какие клетки образуются в селезенке
Какие клетки образуются в селезенке
Селезенка — периферический орган кроветворной и иммунной систем. Кроме выполнения кроветворной и защитной функций, она участвует в процессах гибели эритроцитов, вырабатывает вещества, угнетающие эритропоэз, депонирует кровь.
Развитие селезенки. Закладка селезенки происходит на 5-й неделе эмбриогенеза образованием плотного скопления мезенхимы. Последняя дифференцируется в ретикулярную ткань, прорастает кровеносными сосудами, заселяется стволовыми кроветворными клетками. На 5-м месяце эмбриогенеза в селезенке отмечаются процессы миелопоэза, которые к моменту рождения сменяются лимфоцитопоэзом.
Строение селезенки. Селезенка снаружи покрыта капсулой, состоящей из мезотелия, волокнистой соединительной ткани и гладких миоцитов. От капсулы внутрь отходят перекладины — трабекулы, анастомозирующие между собой. В них также есть волокнистые структуры и гладкие миоциты. Капсула и трабекулы образуют опорно-сократительный аппарат селезенки. Он составляет 5-7% объема этого органа. Между трабекулами находится пульпа (мякоть) селезенки, основу которой составляет ретикулярная ткань.
Стволовые кроветворные клетки определяются в селезенке в количестве, примерно, 3,5 в 105 клеток. Различают белую и красную пульпы селезенки.
Белая пульпа селезенки — это совокупность лимфоидной ткани, которая образована лимфатическими узелками (В-зависимые зоны) и лимфатическими периартериальными влагалищами (Т-зависимые зоны).
Белая пульпа при макроскопическом изучении срезов селезенки выглядит в виде светло-серых округлых образований, составляющих 1/5 часть органа и распределенных диффузно по площади среза.
Лимфатическое периартериальное влагалище окружает артерию после выхода ее из трабекулы. В его составе обнаруживаются антигенпредставляющие (дендритные) клетки, ретикулярные клетки, лимфоциты (преимущественно Т-хелперы), макрофаги, плазматические клетки. Лимфатические первичные узелки по своему строению аналогичны таковым в лимфатических узлах. Это округлое образование в виде скопления малых В-лимфоцитов, прошедших антигеннезависимую дифференцировку в костном мозге, которые находятся во взаимодействии с ретикулярными и дендритными клетками.
Вторичный узелок с герминативным центром и короной возникает при антигенной стимуляции и наличии Т-хелперов. В короне присутствуют В-лимфоциты, макрофаги, ретикулярные клетки, а в герминативном центре — В-лимфоциты на разных стадиях пролиферации и дифференцировки в плазматические клетки, Т-хелперы, дендритные клетки и макрофаги.
Краевая, или маргинальная, зона узелков окружена синусоидальными капиллярами, стенка которых пронизана щелевидными порами. В эту зону Т-лимфоциты мигрируют по гемокапиллярам из периартериальной зоны и поступают в синусоидные капилляры.
Красная пульпа — совокупность разнообразных тканевых и клеточных структур, составляющих всю оставшуюся массу селезенки, за исключением капсулы, трабекул и белой пульпы. Основные структурные компоненты ее — ретикулярная ткань с клетками крови, а также кровеносные сосуды синусоидного типа, образующие причудливые лабиринты за счет разветвлений и анастомозов. В ретикулярной ткани красной пульпы различают два типа ретикулярных клеток — малодифференцированные и клетки фагоцитирующие, в цитоплазме которых много фагосом и лизосом.
Между ретикулярными клетками располагаются клетки крови — эритроциты, зернистые и незернистые лейкоциты.
Часть эритроцитов находится в состоянии дегенерации или полного распада. Такие эритроциты фагоцитируются макрофагами, переносящими затем железосодержащую часть гемоглобина в красный костный мозг для эритроцитопоэза.
