какие компоненты входят в состав оболочки животной клетки
Строение клеточной оболочки.
Клеточная оболочка (цитоплазматическая оболочка) – это поверхностный аппарат клетки, который выполняет важные функции, а потому имеет свои особенности.
Внешняя мембрана лейкоцитов и одноклеточных организмов способствует проникновению в клетку частиц различных веществ. Фагоцитоз – это проникновение в клетку твердых частиц через мембрану. Проникновение ионов и мелких молекул жидких веществ в клетку называется пиноцитоз. Именно наружная мембрана клетки ответственна за обмен веществ между клеткой и внешней средой.
Митохондрии и пластиды имеют двойную мембрану, строение которой мы рассмотрим ниже.
Строение и функции наружного и внутреннего слоя клеточной оболочки
Наружный слой (химический состав и функции)
Внутренний слой – плазматическая мембрана
Растительная клетка
Состоит из клетчатки. Клетчатка является каркасом клетки, выполняет защитную функцию.
Два слоя белка, между которыми находится липидный слой.
Отделяет внутр.среду клетки от внешней.
Животная клетка
Гликокаликс – тонкий и эластичный наружный слой, состоящий из белков и полисахаридов. Выполняет функцию зашиты.
Два слоя белка, между которыми находится липидный слой.
Особое строение плазматической мембраны регулирует проникновение и вывод молекул и ионов веществ в клетку и из нее – во внешнюю среду.
Вакуоли, лизосомы, комплекс Гольджи и эндоплазматическая сеть имеют одинарную мембрану.
Строение животной клетки
Ученые позиционируют животную клетку как основную часть организма представителя царства животных как одноклеточных так и многоклеточных.
Они являются эукариотическими, с наличием истинного ядра и специализированных структур органелл, выполняющих дифференцированные функции.
Строение животной клетки отличается от растительной. Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих фотосинтез).
Рисунок животной клетки с подписями
Клетка состоит из множества специализированных органелл, выполняющих различные функции.
Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.
Основные органеллы и органоиды животной клетки
Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.
Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.
Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы. Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.
Ядро регулирует рост и деление клетки. При митозе в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.
Рибосомы
Рибосомы место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.
Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.
Эндоплазматический ретикулум
Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.
Существует два вида эндоплазматического ретикулума:
Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.
Везикулы
Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.
Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.
Аппарат Гольджи
Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).
Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.
Митохондрии
В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».
Цитоплазма клетки
Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.
Цитозоль
Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).
Цитоскелет
Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.
Он выполняет следующие функции:
Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.
Клеточная мембрана
Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.
Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.
Клеточная мембрана избирательно проницаема она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.
Лизосомы
Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.
Центриоль
Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.
Как выглядит животная клетка под микроскопом
Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.
Не вызывают сомнений следующие части:
Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.
Функции центриоли
Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.
Строение клетки человека — рисунок с подписями
Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.
Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.
Признаки живой клетки
Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.
Отличительные признаки растительной и животной клетки в таблице
Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:
Признак | Растительная | Животная |
Получение питания | Автотрофный. Фотосинтезирует питательные вещества | Гетеротрофный. Не производит органику. |
Хранение питания | В вакуоли | В цитоплазме |
Запасной углевод | крахмал | гликоген |
Репродуктивная система | Образование перегородки в материнской единице | Образование перетяжки в материнской единице |
Клеточный центр и центриоли | У низших растений | У всех типов |
Клеточная стенка | Плотная, сохраняет форму | Гибкая, позволяет изменяться |
Основные компоненты являются сходными как для частиц растительного, так и животного мира.
Заключение
Животная клетка является сложным действующим организмом, обладающим отличительными признаками, функциями, целью существования. Все органеллы и органоиды вносят свою лепту в процесс жизнедеятельности этого микроорганизма.
Некоторые компоненты изучены учеными, функции же и особенности других еще только предстоит открыть.
Органоиды клетки. Строение и функции.
Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты. Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).
Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды. К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).
Строение ограноидов эукариотов.
Цитоплазма
Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.
Рибосомы
Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.
Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.
Митохондрии
Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.
Эндоплазматическая сеть (ЭПС)
Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.
Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:
Лейкопласты
Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.
Являются дополнительным резервуаром для хранения питательных веществ.
Хлоропласты
Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.
Преобразуют органические вещества из неорганических, используя энергию солнца.
Хромопласты
Органоиды, от желтого до бурого цвета, в которых накапливается каротин.
Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.
Лизосомы
Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.
Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.
Комплекс Гольджи
Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.
Клеточный центр
Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.
Выполняет важную функцию для деления клетки.
Клеточные включения
Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.
Запасные питательные вещества, которые используются для жизнедеятельности клетки.
Органоиды движения
Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).
Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.
Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим отдельно.
