцировать с артефактами, полученными при приготовлении препарата.

Агранулоциты

Моноциты

В периферической крови моноциты составляют от 1 до 10% всех лейкоцитов. Моноцит – это крупная клетка диаметром 12–18 мкм. Ядро различной формы: от бобовидной до сегментированной. Цитоплазма содержит многочисленные пылевидные гранулы, иногда можно наблюдать вакуоли и фагоцитированные частицы.

Моноциты обладают хорошей адгезивной способностью, легко прилипают к стеклу и пластику, поэтому на препарате они выглядят распластанными, фагоцитирующими клетками.

Лимфоциты

В крови лимфоциты составляют 20–35% всех лейкоцитов.

Популяция лимфоцитов чрезвычайно гетерогенна. Она включает три типа зрелых Т-лимфоцитов и три типа зрелых В-лимфоцитов, имеющих различные функциональные характеристики. Помимо этого, обнаружена популяция клеток, не несущая маркеров ни Т-, ни В-клеток. Это так называемые нулевые лимфоциты или естественные киллеры (NK). Нормальные размеры лимфоцитов варьируют от 4,5–6 мкм до 10–12 мкм.

Общими анатомо-морфологическими признаками для всех клеток лимфоидного ряда являются:

— ядро крупное, округлое или овальное;

— ядро расположено в центре или эксцентрично;

— зернистость всегда носит гранулярный характер.

По размеру цитоплазмы различают широкоплазменные, среднеплазменные и узкоплазменные (большие, средние и малые) лимфоциты.

Тромбоциты

Тромбоциты образуются при отшнуровке фрагментов цитоплазмы от гигантской клетки мегакариоцита и выполняют роль ключевого фактора гемостаза. Тромбоцит содержит набор органелл, которые обеспечивают жизненный цикл клетки.

Зрелые тромбоциты – это безъядерные клетки, имеющие круглую, овальную или звёздчатую форму.

В целом популяция тромбоцитов неоднородна. Микроформы тромбоцитов имеют диаметр менее 1,5 мкм, макроформы могут достигать 5 мкм и мегалоформы — 6–10 мкм. Активные (возбуждённые) тромбоциты имеют звёздчатую форму с нитевидными отростками-псевдоподиями.

Функции тромбоцитов определяются их способностью к адгезии, агрегации, транспорту различных веществ в крови, дегрануляции, ретракции кровяного сгустка и т.д. При изучении тромбоцитов, показано, что во время их физиологической активности в течение 1–2 минут большинство из них теряют дискоидную форму и распластываются на поверхности стекла, образуя псевдоподии. При МНК тромбоциты часто видны в виде звёздчатых распластанных клеток.

Склонность к повышенной агрегации видна в виде скоплений клеток различного размера. Стимуляторами агрегации тромбоцитов являются: АДФ, адреналин, норадреналин, тромбин, серотонин, фибриноген и др.

Неклеточные структуры крови

Плазма и ее компоненты

Соотношение объёмов клеточных элементов и плазмы составляет примерно 1:1. В физиологической системе крови плазма (жидкая фаза, суспензионная среда) выступает как консервативный, наиболее стабильный компонент, препятствующий патологическим изменениям рН. Диапазон изменений рН крови составляет всего 0,1 единицы, а значения 7,35–7,45 поддерживаются мощнейшей буферной системой крови. Поэтому кровь – это всегда слабощелочная среда и кислой не бывает (только при тяжёлой патологии, но это состояния, требующие реанимационных мероприятий).

Функции плазмы настолько разнообразны и настолько жизненно важны, что можно сказать: «Плазма есть сама жизнь».

При исследовании нативной крови нормальная плазма имеет вид прозрачной жидкости слегка голубоватого цвета.

Поскольку все вещества в плазме находятся в растворённом состоянии, они имеют чрезвычайно мелкие размеры. Поэтому увидеть их посредством светового микроскопа не представляется возможным.

При микроскопии хорошо визуализируются крупные полимеризованные нити фибрина и хиломикроны.

Фибриноген и фибрин

Фибриноген – белок острой фазы воспаления и один из основных факторов свёртывания крови. Синтез фибриногена происходит в печени.

При микроскопическом исследовании нативной крови можно видеть продукт полимеризации фибриногена – фибрин.

