Колебания, совершаемые телом под действием внешней периодически изменяющейся силы, называются вынужденными колебаниями.
Внешняя периодически изменяющаяся сила называется вынуждающей силой.
Примерами вынужденных колебаний являются тряска автомобиля, движущегося по неровной дороге, вибрации кормовой части судна, связанные с работой гребного винта, движение качелей, которые кто-то периодически подталкивает.
Особый интерес представляют вынужденные колебания в системе, способной совершать свободные колебания, т. е. обладающие собственной частотой колебаний. Они интересны тем, что их амплитуда может возрастать при соответствующем изменении частоты вынуждающей силы. Например, после начала раскачивания качелей (являющихся маятником) амплитуда вынужденных колебаний будет возрастать, т. е. амплитуда каждого последующего колебания будет больше, чем предыдущего (если раскачивать качели в такт). Увеличение амплитуды прекратится тогда, когда потеря энергии на преодоление сил трения станет равна энергии, получаемой качелями извне (за счет работы вынуждающей силы).
В большинстве случаев постоянная частота вынужденных колебаний тоже устанавливается не сразу, а спустя некоторое время после их начала.
Когда амплитуда и частота вынужденных колебаний перестают меняться, говорят, что колебания установились.
Частота установившихся вынужденных колебаний равна частоте вынуждающей силы. В отличие от свободных колебаний, являющихся затухающими, вынужденные колебания — незатухающие. Они происходят до тех пор, пока действует вынуждающая сила.
Механические колебания — это физические процессы, точно или приблизительно повторяющиеся через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Колебания, которые происходят под действием внутренних сил в колебательной системе, называют свободными. Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели — если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку, такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Например, часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T = t/N
N — количество колебаний [-]
Кстати, для математического и пружинного маятника есть свои формулы периода:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Формула периода колебания пружинного маятника
m — масса маятника [кг]
k — жесткость пружины [Н/м]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν = N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
Уравнение гармонических колебаний
x — координата в момент времени t [м]
t — момент времени [с]
В данном уравнении 2πνt является фазой и обозначается греческой буквой φ.
Фаза колебаний
t — момент времени [с]
Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Записаться на марафон
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Если колебания совершаются под воздействием внешней силы, они называются вынужденными. Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения.
Установившиеся вынужденные колебания всегда происходят с частотой внешней силы. Частоту свободных колебаний определяют параметры системы.
Здесь буквой ω обозначена круговая частота, а y m – амплитуда колебаний.
Перемещения такого рода обеспечиваются шатунным механизмом, который преобразует круговые движения в возвратно-поступательные.
При смещении левого конца пружины на некоторое расстояние y и правого – на x по сравнению с первоначальным положением недеформированной пружины будет происходить ее удлинение. Найти величину этого удлинения можно по следующей формуле:
В таком случае мы можем переформулировать второй закон Ньютона для этого случая следующим образом:
Здесь сила, которая действует на тело, показана как сумма двух слагаемых, первым из которых является упругость, стремящаяся к равновесию тела, а вторым – внешнее воздействие, совершающееся с определенными интервалами. Внешнюю силу также называют вынуждающей.
Теперь выразим эту зависимость в строгой математической формуле, учитывающей связь между координатой тела a = x ¨ и его ускорением. У нас получится следующее:
Эта зависимость называется уравнением внешних колебаний. Здесь ω 0 = k m является собственной круговой частотой свободного колебания, а ω – циклической частотой внешней (вынуждающей) силы.
Чтобы найти величину A для вынужденного колебания груза на пружине, нужно воспользоваться следующей формулой:
То уравнение, что мы записали перед этим, не учитывает, что на тело действуют также и силы трения. В уравнении вынужденных колебаний, в отличие от уравнения свободных, учитываются сразу обе частоты – частота вынуждающей силы и частота свободных колебаний.
Вынужденные колебания груза на пружине, которые устанавливаются со временем, имеют частоту внешнего воздействия. Это определяется следующим законом:
Здесь x m обозначает амплитуду вынужденного колебания, а буква θ – его начальную фазу. Значения обоих этих показателей будут зависеть от амплитуды внешней силы и соотношения частот.
Понятие резонанса
Резонанс – это резкое возрастание амплитуды вынужденных колебаний при сближении частоты внешней силы с собственной частотой колебания тела.
Когда происходит резонанс, амплитуда x m может оказаться значительно больше, чем амплитуда колебаний левого (свободного) конца пружины.. Если мы не будем учитывать силы трения, то получится, что при резонансной частоте амплитуда вынужденных колебаний будет возрастать неограниченно. В реальности она будет зависеть от следующего условия: работа внешней силы в течение всего времени колебаний должна совпадать с потерями механической энергии, происходящими из-за трения. При уменьшении трения (и, соответственно, повышении добротности Q колебательной системы) амплитуда вынужденных колебаний при резонансе возрастет.
Явление резонанса имеет большое практическое значение. Именно из-за него зачастую разрушаются здания, мосты и другие сооружения. Это происходит в тот момент, когда их собственные частоты совпадают с частотой внешней силы, например, колебаниями мотора.