Синусы в красной пульпе селезенки представляют часть сосудистого русла, начало которому дает селезеночная артерия. Далее следуют сегментарные, трабекулярные и пульпарные артерии. В пределах лимфоидных узелков пульпарные артерии называются центральными. Затем идут кисточковые артериолы, артериальные гемокапилляры, венозные синусы, пульпарные венулы и вены, трабекулярные вены и т. д. В стенке кисточковых артериол есть утолщения, называемые гильзами, муфтами или эллипсоидами. Мышечные элементы здесь отсутствуют. В эндотелиоцитах, выстилающих просвет гильз, обнаружены тонкие миофиламенты. Базальная мембрана очень пористая.
Основную массу утолщенных гильз составляют ретикулярные клетки, обладающие высокой фагоцитарной активностью. Полагают, что артериальные гильзы участвуют в фильтрации и обезвреживании артериальной крови, протекающей через селезенку.
Венозные синусы образуют значительную часть красной пульпы. Их диаметр 12-40 мкм. Стенка синусов выстлана эндотелиоцитами, между которыми имеются межклеточные щели размером до 2 мкм. Они лежат на прерывистой базальной мембране, содержащей большое количество отверстий диаметром 2-6 мкм. В некоторых местах поры в базальной мембране совпадают с межклеточными щелями эндотелия. Благодаря этому устанавливается прямое сообщение между просветом синуса и ретикулярной тканью красной пульпы, и кровь из синуса может выходить в окружающую их ретикулярную строму. Важное значение для регуляции кровотока через венозные синусы имеют мышечные сфинктеры в стенке синусов в месте их перехода в вены. Имеются также сфинктеры в артериальных капиллярах.
Сокращения этих двух типов мышечных сфинктеров регулирует кровенаполнение синусов. Отток крови из микроциркуляторного русла селезенки происходит по системе вен возрастающего калибра. Особенностью трабекулярных вен являются отсутствие в их стенке мышечного слоя и сращение наружной оболочки с соединительной тканью трабекул. Вследствие этого трабекулярные вены постоянно зияют, что облегчает отток крови.
Возрастные изменения селезенки. С возрастом в селезенке отмечаются явления атрофии белой и красной пульпы, уменьшается количество лимфатических фолликулов, разрастается соединительнотканная строма органа.
Кроветворная и иммунная системы чрезвычайно чувствительны к различным повреждающим воздействиям. При действии экстремальных факторов, тяжелых травмах и интоксикациях в органах происходят значительные изменения. В костном мозге уменьшается число стволовых кроветворных клеток, опустошаются лимфоидные органы (тимус, селезенка, лимфатические узлы), угнетается кооперация Т- и В-лимфоцитов, изменяются хелперные и киллерные свойства Т-лимфоцитов, нарушается дифференцировка В-лимфоцитов.
Какие клетки образуются в селезенке
I Международная научно-практическая конференция «ФАРМАКОЛОГИЯ, ФАРМАЦЕВТИЧЕСКАЯ ТЕХНОЛОГИЯ И ФАРМАКОТЕРАПИЯ В ОБЕСПЕЧЕНИИ АКТИВНОГО ДОЛГОЛЕТИЯ»
04-05 апреля 2013 г.
в области гериатрии
БИОГЕРОНТОЛОГИЯ
СЕЛЕЗЕНКА: ОНТОГЕНЕЗ И СТАРЕНИЕ
Санкт-Петербургский институт биорегуляции и геронтологии СЗО РАМН, г. Санкт-Петербург, Россия,
В обзоре проанализированы данные морфофункциональных и молекулярных особенностей развития и старения селезенки. C возрастом увеличивается вероятность развития аутоиммунных, эндокринных, инфекционных и раковых заболеваний. Известно, что иммунная система, и, в частности, ее центральный орган – тимус, наиболее подвержены возрастной инволюции. С вязи с этим часть функций тимуса при старении организма делегируется селезенке, менее подверженной возрастным изменениям. Кроме того, функциональная активность селезенки при ее старении может быть восстановлена под действием пептидных биорегуляторов. В настоящем обзоре проанализированы данные по развитию и возрастным изменениям селезенки с точки зрения иммунологии. Таким образом, обзор данных по развитию и возрастной инволюции селезенки показал, что указанный орган иммунной системы менее подвержен дистрофии в сравнении с тимусом. Кроме того, структура и функции селезенки могут быть частично восстановлены под действием пептидных биорегуляторов.
