Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Свободные колебания
Это колебания, которые происходят под действием внутренних сил в колебательной системе.
Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T= t/N
N — количество колебаний [-]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν= N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
Гармонические колебания
Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:
Уравнение гармонических колебаний
x — координата в момент времени t [м]
t — момент времени [с]
2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ
Фаза колебаний
t — момент времени [с]
Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.
На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.
Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.
На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.
Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.
Математический маятник
Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.
Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.
Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).
Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Пружинный маятник
Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.
В пружинном маятнике колебания совершаются под действием силы упругости. Пока пружина не деформирована, сила упругости на тело не действует.
Формула периода колебания пружинного маятника
m — масса маятника [кг]
k — жесткость пружины [Н/м]
Закон сохранения энергии для гармонических колебаний
Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.
Рассмотрим его на примере математического маятника.
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Записаться на марафон
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Гармонические колебания. Характеристики гармонических колебаний
Урок 36. Подготовка к ЕГЭ по физике. Часть 1. Механика.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Гармонические колебания. Характеристики гармонических колебаний»
Данная тема посвящена гармоническим колебаниям и их характеристикам.
Окружающий нас мир наполнен разнообразными колебательными движениями и процессами: колеблются ветки деревьев и кузов автобуса при движении. Колебания струн под руками умелого музыканта вызывают колебания воздуха, и слышится прекрасная музыка.
Кроме того, многие важнейшие процессы внутри организма человека являются колебательными: сердце человека в спокойном состоянии совершает около одного колебательного движения в секунду, под действием повторяющихся нервных импульсов каждая мышца в теле человека непрерывно то сокращается, то растягивается.
Таким образом, колебанием называется процесс, при котором какая-либо физическая величина, характеризующая этот процесс, последовательно изменяется то в одну, то в другую сторону около некоторого своего среднего значения. Например, на качелях, подвешенных на веревках, человек отклоняется то вперед и вверх, то назад и вверх от положения равновесия. Говорят, что качели являются колебательной системой.
Таким образом, механической колебательной системой называется совокупность тел, в которой могут происходить колебательные процессы.
Наиболее простыми механическими колебательными системами являются: вертикальный пружинный маятник, который образуют Земля, штатив, пружина и груз; физический маятник, образованный Землей, штативом и шариком на нити; и горизонтальныйпружинный маятник — это два штатива, две пружины и шарик.
Колебательный процесс в системе может происходить под действием как внутренних, так и внешних сил. Если колебания в системе происходят только под действием внутренних сил, то их называют свободными колебаниями.
А если колебания тела повторяются через определенный промежуток времени, то их называют периодическими.
Рассмотрим условия, которые необходимы для того, чтобы в системе могли возникнуть свободные колебания:
1) Необходимо наличие положения устойчивого равновесия.
2) Необходимо наличие у тела избыточной механической энергии по сравнению с ее энергией в положении устойчивого равновесия, так как самопроизвольно (то есть без внешнего воздействия) система не может выйти из положения равновесия.
3) на тело должна действовать возвращающая сила, то есть сила, всегда направленная к положению устойчивого равновесия.
4) В идеальных колебательных системах должны отсутствоватьсилысопротивления.
Теперь рассмотрим некоторые важные характеристики колебательного движения.
Периодом колебания называется промежуток времени, в течение которого совершается одно полное колебание.
Частота колебаний — это величина, обратная периоду, равная числу колебаний, совершенных системой за одну секунду.
В СИ период измеряется в секундах, а частота — в герцах.
Смещением называется любое отклонение физической величины от ее значения в положении равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени.
Амплитудой называется максимальное смещение тела от положения равновесия.
Простейшим видом колебаний являются гармоническиеколебания. Термин «гармонические колебания» впервые был введен в науку швейцарским физиком Даниилом Бернулли. Гармоническими называются колебания, при которых какая-либо величина изменяется с течением времени по закону синуса или косинуса.
Например, гармонические колебания физического маятника можно зарегистрировать следующим способом. В качестве груза взять небольшой стакан с песком, который может высыпаться через очень маленькое отверстие снизу.
Если под колеблющимся маятником двигать равномерно по столу бумажную ленту, то полученная на бумаге кривая представляет собой синусоиду или косинусоиду в зависимости от выбора начального момента времени наблюдения (момента отсчета времени).
Чтобы установить основные кинематические признаки гармонических колебаний, рассмотрим их математическую модель на примере изменения физических величин, характеризующих движение материальной точки по окружности с постоянной угловой скоростью. Начало координат поместим в центре окружности радиуса R. Пусть в начальный момент времени материальная точка находилась в положении M0 и ее радиус-вектор составлял с осью Ox угол j0.