Вынужденные колебания являются незатухающими. При трении неизбежно теряется часть энергии, однако воздействие внешних периодически действующих сил компенсирует ее.
Что такое автоколебательные системы
Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Процесс колебаний в таких системах называют автоколебаниями.
Внутри этой системы можно выделить три составляющих – саму систему, источник внешней постоянной энергии и обратную связь между ними. Первым элементом выступает любая механическая система, которая может совершать затухающие колебания, например, часовой маятник. В качестве источника можно использовать потенциальную энергию груза в поле тяжести или энергию деформации пружины. Система обратной связи – это, как правило, особый механизм, функцией которого является регулирование поступлений энергии. На иллюстрации показано, как эти компоненты взаимодействуют между собой.
Какие можно привести примеры таких систем? Ярким примером является часовой механизм с так называемым анкерным ходом. В нем есть ходовое колесо с косыми зубчиками, прочно сцепленное с зубчатым барабаном, через который перекинута цепочка с грузом. В верхней части маятника закреплен якорек (анкер), состоящий из двух твердых пластинок, дугообразно изогнутых по окружности с центром на основной оси. В механизме ручных часов вместо гири используется пружина, а вместо маятника – маховичок-балансир, соединенный со спиральной пружиной, который совершает круговые колебания вокруг своей оси. В качестве источника внешней энергии выступает заведенная пружина или поднятая гиря. Обратная связь осуществляется с помощью анкера: он позволяет ходовому колесу совершать поворот только на один зубец за полупериод. Когда анкер взаимодействует с ходовым колесом, происходит передача энергии. Когда маятник колеблется, зубец ходового колеса передает анкерной вилке энергию по направлению движения маятника, и именно этим компенсируются силы трения. Таким образом, энергия поднятой гири или заведенной пружины поступает маленькими порциями к маятнику.
Существует также много других автоколебательных систем, которые широко применяются в технике. Автоколебания происходят внутри двигателей внутреннего сгорания, паровых машин, электрических звонков, музыкальных инструментов, голосовых связок и т.д.
Одним из состояний тела может быть нахождение его в точке равновесия. Вывести физический объект из него возможно путём воздействия определённого направления. Другими словами, приложив силу. В итоге тело может не только изменить своё положение, но и стремится вернуться к исходному. Например, часовой маятник. Сила сжатия пружины или электромагнитное поле заставляет отклоняться его от вертикального положения в 2 стороны.
Процесс, при котором изменение состояния относительно точки равновесия повторяется во времени, называют колебательным. Он всегда связан с превращением энергии из одной формы в другую. По своей сути они напоминают распространение волн в природе, поэтому их изучением занимается волновая и колебательная теория. Единственное различие между ними, что при возникновении волны происходит перенос энергии.
Существует 3 вида основных колебаний:
Практически 95% периодического движения составляют свободные и вынужденные колебания. Как и любое явление, они характеризуются рядом параметров. Основные — амплитуда и частота. Первый определяет наибольшее отклонение от начального положения, а второй обозначает число колебаний за единицу времени. Обратной величиной частоты является период. Он показывает, через какое время показатели системы будут повторяться.
Колебания разделяют на гармонические и релаксационные. Первые можно описать с помощью тригонометрических функций — косинуса или синуса, то есть они являются плавными в отличие от релаксационных, сопровождающихся ускорением или замедлением.
Изображение и описание
Самым наглядным способом отображения колебаний является график функций, описывающий изменение. Для поддержания периодичности нужна внешняя сила. Подчиняется она различным законам. В простейшем случае правило имеет гармонический вид. Например, изменение силы можно описать функцией: f = F0 * cos (wt).
Чтобы составить уравнение движение, кроме вынуждающего действия, нужно учитывать 2 другие силы: квазиупругую и сопротивления. Первая направлена к центру и пропорциональна расстоянию от середины до места приложения: F = c * r, где c — постоянная составляющая. При этом тело получает потенциальную энергию: Ep = 1 / (2 *c * r 2 ). Вторая же характеризуется физической плотностью среды, где происходит колебание.
Изобразить гармоническое колебание, описываемое по формуле x (T) = A * cos (wt+φ) удобно, используя векторную диаграмму. Для этого нужно выполнить следующее:
Вращение вектора определяется двумя функциями: y (t) = A * sin (wt*φ) и x (t) = A * cos (wt + φ). Вынужденное колебание можно представить в виде изменения проекции на координатные линии некого вектора A. Причём модуль равняется амплитуде и вращается со скоростью φ, образуя в исходный момент времени с осью игреков φ0.
Явление резонанса
При колебаниях может наступить момент приближения частоты вынуждающего воздействия к собственной частоте движения системы. В этом случае физики говорят, что установился резонанс. Другими словами, происходит амплитудное возрастание вынужденных колебаний при равенстве циклической частоты, которую называют резонансной. На графике зависимостей A от w кривая, описывающая явление, имеет наибольшую величину.