Ключевые слова: старение, селезенка, пептиды, иммуногенез.
Spleen: ontogenesis and aging
Kyznecova E.P., Linkova N.S., Dudkov A.V., Vojcehovskaya V.A.
Keywords: aging, spleen, peptides, immunogenesis.
Введение.
Известно, что с возрастом увеличивается вероятность развития аутоиммунных, эндокринных, инфекционных и раковых заболеваний. В старении иммунной системы наибольшую роль играет гетерогенная инволюция тимуса. У людей пожилого и старческого возраста значительная часть тимуса замещена жировой и соединительной тканью. При этом инволютивные изменения селезенки изучены недостаточно и вполне вероятно, что при старении часть функций тимуса делегируется селезенке.
В настоящем обзоре проанализированы данные по развитию и возрастным изменениям селезенки с точки зрения иммунологии.
У человека селезенка закладывается на 5-6 неделе эмбрионального развития в толще дорсальной брыжейки, куда мигрируют клетки лимфоидного ряда. В начале развития селезенка представляет собой плотное скопление мезенхимальных клеток, пронизанное первичными кровеносными сосудами. В дальнейшем часть клеток дифференцируется в ретикулярную ткань, которая заселяется стволовыми клетками.
На 7-8 неделе развития в селезенке появляются макрофаги. На 2-4 месяце эмбриогенеза внутрь селезенки, начиная от капсулы, врастают тяжи, из которых в дальнейшем формируются трабекулы. На 12 неделе развития селезенки в ней впервые появляются В-лимфоциты. В этом же периоде формируются синусоидные капилляры и другие кровеносные сосуды, в сосудистом русле селезенки появляются широкие венозные синусы, разделяющие ее на островки.
На 3-4 месяце внутриутробного развития островки кроветворных клеток располагаются равномерно вокруг артерии (Т-зона), тогда как в конце 4 и в течение 5 месяца происходит концентрация лимфоцитов и макрофагов сбоку от артерии (В-зона). Впоследствии из лимфоцитов формируются периартериальные лимфоидные муфты и лимфоидные узелки.
Процессы миелопоэза в селезенке человека достигают максимального развития на 5 месяце внутриутробного периода, после чего их активность снижается и прекращается к моменту рождения. Основную функцию миелопоэза в антенатальном периоде выполняет красный костный мозг. Одновременно с развитием узелков происходит формирование красной пульпы, которая становится морфологически различимой на 6 месяце внутриутробного развития. На 9 месяце эмбриогенеза в лимфоидных узелках появляются центры размножения иммунных клеток, что свидетельствует об усилении лимфопоэза в селезенке к моменту рождения.
Селезенка покрыта соединительнотканной капсулой и мезотелием. Капсула селезенки состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна, между которыми залегает небольшое количество гладких мышечных клеток.
В трабекулах селезенки человека содержится большое количество эластических волокон и незначительное число гладких мышечных клеток. Строму селезенки составляют ретикулярные клетки и волокна, содержащие коллаген III и IV типов.
Красная пульпа селезенки включает пульпарные тяжи и венозные синусы. Пульпарные тяжи расположены между синусами и представляют собой форменные элементы крови, макрофаги, плазматические клетки, лежащие в петлях ретикулярной соединительной ткани. Здесь плазмоциты заканчивают свою дифференцировку и секретируют антитела. В пульпарных тяжах встречаются скопления В- и Т- лимфоцитов, которые могут формировать новые узелки белой пульпы.
Синусы красной пульпы расположены между селезеночными тяжами и являются частью сосудистой системы селезенки. Синусы красной пульпы представляют собой широкие тонкостенные сосуды неправильной формы, выстланные эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними. Через эти щели в просвет синусов из окружающих тяжей мигрируют форменные элементы крови. Базальная мембрана синусов прерывиста, ее дополняют ретикулярные волокна и отростки ретикулярных клеток [3, 6].
Периартериальные лимфатические влагалища (ПАЛВ) представляют собой скопления лимфоидной ткани вытянутые по ходу пульпарной артерии. ПАЛВ являются Т-зависимой зоной селезенки.