Клеточное строение организмов
Теория для подготовки к блоку №2 ОГЭ по биологии: признаки живых организмов
Химический состав живых организмов
Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав показывает соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.
Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке — вода и минеральные соли, важнейшие органические вещества — углеводы,
Вода — преобладающий компонент всех живых организмов. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.
Углеводы — органические соединения, состоящие из одной или многих молекул простых сахаров. Содержание углеводов в животных клетках составляет 1—5 %, а в некоторых клетках растений достигает 70 %.
Липиды — жиры и жироподобные органические соединения, практически нерастворимые в воде. Их содержание в разных клетках сильно варьирует: от 2—3 до 50—90% в клетках семян растений и жировой ткани животных.
Белки — это биологические гетерополимеры, мономерами которых являются аминокислоты. В образовании белков участвует только 20
Нуклеиновые кислоты. Существует два типа нуклеиновых кислот:
Строение клетки
Становление клеточной теории
Основные положения клеточной теории
Типы клеточной организации
Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический. К
Прокариотические клетки устроены сравнительно просто. Они не имеют
Эукариотические клетки имеют ядро, в котором находятся хромосомы — линейные молекулы ДНК, связанные с белками, в цитоплазме расположены различные мембранные органеллы.
Растительные клетки отличаются наличием толстой целлюлозной клеточной стенки,
Клетки грибов имеют клеточную оболочку, содержащую
Животные клетки имеют, как правило, тонкую клеточную стенку, не содержат пластид и центральной вакуоли, для клеточного центра характерна центриоль. Запасным углеводом является гликоген.
Строение эукариотической клетки
Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.
Клеточная оболочка
Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана, или плазмалемма, имеющая типичное строение и толщину 7,5 нм.
Клеточная оболочка выполняет важные и весьма разнообразные функции: определяет и поддерживает форму клетки; защищает клетку от механических воздействий проникновения повреждающих биологических агентов; осуществляет рецепцию многих молекулярных сигналов (например, гормонов); ограничивает внутреннее содержимое клетки; регулирует
Углеродный компонент в мембране животных клеток называется гликокаликсом.
Обмен веществ между клеткой и окружающей ее средой происходит постоянно. Механизмы транспорта веществ в клетку и из нее зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме активного и
В зависимости от вида и направления различают эндоцитоз и
Поглощение и выделение твердых и крупных частиц получило соответственно названия
Цитоплазма
Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур.
Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом.
Матрикс – это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.
Цитоплазматические структуры клетки представлены включениями и органоидами. Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.
К мембранным органоидам эукариотической клетки относят
Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.
Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец —
Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в
На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.
Аппарат Гольджи
Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.
В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.
Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.
Митохондрии
В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).
Митохондрии хорошо видны в световой
Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты (
Новые митохондрии образуются делением уже существующих в клетке митохондрий.
Лизосомы
Представляют собой небольшие округлые тельца. От Цитоплазмы каждая
К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.
Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.
Пластиды
В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые —
Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения. К ним относятся рибосомы, микрофиламенты, микротрубочки, клеточный центр.
Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.
В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка. Синтез белка — сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.
Микротрубочки и микрофиламенты
Нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.
Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её
Клеточный центр (центросома). В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании
В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции. Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения. К их числу относят сократительные вакуоли простейших,
Ядро – наиболее важный компонент эукариотических клеток. Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Некоторые высоко специализированные клетки утрачивают ядра (
Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами.
Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, в котором находятся разнообразные белки, нуклеотиды, ионы, а также хромосомы и
Ядрышко – небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток. Функция ядрышка – синтез рРНК и соединение их с белками, т.е. сборка субчастиц рибосом.
Хроматин – специфически окрашивающиеся некоторыми красителями глыбки, гранулы и нитчатые структуры, образованные молекулами ДНК в комплексе с белками. Различные участки молекул ДНК в составе хроматина обладает разной степенью спирализации, а потому различаются интенсивностью окраски и характером генетической активности. Хроматин представляет собой форму существования генетического материала в не делящихся клетках и обеспечивает возможность удвоение и реализации заключенной в нем информации. В процессе деления клеток происходит спирализация ДНК и хроматиновые структуры образуют хромосомы.
Хромосомы – плотные, интенсивно окрашивающиеся структуры, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки.
Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они не парны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках диплоидным (2n). Хромосомы разных организмов различаются размерами и формой.
Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом. В хромосомном наборе соматических клеток парные хромосомы называют гомологичными, хромосомы из разных пар — негомологичными. Гомологичные хромосомы одинаковы по размерам, форме, составу (одна унаследована от материнского, другая – от отцовского организма). Хромосомы в составе кариотипа делят также на