Механизм образования фибрина in vivo состоит из трех этапов:

1. Под влиянием тромбина от фибриногена отщепляются фибринопептиды А и В, в результате чего образуются мономеры фибрина. Эта реакция происходит при обязательном участии протеолитических ферментов.

2. При участии кальция происходит агрегация и полимеризация мономеров. Образуется растворимый фибрин.

3. От растворимого фибрина с помощью ферментов отщепляется сиаловая кислота, что ведет к образованию нерастворимого фибрина и формированию сгустка.

In vitro процесс протекает несколько иначе. Через некоторое время после взятия крови запускается процесс ее свёртывания и на препарате появляются нити фибрина в виде нежных темных полос на фоне прозрачной плазмы. Иногда нити фибрина настолько тонки, что практически неразличимы в микроскоп, что, конечно, не означает их полного отсутствия.

Через 10–15 минут при участии тромбоцитов начинается ретракция кровяного сгустка и процесс фибринолиза.

При заболеваниях фибрин выпадает очень быстро и нити его значительно грубее. Это зависит от исходного содержания в плазме фибриногена. А его уровень, как известно, повышается при целом ряде заболеваний.

Нарушения в питании, наследственные факторы, определённые патологические состояния и заболевания (сахарный диабет, гиперхолестеринемия), курение, алкоголь, неблагоприятные социальные условия и стрессы, токсические влияния и целый ряд фармакологических средств, а также возраст влияют на концентрацию фибриногена в крови. По данным зарубежных исследований, вышеназванные неблагоприятные воздействия приводят к повышению уровня фибриногена, в то время как при возвращении к здоровому образу жизни его количество достоверно снижается.

Антиоксиданты (природные витамины А, С, Е и готовые формы атиоксидантов, таких как микрогидрин, фикотен, фитоси), свежие фрукты и овощи, а также достаточная физическая нагрузка также выраженно способствуют снижению уровня фибриногена и фибрина (см. фото, Атлас нативной крови).

Учитывая всё изложенное, целесообразно регулярно и в течение длительного времени проводить повторные исследования нативной крови и оценивать динамику свёртывающей системы по указанным визуальным признакам. Особенно это актуально для пациентов, относящихся к группам риска развития сердечно-сосудистых заболеваний.

Хиломикроны

Хиломикроны (ХМ) – это первый транспортер поступающих с пищей липидов (прежде всего триглицеридов (ТГ)) на их пути через лимфу в кровь. Хиломикроны образуются преимущественно в энтероцитах кишечника. Их функция: перенос экзогенного жира из кишечника в ткани (преимущественно в жировую ткань). Размеры хиломикрона достаточно велики (сравнимы с размерами эритроцитов), поэтому он не может пройти через поры, имеющиеся в стенках кровеносных капилляров, путем экзоцитоза. Путем экзоцитоза хиломикроны поступают в лимфу и с ее током попадают в большой круг кровообращения. После употребления в пищу жира в крови наблюдается повышенное содержание хиломикронов.

Иногда в крови встречаются такие аналиты (компоненты плазмы), происхождение и структура которых пока не совсем ясна. Они являются, в частности, одним из множества сюрпризов, которые уже преподнёс исследователям метод МНК. Поэтому очень важно продолжать научный поиск в данной области.

Микроорганизмы

(апатогенные и патогенные)

Справедливости ради необходимо отметить, что в естественных науках (биологии, микробиологии и др.) никогда и не постулировалось положение о стерильности крови, исходя из многочисленных наблюдений и того факта, что кровь – это основная транспортная система организма. Чтобы убедиться в этом, достаточно просмотреть научные труды не только периода 20 столетия, но даже датируемые 19 веком. Современные исследования также полностью подтверждают факт наличия форм жизни в крови.

Разрешающая способность современной аппаратуры позволяет нам при проведении МНК визуализировать достаточно большое количество живых (движущихся) микроорганизмов в крови.

Возникают следующие вопросы: может быть нарушены правила асептики и антисептики при проведении анализа, или, возможно, вся эта «живность» попадает из воздуха?

В большинстве случаев это не так! Данные отечественной и зарубежной науки, а также собственные исследования показали, что визуализируемые в крови микроорганизмы, попали на предметное стекло из кровеносного русла. Кровь же является для них средой обитания либо транслокации. И это вполне логично, мы живем в природе, а человек – это открытая система.