Лимфатические узелки селезенки являются B-зависимой зоной белой пульпы селезенки и представляют собой капсулу из уплощенных ретикулярных клеток, внутри которой находятся скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов. Через лимфатический узелок проходит центральная артерия. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону.
Маргинальная зона узелков селезенки представляет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она состоит из Т- и В-лимфоцитов и единичных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке.
Периартериальная зона является продолжением ПАЛВ и образована в основном из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка. Отростки интердигитирующих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно контактируют с ними. Полагают, что дендритные клетки способны адсорбировать антигены и передавать Т-лимфоцитам информацию о состоянии микроокружения, стимулируя их бласт-трансформацию и пролиферацию. Активированные Т-лимфоциты задерживаются в периартериальной зоне в течение 2-3 суток, где они размножаются, а затем мигрируют в синусы краевой зоны через гемокапилляры. Тем же путем попадают в селезенку и В-лимфоциты.
Причина заселения Т- и В-лимфоцитами соответствующих зон недостаточно ясна. В функциональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов.
Центр размножения, или герминативный центр узелка, состоит из ретикулярных клеток, пролиферирующих В-лимфобластов и дифференцирующихся плазматических клеток. Кроме того, в центре размножения иммунных клеток селезёнки нередко можно обнаружить скопления макрофагов с фагоцитированными лимфоцитами и дендритные клетки. В этих случаях центральная часть узелка выглядит светлой.
Мантийная зона окружает периартериальную зону и центр размножения и состоит из плотно расположенных малых В-лимфоцитов и небольшого количества Т-лимфоцитов, а также содержит плазмоциты и макрофаги. Клетки мантийной зоны плотно прилегают друг к другу и расслаиваются циркулярно направленными толстыми ретикулярными волокнами [8].
Установлено, что селезенка человека выполняет иммунную, фильтрационную и депонирующую функции, участвует в процессах гемолиза, синтеза белков и в кроветворении, однако механизмы указанных процессов изучены недостаточно.
Иммунная функция селезенки заключается в утилизации макрофагами вредных веществ и очищении крови от чужеродных агентов. В селезенке разрушаются нерастворимые компоненты клеточного детрита – эндотоксины. Иммунные клетки белой пульпы селезенки человека способны синтезировать специфические антитела в ответ на поступление в кровь чужеродных антигенов [10].
Антигены, приносимые кровью, задерживаются в маргинальной зоне и красной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих интердигитирующих клеток белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе клетки, продуцирующие антитела, появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном иммунном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток [11, 12, 13].
Кроме того, селезенка принимает участие в обмене железа. Её макрофаги преобразуют железо из разрушенных эритроцитов в трансферин. Также в селезенке гемоглобин преобразуется в билирубин и гемосидерин.
Фильтрационная функция селезенки заключается в контроле циркулирующих клеток крови. Благодаря специфическому строению селезеночных тяжей красной пульпы, селезенка способна задерживать старые и дефектные эритроциты. Селезеночные тяжи имеют в своих стенках щели (шириной в среднем 3 мкм), которые являются непреодолимым препятствием для старых и поврежденных эритроцитов (диаметром 4.5 мкм), утративших способность к деформации. Из жизнеспособных, проходящих через щели эритроцитов макрофаги удаляют паразитов, остатки ядер (тельца Говелла-Жолли) и денатурированный гемоглобин (тельца Гейнца) [5].
Селезенка способна накапливать форменные элементы крови. В норме у человека в ней депонированы от 30 до 50% всех тромбоцитов и часть нейтрофилов, которые могут выбрасываться в периферическое русло при кровотечениях или в ответ на инфекцию [4].
Участие селезенки в обмене белков заключается в том, что она синтезирует альбумин и глобин, а так же имеет большое значение в образовании иммуноглобулинов [7].
Селезенка взрослого человека продуцирует лимфоциты и моноциты. В красной пульпе моноциты задерживаются и дифференцируются в макрофаги. При нарушении нормальных процессов кроветворения в костном мозге селезенка способна вырабатывать форменные элементы крови и становится главным органом экстрамедуллярного гемопоэза.