Амплитуду можно вычислить по формуле: A = F/2 gm √( w 2 — g), где g — коэффициент затухания, то есть чем больше g, тем более будет сдвинут максимум к нулевой отметке на графике. Лучше проявляется резонанс в системах, характеризующихся малым затуханием. В ином случае циклическая частота будет мнимой, а амплитуда — монотонно уменьшаться.
Описывать колебательную систему можно через добротность (Q). Эта величина определяется из отношения энергии, которую удалось накопить, к значению её расхода за один период. С помощью этого параметра определяют качество, так как чем добротность больше, тем меньше система теряет энергию. Для любого механического периодичного движения её можно вычислить так: Q = √ (m * k) / r = (w * m) / r, где: m — масса системы, k — жёсткость, r — сопротивление.
В качестве нежелательного примера резонанса при вынужденных колебаниях можно привести работу двигателя внутреннего сгорания. В нём имеется коленчатый вал, на который оказывает воздействие шатун. При этом период изменения сил зависит от угловой скорости вращения вала. Вызываются колебания, которые при резонансе приводят к повышению напряжения оси и в дальнейшем вызывают её поломку, поэтому для борьбы с резонансом используют различные поглощающие материалы.
При помощи явления можно выделить или даже усилить довольно слабые периодические колебания. В радиотехнике его используют для получения полезного сигнала, усиления звука. Что интересно, впервые о резонансе заговорил Галилео Галилей в 1602 году, исследуя движения маятников и музыкальных струн. Он предположил, что резонанс — это отклик на силу извне, при котором происходит синхронизация частот колебаний с воздействующей на неё внешней силы. Это явление приводит к росту амплитуды движения всей системы.
Ширина кривой
При резонансе амплитуда колебаний максимальная. Следовательно, и энергия, запасённая системой, будет наибольшей. Она может быть равной: E = (½) * (mw 2 A 2 ). Отсюда следует, что резонансную энергию возможно вычислить по формуле: E = (½) * (mw 2 * A рез 2 ), причём Арез = F / (m * 2w). Стоит только изменить частоту вынуждающей силы, то есть её уменьшить или увеличить, амплитуда колебаний резко упадёт. Если система будет высокодобротной, при небольшом смещении энергия уменьшится.
Пусть w1 и w2 частоты, на которых E будет составлять половину от значения, присущего резонансу. Можно составить систему из двух уравнений: E (w1) = (1 / 2) * (m * w1 2 * A 2 (w1)) и E (w2) = (1 / 2) * (m * w2 2 * A 2 (w2)).
Выражения A 2 (w1) и A 2 (w2) являются амплитудами при отстройке от резонанса. Связь их с A (w) будет следующей: (1 / 2) * (m * w12 2 * A 2 (w12) = (1 / 2) * (1 / 2) * (m * w0 2 * A 2 рез). В полученном равенстве можно сократить массы, число ½ и учитывая, что при высокой добротности w1 ≈ w 2 ≈ w0, убрать из формулы частоты. В итоге получится уравнение: A 2 (w12) = (½) * Aрез. После извлечения корня зависимость примет вид:
Разность w1 и w2 будет называться половинчатой шириной резонансной кривой, то есть коэффициент затуханий можно найти как a = Δw/2. Измерив ширину кривой, можно узнать фундаментальную характеристику колебательной системы — коэффициент затухания.
Через это определение легко вычислить и добротность. Она равняется: Q = w0 / 2a. Чтобы её найти, необходимо центральную частоту разделить на ширину резонансной кривой: Q = w0 / Δw. Получается, что чем выше будет добротность колебательной системы, тем уже резонансная кривая.
В качестве примера вынужденных колебаний механического типа можно привести язычковый частотомер. Это прибор, работа которого основана на использовании резонанса. Устройство его состоит из электромагнита, над которым располагаются металлические пластины, разные по длине. Под действием поля они начинают колебаться. В сети частота тока 50 Гц, если создаётся вынуждающая сила на 100 Гц, язычок, настроенный на это значение, начинает резонировать.
Электромагнитный резонанс позволяет выделять радиостанцию. Ещё из ярких примеров вынужденных колебаний можно отметить: движение мембраны телефона, ход иглы швейной машинки и поршня в цилиндре автомобиля, компенсацию возмущений едущего по неровной дороге авто за счёт рессоры, океанические приливы под действием Луны.
Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Свободные колебания
Это колебания, которые происходят под действием внутренних сил в колебательной системе.
Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T= t/N
N — количество колебаний [-]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν= N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
Гармонические колебания
Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:
Уравнение гармонических колебаний
x — координата в момент времени t [м]
t — момент времени [с]
2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ
Фаза колебаний
t — момент времени [с]
Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.
На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.
Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.
На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.
Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.
Математический маятник
Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.
Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.
Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).
Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Пружинный маятник
Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.
В пружинном маятнике колебания совершаются под действием силы упругости. Пока пружина не деформирована, сила упругости на тело не действует.
Формула периода колебания пружинного маятника
m — масса маятника [кг]
k — жесткость пружины [Н/м]
Закон сохранения энергии для гармонических колебаний
Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.
Рассмотрим его на примере математического маятника.
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Записаться на марафон
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)