Сегодня уже всем известен факт присутствия в организме человека достаточно большого количества самых разнообразных микроорганизмов, которые образуют его биоценоз. При этом следует помнить, что даже в норме, кроме облигатной микрофлоры, у человека в его внутренней среде присутствуют также условно-патогенные и транзиторные микроорганизмы. Основная их среда обитания у человека – это ЖКТ, вагина, уретра. Но при определённых условиях микрофлора может заселять и несвойственные ей ниши, вызывая различные заболевания, такие как пневмонии, бронхиты, тонзиллиты, циститы и др. Расселение ее по организму происходит, в основном, гематогенным путем. По данным микробиологов, 70 % микроорганизмов – гемоформы, то есть пути их транслокации по организму проходят через кровь.

Считается, что приблизительно 40 % всей патологии человека прямо или косвенно связано с пагубной деятельностью патогенной и транзиторной микрофлоры. Заболевание может вызывать также и факультативная флора, например при увеличении количества микробных тел либо снижении общего и/или местного иммунитета.

Уникальная способность бактерий приспосабливаться и выживать в экстремальных условиях, длительно персистировать в организме, не вызывая клинических проявлений, и склонность к полиморфизму позволяет им благополучно выживать даже после антибиотикотерапии.

Часть этих форм обитает в крови, другая попадает туда транзиторно, перемещаясь по организму, реализуя предназначенный природой жизненный цикл.

Бактерии

В настоящее время наиболее распространённой классификацией, используемой большинством микробиологов и бактериологов, является классификация Берджи. Согласно этой классификации, прокариоты (бактерии) делятся на два домена «Bacteria» и «Archaea».

При нативной микроскопии мы не можем идентифицировать вид бактерий, а потому следует говорить лишь об их форме и размере.

Формы бактерий наблюдаются самые разнообразные: сферические или кокки, диплококки, палочковидные, извитые, спиралевидные и т.д.; размер их может варьировать от 0,15 мкм (микоплазмы) до 8 мкм (палочковидные) и до 50 мкм у актиномицетов. Стафилококк – грамположительный круглый кокк размером 1 мкм, стрептококк – кокк неправильной формы, неподвижен, размер от 0,5 до 2 мкм.

Можно абсолютно точно утверждать, что бактерии попадают в диапазон разрешающей способности светового микроскопа, а потому их можно наблюдать при исследовании нативной крови.

Бактерии не находятся в крови постоянно, они лишь транзиторно проходят через кровь, и их наличие в препарате не всегда является признаком патологии.

К домену бактерий современными классификаторами отнесены и не совсем обычные микроорганизмы. Речь идет о микоплазме и уреоплазме. У этих бактерий отсутствует клеточная стенка. Другой их особенностью является то, что они длительно могут персистировать в организме, являясь его условно-патогенной флорой, и не провоцирвать симптоматики. Но при определённых условиях, эти микроорганизмы способны вызывать как острые, так и хронические вялотекущие со стёртой клиникой заболевания, например при снижении иммунитета либо при резком увеличении микробных тел. В этих случаях нативная микроскопия позволяет обнаруживать полиморфные колонии бактерий (микроорганизм слишком мелкий) и большое их количество, особенно после проведения функциональной пробы с водной нагрузкой. В то время как лабораторными методами диагностики эти возбудители не всегда выявляются, так как являются тканевыми (клеточными) паразитами.

Вирусы

Мельчайшие микробы, не имеющие клеточного строения, содержат только ДНК или РНК. Морфологию вирусов изучают с помощью электронного микроскопа, так как размер вирусов чрезвычайно мал (от 18 до 400 нм). Световые микроскопы предназначены для изучения объектов не менее 0,2 мкм, поэтому крупные скопления вирусов, так называемые вирусные тельца, мы можем видеть, но как их идентифицировать от гранул и вакуолей лейкоцитов, нам пока не понятно, учитывая, что вирус – это облигатный внутриклеточный паразит. В то же время, по данным ряда исследований, вирусные тельца хорошо визуализируются в эритроците.