В пожилом возрасте наблюдается снижение функциональной активности селезенки, что выражается в увеличении числа стареющих эритроцитов в кровеносном русле, что, в свою очередь, является одной из причин недостаточности газообменных процессов в тканях при старении.
Возрастные изменения в селезенке характеризуются как морфологической, так и функциональной картиной инволюции. В старческом возрасте в селезенке наблюдается атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппарат вырисовывается более четко. Количество лимфатических узелков в селезенке и размеры их центров с возрастом уменьшаются. Ретикулярные волокна белой и красной пульпы грубеют и становятся более извилистыми, формируются узловатые утолщения волокон. При возрастной атрофии селезенки количество макрофагов и лимфоцитов в пульпе уменьшается, тогда как число зернистых лейкоцитов и тучных клеток возрастает. Как в старческом, так и в детском возрасте в селезенке обнаруживаются гигантские многоядерные клетки — мегакариоциты. С возрастом в селезенке возрастает число гибнущих эритроцитов, что выражается в увеличении количества железосодержащего пигмента, имеющего межклеточную локализацию [9]. Увеличение в числа таких эритроцитов в кровяном русле, в свою очередь, является одной из причин недостаточности газообменных процессов в тканях при старении. Сходные инволютивные изменения в селезенке наблюдаются и при её ускоренном старении, индуцированном γ-излучением.
Показано, что при исследовании селезенки мышей после облучения в её тканях наблюдалось сокращение площади белой пульпы и атрофия периартериальных муфт. Лимфоидные фолликулы были замещены центральными артериями, окруженными тонким слоем перифолликулярной ретикулярной ткани, в которой обнаруживались единичные скопления распадающихся лимфоцитов, плазматических и ретикулярных клеток. При ускоренном старении в стенках кровеносных сосудов белой пульпы и соединительно-тканых трабекулах наблюдалась отечность, они были частично гомогенизированы за счет плазматического пропитывания. Периферические синусы в селезенке переполнялись кровью, а строма в субкапсулярной зоне была практически оголена. Более чем в 2 раза снизилась клеточность в субкапсулярной зоне, в то время как пролиферативная активность клеток на периферии селезенки возрастала [1].
По данным других исследований показано, что введение экстракта селезенки старых (20 месячных) мышей молодым (2 месячным) животным приводило к ускоренному старению, затрагивающему всю нейроиммуноэндокринную систему.
Кроме того важную роль в процессах старения селезенки играют кейлоны – высокомолекулярные белки, угнетающие пролиферацию иммунных клеток селезенки. С помощью хромотографического анализа из кейлонов были выделены низкомолекулярные пептиды – супрессоры активности иммунных клеток – тафцин и спленин. Предшественник тафцина синтезируется в лимфоцитах селезенки в виде лейконина, который путем ограниченного протеолиза преобразуется в активную форму. Спленин по функциям и структуре напоминает гормон тимуса тимопоэтин, что свидетельствует о сходстве иммунологических процессов, а возможно, и механизмов старения указанных органов. Так, активные центры спленина и тимопоэтина различаются лишь одним аминокислым остатком.
Важную роль в механизмах старения селезенки, подобно другим органам иммунной системы, играет пептидная регуляция [4].
Наиболее выраженный геропротекторный эффект в отношении функциональной активности селезенки оказывает синтетический пептид Т-38 (H-Lys-Glu-Asp-OH, везуген), сконструированный в Санкт-Петербургском институте биорегуляции и геронтологии СЗО РАМН [2].
Геропротекторные свойства пептида Т-38 были изучены на крысах в возрасте 2.5 месяцев, которым после облучения был введен пептид Т-38 [1]. В исследовании селезенки крыс в модели ускоренного старения, индуцированного γ–облучением, были получены следующие эффекты. По сравнению с контрольной группой под действием пептида Т-38 у таких крыс наблюдалось относительное увеличение содержания белой пульпы и появление крупных гемопоэтических островков. Содержание крупных лимфобластов в лимфатических фолликулах и парафолликулярной зоне также повышалось, многие из которых находились в состоянии митотического деления, что косвенно предполагает активацию процессов репаративной регенерации в селезенке. В паренхиме селезенки верифицировались группы PCNA + клеток, причем в зонах гемопоэза они формировали скопления [1].