Через промежуток времени t точка переместится в положение M, а ее радиус-вектор при этом повернется на угол Dj и составляет в данный момент с осью Ox угол
Запишем теперь координаты точки в этот момент времени
Теперь расположим перпендикулярно друг к другу два экрана и будем освещать движущийся шарик. На вертикальном экране тень от шарика будет двигаться вдоль оси Oy по закону:
То есть совершать колебания возле начала координат. На горизонтальном экране тень шарика будет двигаться вдоль оси Ox по закону:
И также совершать колебания около начала координат.
Величина, стоящая под аргументом синуса или косинуса, или, в выбранной системе отсчета, угол между радиус-вектором и осью абсцисс называется фазойколебания.
Начальная фаза колебания j0 характеризует положение точки в начальный момент времени.
Тогда мгновенные значения координат x и y, можно рассматривать как смещения шарика от нулевого значения, а модуль амплитудного значения для обеих координат равен радиусу окружности.
Таким образом, кинематический закон любого гармоническогодвижения можно представить в виде:
Следовательно, графически зависимость смещения колеблющейся точки от времени изображается косинусоидой или синусоидой.
В записанных уравнениях w — это циклическая (или круговая) частота, которая показывает, сколько колебаний совершает материальная точка за 2p секунд. Соответственно, в системе СИ она измеряется в радианах на секунду.
Рассмотрим, как изменяются проекции скорости и ускорения колеблющейся точки со временем для случая, когда начальная фаза колебаний равна нулю.
Начнем со скорости. Для этого найдем первую производную по времени от кинематического закона гармонических колебаний.
В полученном выражении произведение циклической частоты и амплитуды колебаний — это есть амплитуда проекции скорости на ось координат.
Таким образом видим, что при гармонических колебаниях проекция скорости тела на координатную ось тоже изменяется по гармоническому закону с той же частотой, но с другой амплитудой и опережает по фазе смещение на p/2.
Теперь рассмотрим ускорение. Для этого найдем производную от проекции скорости по времени.
Величина, равная произведению квадрата циклической частоты и амплитуды колебаний, является амплитудой проекции ускорения.
Как видно из формулы, при гармонических колебаниях проекция ускорения опережает смещение по фазе на p. Говорят, что проекция ускорения изменяется с течением времени в противофазе изменению координаты.
Учитывая кинематический закон гармонического движения получим, что при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, то есть направлено в сторону, противоположную смещению.
Так как проекция ускорения — это вторая производная от смещения по времени, то последнее соотношение можно записать в виде:
Это уравнение называется уравнением гармонических колебаний.
Рассмотрим процесс превращения энергии при гармонических колебаниях на примере идеального горизонтального пруженного маятника. Горизонтальный уровень, на котором находится маятник, выбираем за нулевой уровень отсчета потенциальной энергии маятника в поле силы тяжести.
Если вывести тело из положения равновесия, например, сжав пружину на некоторую величину, то сообщается этому телу некоторый запас потенциальной энергии.
После прекращения внешнего воздействия, тело придет в движение. При движении к положению равновесия его потенциальная энергия убывает, а кинетическая наоборот, возрастает, так как деформация пружины уменьшается, а скорость движения тела увеличивается. В момент прохождения телом положения равновесия его потенциальная энергия равна нулю, а вот кинетическая энергия будет максимальна.
После прохождения положения равновесия скорость тела начинает уменьшаться, а пружина растягивается. Следовательно, кинетическая энергия тела начинает убывать, а потенциальная наоборот — возрастать. В точке максимального отклонения тела его кинетическая энергия равна нулю, а потенциальная — максимальна.
Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно.
Полная механическая энергия такой колебательной системы равна сумме его кинетической и потенциальной энергий.
Если смещение материальной точки, совершающей колебания, изменяется с течением времени по гармоническому закону, то, как известно, и скорость тела изменяется также по гармоническому закону. Следовательно, кинетическую и потенциальную энергию колеблющегося тела можно задать следующими функциями
Из этих формул видно, что кинетическая и потенциальная энергии изменяются тоже по гармоническому закону, с одинаковой амплитудой и в противофазе друг с другом.
А вот полная механическая энергия системы, равная сумме кинетической энергии тела и упругой энергии пружины, остается неизменной и равной начальной максимальной потенциальной энергии, либо его кинетической энергии в момент прохождения положения равновесия.
В реальных условиях на маятник всегда действуют силы сопротивления, поэтому полная энергия уменьшается, и свободные колебания маятника с течением времени затухают, то есть их амплитуда уменьшается до нуля. Такие колебания называются затухающими.
Рассмотрели, какое движение называется колебательным и что называют свободными колебаниями. Повторили основные характеристики колебательного движения. Вспомнили, какие колебания называются гармоническими и рассмотрели, какие превращения энергии происходят при гармонических колебаниях.