Неклеточные формы включают еще более мелкие частицы, такие как прионы (белковые инфекционные частицы, вызывающие прионные болезни со смертельным исходом) и вироиды (небольшие молекулы кольцевой суперспирализованной РНК, вызывают болезни растений). Данные объекты в световой микроскоп не видны.

Простейшие

Простейшие – эукариотические одноклеточные микроорганизмы, содержат ядро с ядрышком и цитоплазму с органеллами. Размеры простейших от 2 до100 мкм.

Простейшие имеют: органы движения (жгутики, реснички, псевдоподии), питания (пищеварительные вакуоли) и выделения (сократительные вакуоли). Подцарство простейших включает 7 типов, из которых 4 значимы для человека и чаще всего вызывают заболевания. Основные и наиболее распространённые возбудители болезней среди простейших: трихомонада, лейшмания, трипаносома, дизентерийная амеба, токсоплазма, лямблии, малярийный плазмодий и балантидий.

Нахождение в крови лейшманий, трипаносом и малярийного плазмодия вопросов не вызывает, поскольку при попадании в организм они либо паразитируют в клетках крови, либо используют кровь как транспортную систему. Наличие данных паразитов всегда сопровождается соответствующей клиникой.

Токсоплазма тоже проходит стадию развития в крови, но часто встречается скрытое носительство при отсутствии клинических проявлений.

Спорным до сих пор является присутствие в крови лямблий и трихомонад, поскольку непонятен механизм их выживания в несвойственной для них среде. В литературе также нет достоверных данных об обнаружении и идентификации этих простейших в периферической крови.

Грибы

К несовершенным грибам, в частности, относятся формы, вызывающие грибковые заболевания ног и стригущий лишай.

Форма, размеры и мицелий специфичны для каждого вида.

К самым известным «обитателям» человека безусловно относится Candida, которая является частью условно-патогенной и транзиторной микрофлоры млекопитающих и человека. На фоне ослабленного иммунитета, при попадании в ткани данная эндогенная флора вызывает кандидозы различной локализации: пневмонии, бронхиты, язвенные процессы в ЖКТ, циститы и др.

Достаточно часто в крови можно встретить микроорганизмы дрожжевых и диморфных грибов в стадии почкования, характерным признаком которых является плотная, четко очерченная поверхность.

Этот факт существенно помогает отличить, например, деформированный эритроцит от клетки гриба.

Гельминты

Гельминты – многоклеточные паразитические черви. Термин «гельминтозы» был введен еще Гиппократом. Сегодня известно более 100 тысяч видов паразитических червей. У человека описано их более 250 видов. Проблема гельминтозов стала чрезвычайно актуальна в настоящее время. В результате развития туризма и увеличения миграции населения, всё чаще в Европе, РФ и странах СНГ стали встречаться экзотические виды паразитов и редких гельминтозов, диагностика которых абсолютно не разработана.

По форме тела и циклам развития выделяют три различных группы гельминтов: нематоды, трематоды и цестоды.

Не углубляясь в классификацию, описание морфологии и жизненного цикла гельминтов, приведём лишь их размеры и возможность обнаружения в капиллярной периферической крови при микроскопии.

По современным научным данным (научно-обоснованным и официально подтверждённым), в периферической крови могут быть обнаружены следующие виды гельминтов в личиночной их стадии: анкилостома, некатор, аскарида, токсокара, бругия, вухерерия, лоа лоа, стронгилоид, трихинелла, шистосома.

Размеры взрослых особей, их личинок и яиц весьма значительны. Ниже представлены некоторые из них, приведённые в официальных документах (МУК 2.1.7.730-99 (По состоянию на 18 октября 2006 года) «Гигиеническая оценка качества почвы населённых пунктов», МУК 13-4-2/1751 «Возбудители гельминтозоонозов в пресноводных рыбах» от 04.10.99):

Обращаем ваше внимание на то, что указаны величины личинок, паразитирующих в рыбе. Продолжая свой жизненный цикл в организме человека, они еще больше увеличиваются в размерах.

Размеры гельминтов и их личинки значительно превышают величину не только клеток крови, но и капиллярного русла. Поэтому возможность встретить их при микроскопии периферической капиллярной крови – скорее исключение, чем правило.