Кроме того, известно, что некоторые биогенные амины способны оказывать влияние на свойства клеток микроокружения селезенки, которые, в свою очередь, регулируют активность иммунных клеток в данном органе. Таким образом, пептидные биорегуляторы играют важную роль в поддержании её функциональной активности при старении.
Приведенные данные свидетельствуют о возможности повышения функциональной активности селезенки и замедлении её старения под действием пептидных биорегуляторов.
Выводы.
Обзор данных по развитию и возрастной инволюции селезенки показал, что указанный орган иммунной системы менее подвержен дитрофии в сравнении с тимусом. Кроме того, структура и функции селезенки могут быть частично восстановлены под действием пептидных биорегуляторов. Таким образом, при старении иммунной системы селезенка становится важным центром иммуногенеза.
Органы кроветворения и иммунной защиты
Часть третья – Селезнка
Селезенка (splen, lien) — периферический и самый крупный орган иммунной системы, располагающийся по ходу кровеносных сосудов. К функциям селезенки относятся:
В селезенке происходят антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов и образование антител, а также выработка веществ, угнетающих эритропоэз в красном костном мозге.
Развитие. У человека селезенка закладывается на 5-й неделе эмбрионального периода развития в толще мезенхимы дорсальной брыжейки. В начале развития селезенка представляет собой плотное скопление мезенхимных клеток, пронизанное первичными кровеносными сосудами. В дальнейшем часть клеток дифференцируется в ретикулярную ткань, которая заселяется стволовыми клетками. На 7—8-й неделе развития в селезенке появляются макрофаги. На 12-й неделе развития селезенки впервые появляются В-лимфоциты с иммуноглобулиновыми рецепторами. Процессы миелопоэза в селезенке человека достигают максимального развития на 5-м месяце внутриутробного периода, после чего активность их снижается и к моменту рождения прекращается совсем. Основную функцию миелопоэза к этому времени выполняет красный костный мозг. Процессы лимфоцитопоэза в селезенке к моменту рождения, наоборот, усиливаются.
На 3-м месяце эмбрионального развития в сосудистом русле селезенки появляются широкие венозные синусы, разделяющие ее на островки. Вначале островки кроветворных клеток располагаются равномерно вокруг артерии (Т-зона), а на 5-м месяце начинается концентрация лимфоцитов и макрофагов сбоку от нее (В-зона). К этому времени популяция В-лимфоцитов, выявляемая при помощи иммунологических методов, примерно в 3 раза превышает популяцию Т-лимфоцитов. Одновременно с развитием узелков происходит формирование красной пульпы, которая становится морфологически различимой на 6-м месяце внутриутробного развития.
Строение
Селезенка покрыта соединительнотканной капсулой и брюшиной (мезотелием). Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток.
Внутрь органа от капсулы отходят перекладины — трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. Капсула и трабекулы в селезенке человека занимают примерно 5—7 % от общего объема органа и составляют его опорно-сократительный аппарат. В трабекулах селезенки человека сравнительно немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле.
Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов.
Паренхима (или пульпа) селезенки включает два отдела с разными функциями: белая пульпа (pulpa lienis alba) и красная пульпа (pulpa lienis rubra).
Строение селезенки и соотношение между белой и красной пульпой могут изменяться в зависимости от функционального состояния органа.
Белая пульпа селезенки
Белая пульпа селезенки представлена лимфоидной тканью, расположенной в адвентиции артерий в виде шаровидных скоплений, или узелков, и лимфатических периартериальных влагалищ. В целом они составляют примерно 1/5 органа.
Лимфатические узелки селезенки (фолликулы, или мальпигиевы тельца; lymphonoduli splenici) 0,3—0,5мм в диаметре представляют собой скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов в петлях ретикулярной ткани (дендритных клеток), окруженные капсулой из уплощенных ретикулярных клеток. Через лимфатический узелок проходит, обычно эксцентрично, центральная артерия (a. centralis), от которой отходят радиально капилляры.
Лимфатические узелки селезенки (как и лимфоузлов) – являются B-зависимой зоной белой пульпы селезенки. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону.
Периартериальная зона занимает небольшой участок узелка около центральной артерии и является продолжением периартериального влагалища (т.е. образована главным образом из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка). Субмикроскопические отростки интердигитирующих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно с ними контактируют. Полагают, что эти клетки адсорбируют антигены, поступающие сюда с кровотоком, и передают Т-лимфоцитам информацию о состоянии микроокружения, стимулируя их бласт-трансформацию и пролиферацию. В течение 2—3 сут активированные Т-лимфоциты остаются в этой зоне и размножаются. В дальнейшем они мигрируют из периартериальной зоны в синусы краевой зоны через ге-мокапилляры. Тем же путем попадают в селезенку и В-лимфоциты. Причина заселения Т- и В-лимфоцитами «своих» зон недостаточно ясна. В функциональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов.
Центр размножения, или герминативный центр узелка, состоит из ретикулярных клеток и пролиферирующих В-лимфобластов, дифференцирующихся антитело-образующих плазматических клеток. Кроме того, здесь нередко можно обнаружить скопления макрофагов с фагоцитированными лимфоцитами или их фрагментами в виде хромофильных телец и дендритные клетки. В этих случаях центральная часть узелка выглядит светлой (т.н. «реактивный центр»).
Периартериальные лимфатические влагалища (ПАЛВ, vagina periarterialis lymphatica) представляют собою вытянутые по ходу пульпарной артерии скопления лимфоидной ткани. Периартериальные лимфатические влагалища являются Т-зависимой зоной селезенки.
Краевая, или маргинальная, зона узелков селезенки представляет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она как бы окружает лимфатические узелки и периартериальные лимфатические влагалища, состоит из Т- и В-лимфоцитов и единичных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке.
Антигены, приносимые кровью, задерживаются в маргинальной зоне и красной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих клеток (дендритных и интердигитирующих) белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе продуцирующие антитела клетки появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном иммунном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток.
Красная пульпа селезенки
Красная пульпа селезенки включает венозные синусы и пульпарные тяжи.
Пульпарные тяжи. Часть красной пульпы, расположенная между синусами, называется селезеночными, или пульпарными, тяжами (chordae splenicae) Бильрота. Это форменные элементы крови, макрофаги, плазматические клетки лежащие в петлях ретикулярной соединительной ткани. Здесь по аналогии с мозговыми тяжами лимфатических узлов заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники которых перемещаются сюда из белой пульпы. В пульпарных тяжах встречаются скопления В- и Т-лимфоцитов, которые могут формировать новые узелки белой пульпы. В красной пульпе задерживаются моноциты, которые дифференцируются в макрофаги.
Селезенка считается «кладбищем эритроцитов» в связи с тем, что обладает способностью понижать осмотическую устойчивость старых или поврежденных эритроцитов. Такие эритроциты не способны выйти в венозные синусы и подвергаются разрушению и поглощаются макрофагами красной пульпы.
В результате расщепления гемоглобина поглощенных макрофагами эритроцитов образуются и выделяются в кровоток билирубин и содержащий железо трансферрин. Билирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровотока захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты.
В селезенке депонируется кровь и скапливаются тромбоциты. Старые тромбоциты также подвергаются здесь разрушению.
Синусы красной пульпы, расположенные между селезеночными тяжами, представляют собой часть сложной сосудистой системы селезенки. Это широкие тонкостенные сосуды неправильной формы, выстланы эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы. Базальная мембрана прерывиста, ее дополняют ретикулярные волокна и отростки ретикулярных клеток.
Васкуляризация. В ворота селезенки входит селезеночная артерия, которая разветвляется на трабекулярные артерии. Наружная оболочка артерий рыхло соединена с тканью трабекул. Средняя оболочка четко заметна на любом срезе трабекулярной артерии благодаря мышечным пучкам, идущим в составе ее стенки по спирали. От трабекулярных артерий отходят пульпарные артерии. В наружной оболочке этих артерий много спирально расположенных эластических волокон, которые обеспечивают продольное растяжение и сокращение сосудов. Недалеко от трабекул в адвентиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки. Артерия получает название центральной.
Центральная артерия, проходящая через узелок, отдает несколько гемокапилляров и, выйдя из узелка, разветвляется в виде кисточки на несколько кисточковых артериол (arteriolae penicillaris). Дистальный конец этой артериолы продолжается в эллипсоидную (гильзовую) артериолу (arteriolaelipsoideae), снабженную муфтой (или «гильзой») из ретикулярных клеток и волокон. Это своеобразный сфинктер на артериоле. У человека эти гильзы развиты очень слабо. В эндотелии гильзовых или эллипсоидных артериол обнаружены сократительные фила-менты. Далее следуют короткие гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (это т.н. закрытое кровообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань красной пульпы (это т.н. открытое кровообращение). Закрытое кровообращение — путь быстрой циркуляции и оксигенации тканей. Открытое кровообращение — более медленное, обеспечивающее контакт форменных элементов крови с макрофагами.
Синусы являются началом венозной системы селезенки. Их диаметр колеблется от 12 до 40 мкм в зависимости от кровенаполнения. При расширении совокупность всех синусов занимает большую часть селезенки. Эндотелиоциты синусов расположены на прерывистой базальной мембране. По поверхности стенки синусов в виде колец залегают ретикулярные волокна. Синусы не имеют перицитов. Во входе в синусы и в месте их перехода в вены имеются подобия мышечных сфинктеров. При открытых артериальных и венозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что способствует концентрации в нем клеточных элементов. В случае закрытия венозного и артериального сфинктеров кровь депонируется в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через которые кровь может проходить в ретикулярную строму. Расслабление артериального и венозного сфинктеров, а также сокращение гладких мышечных клеток капсулы и трабекул ведет к опорожнению синусов и выходу крови в венозное русло.
Отток венозной крови из пульпы селезенки совершается по системе вен. Трабекулярные вены лишены собственного мышечного слоя; средняя оболочка в них выражена очень слабо. Наружная оболочка вен плотно сращена с соединительной тканью трабекул. Такое строение вен обусловливает их зияние и облегчает выброс крови при сокращении гладких мышечных клеток селезенки. Между артериями и венами в капсуле селезенки, а также между пульпарными артериями встречаются анастомозы.
Иннервация. В селезенке имеются чувствительные нервные волокна (дендриты нейронов спинномозговых узлов) и постганглионарные симпатические нервные волокна из узлов солнечного сплетения. Миелиновые и безмиелиновые (адренергические) нервные волокна обнаружены в капсуле, трабекулах и сплетениях вокруг трабекулярных сосудов и артерий белой пульпы, а также в синусах селезенки. Нервные окончания в виде свободных концевых веточек располагаются в соединительной ткани, на гладких мышечных клетках трабекул и сосудов, в ретикулярной строме селезенки.
Возрастные изменения. В старческом возрасте в селезенке происходит атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппарат вырисовывается более четко. Количество лимфатических узелков в селезенке и размеры их центров постепенно уменьшаются. Ретикулярные волокна белой и красной пульпы грубеют и становятся более извилистыми. У лиц старческого возраста наблюдаются узловатые утолщения волокон. Количество макрофагов и лимфоцитов в пульпе уменьшается, а число зернистых лейкоцитов и тучных клеток возрастает. У детей и лиц старческого возраста в селезенке обнаруживаются гигантские многоядерные клетки — мегакариоциты. Количество железосодержащего пигмента, отражающее процесс гибели эритроцитов, с возрастом в пульпе увеличивается, но располагается он главным образом внеклеточно.
Регенерация. Физиологическое обновление лимфоидных и стромальных клеток происходит в пределах самостоятельных стволовых дифферонов. Экспериментальные исследования на животных показали возможность восстановления селезенки после удаления 80—90% ее объема (репаративная регенерация). Однако полного восстановления формы и размеров органа при этом, как правило, не наблюдается.