Другие биологические формы

При микроскопии нативной крови достаточно часто обнаруживаются объекты, идентифицировать которые пока не представляется возможным. Не исключено (особенно при наличии определенной клинической картины), что визуализируемые в крови биологические контаминанты относятся к паразитарным формам жизни. Но однозначно это утверждать не представляется возможным. Сложность интерпретации объясняется отсутствием исследований по идентификации данных объектов. Тем не менее однозначно понятно, исходя из размеров (всего одна клетка), большинство из них – это не гельминты, поскольку все гельминты многоклеточные! Среди известных одноклеточных микроорганизмов большинство подобных форм не наблюдаются. От эритроцитов они отличаются подвижностью и иной структурой клеточного строения. Для прояснения этих вопросов необходимы глубокие серьезные исследования. Но на сегодняшний день именно эти объекты активно обсуждаются в среде практикующих врачей, причем нередко беспредметно создают почву для необоснованных домыслов.

Приложение № 1

МИКРОСКОПИЯ НАТИВНОЙ КРОВИ

ЭТАПЫ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

I. Методика приготовления препарата

1. Подготовка предметных и покровных стекол (стекла готовятся до исследования).

1.1. Замачивание стекол в специальном растворе (этиловый спирт 96° + эфир для наркоза =1:1) с целью обезжиривания (не менее 1 часа).

1.2. Тщательная натирка стекол нетканой салфеткой.

1.3. Предварительный контрольный просмотр стекол перед исследованием при 400-кратном увеличении на предмет наличия возможных артефактов.

2.1. Кровь для исследования берут капиллярную из безымянного или среднего пальца.

2.2. Палец тщательно протирается спиртовой салфеткой. Затем высушивается стерильной сухой марлевой салфеткой.

2.3. Прокол пальца производят с использованием одноразового скарификатора.

2.4. Каплю крови помещают на середину покровного стекла и аккуратно (без усилий – во избежание раздавливания клеток крови и появления артефактов) накрывают покровным стеклом, также тщательно обработанным. Кровь под стеклом должна распределиться равномерно монослоем, что очень важно для объективности результатов. Примечание: первые 1–2 капли крови помещаются на предметное стекло в боковой его части.

2.5. Полученный препарат крови помещают на предметный столик микроскопа и просматривают сначала на малом (объективы: 4, 10), а затем на большом (объективы: 40, 100) увеличении.

II. Микроскопия крови

Увеличение и разрешающая способность светового микроскопа позволяют визуализировать в крови в основном только нижеперечисленные объекты:

— нормальные дискоциты (6–8 мкм);

— анизоциты (микро- и макроформы 4–15 мкм);

— пойкилоциты (клетки с измененной формой);

— анизохромные (с различной окраской);

— юные и незрелые формы (ретикулоциты, нормобласты);

— эхиноциты, стоматоциты, шлемовидные эритроциты;

— гемолизированные эритроциты и другие формы деградации и старения эритроцитов;

— включения в эритроцитах (остатки ядра);

— гранулоциты (нейтрофилы, эозинофилы, базофилы);

— агранулоциты (моноциты, Т- и В-лимфоциты);

— юные и незрелые формы (в том числе бластные).

2. Фибрин (в виде нитей и тяжей).

3. Хиломикроны (шарообразные опалесцирующие структуры светло-зеленого цвета размером до 5–8 мкм).

4. Бактерии разного размера и формы, подвижные и неподвижные (примечание: без видовой идентификации!).

6. Возможно обнаружение яиц глистов и миграционных личиночных стадий некоторых гельминтов (микрофилярий, аскарид, анкилостом, некатора, трихинелл и др.). Диагностика гельминтозов проводится с учетом их макроразмеров (значительно крупнее эритроцита, примерно от 100 и больше мкм). Редчайшей диагностической находкой может быть обнаружение взрослого гельминта (очевидно, что это многоклеточное существо также будет макроразмеров).

Примечания:

III. Функциональная проба

При наличии показаний (выраженной агрегации эритроцитов, снижении физиологической активности лейкоцитов и др.) целесообразно проводить функциональную пробу, которая у взрослого человека включает:

Цель проведения функциональной пробы: оценка адаптационных резервов организма человека и индивидуальный подбор БАД к пище в качестве превентивной диетотерапии для профилактики возникновения заболевания либо предупреждения его прогрессирования.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *