какие критерии диагностирования должны выполняться предусмотрены в асу

Какие критерии диагностирования должны выполняться предусмотрены в асу

Единая система стандартов автоматизированных систем управления

НАДЕЖНОСТЬ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

Unified system of standards of computer control systems. Dependability of computer control systems. General positions

Дата введения 1987-07-01

1. РАЗРАБОТАН Министерством приборостроения, средств автоматизации и систем управления

2. ВНЕСЕН Министерством приборостроения, средств автоматизации и систем управления

3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 31.03.86 N 850

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

6. ПЕРЕИЗДАНИЕ. Июль 2009 г.

Настоящий стандарт распространяется на вновь разрабатываемые или модернизируемые автоматизированные системы управления (АСУ) всех видов и уровней управления, кроме общегосударственного.

Стандарт устанавливает основные положения по надежности АСУ, номенклатуру основных показателей надежности АСУ, порядок установления требований к надежности АСУ, общий порядок оценки надежности АСУ, состав и порядок проведения работ по обеспечению надежности АСУ.

В приложении 1 приведены термины, применяемые в стандарте, и пояснения к ним.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Обеспечение необходимого уровня надежности требует проведения специального комплекса работ, выполняемых на разных стадиях создания и эксплуатации АСУ.

1.2. При решении вопросов, связанных с обеспечением требуемого уровня надежности АСУ, необходимо учитывать следующие особенности АСУ:

— каждая АСУ является многофункциональной системой, функции которой имеют существенно различную значимость и, соответственно, характеризуются разным уровнем требований к надежности их выполнения;

— во многих АСУ возможно возникновение некоторых исключительных (аварийных, критических) ситуаций, представляющих сочетание отказов или ошибок функционирования системы и способных привести к значительным нарушениям функционирования объекта управления (авариям);

— в функционировании АСУ участвуют различные виды ее обеспечения и персонал АСУ, которые могут в той или иной степени влиять на уровень надежности АСУ;

— в состав каждой АСУ входит большое количество разнородных элементов: технических, программных, эргатических и др., при этом в выполнении одной функции АСУ обычно участвуют несколько различных элементов, а один и тот же элемент может участвовать в выполнении нескольких функций системы.

1.3. При решении вопросов надежности АСУ количественное описание, анализ, оценка и обеспечение надежности проводят по каждой функции АСУ в отдельности. В необходимых случаях используют также анализ возможности возникновения в системе аварийных ситуаций, ведущих к значительным техническим, экономическим или социальным потерям вследствие аварии объекта управления (или автоматизированного комплекса в целом).

1.3.1. Функции АСУ подразделяют на простые и составные. Для некоторых АСУ возможно построение составной функции наиболее общего вида, отображающей функционирование АСУ в целом.

1.3.2. Перечень функций и видов их отказов, по которым задаются требования к надежности конкретной АСУ, а также критерии этих отказов устанавливает заказчик АСУ по согласованию с разработчиком АСУ и вносит в техническое задание на АСУ (ТЗ на АСУ).

1.3.3. Если для некоторой функции АСУ определено несколько видов отказов, существенно различающихся по причинам возникновения или по вызываемым ими последствиям, то безотказность и ремонтопригодность по этой функции задают отдельно по каждому виду отказов. При этом критерии отказов устанавливают по каждому виду отказов.

1.3.4. Перечень рассматриваемых аварийных ситуаций, по которым задают требования к надежности, составляет заказчик АСУ по согласованию с разработчиком АСУ и вносит в техническое задание на АСУ с указанием, при каких условиях эксплуатации АСУ рассматривают возникновение каждой из приведенных аварийных ситуаций.

Примечание. Аварийные ситуации в системе могут возникать в условиях нормального ее функционирования и вследствие воздействия на систему внешнего экстремального фактора (отключения питания, крупных метеорологических аномалий и пр.).

1.4. Уровень надежности АСУ зависит от надежности и других свойств ее технического обеспечения (комплекса технических средств), программного обеспечения и персонала, участвующего в функционировании АСУ.

1.5. Уровень надежности АСУ зависит от следующих основных факторов:

— состава и уровня надежности используемых технических средств, их взаимосвязи в надежностной структуре комплекса технических средств АСУ (КТС АСУ);

— состава и уровня надежности используемых программных средств, их содержания (возможностей) и взаимосвязи в структуре программного обеспечения АСУ (ПО АСУ);

— уровня квалификации персонала, организации работы и уровня надежности действий персонала АСУ;

— рациональности распределения задач, решаемых системой, между КТС АСУ, ПО АСУ и персоналом АСУ;

— режимов, параметров организационных форм технической эксплуатации КТС АСУ;

— степени использования различных видов резервирования (структурного, информационного, временного, алгоритмического, функционального);

— степени использования методов и средств технической диагностики;

— реальных условий функционирования АСУ.

Примечание. Свойства информационного, математического, лингвистического, метрологического, организационного, правового обеспечений АСУ влияют на надежность АСУ только косвенно, через функционирование технических и программных средств и персонала АСУ и поэтому при решении вопросов, связанных с надежностью АСУ, отдельно не учитываются.

Примечание. Если для АСУ сформулирована составная функция наиболее общего вида, то соответствующая ей функциональная подсистема совпадает с системой в целом.

1.6.1. Анализ надежности АСУ в реализации ее функций проводят по каждой ФП АСУ в отдельности с учетом уровня надежности и других свойств, входящих в нее технических, программных и эргатических элементов.

1.6.2. При анализе надежности АСУ необходимо учитывать, что элементы, входящие в ФП АСУ, решают задачи взаимной компенсации некоторых нарушений нормальной работы, предотвращая переход этих нарушений в отказы в выполнении соответствующей функции, либо минимизируя их неблагоприятные последствия.

Примечание. Программное обеспечение функциональной подсистемы АСУ (ПО АСУ) может предотвращать возникновение отказов в выполнении функции АСУ при отказах технических средств функциональной подсистемы (ТС ФП) и ошибках персонала, участвующих в выполнении этой функции (входящих в эту ФП АСУ), либо может обеспечить перевод отказов ФП, ведущих к большим потерям, в отказы другого вида, сопряженные с меньшими потерями. Технические средства ФП могут не допускать перехода определенных нарушений в работе ПО ФП и персонала ФП в отказ выполнения функции АСУ, либо могут минимизировать последствия отказа. Персонал ФП может эффективно принимать меры к недопущению отказов ФП АСУ при отказах ТС ФП или проявлении ошибок в ПО ФП, либо к снижению потерь от таких отказов (ошибок).

1.7. Выбор состава показателей надежности АСУ производят на основе установленных техническим заданием перечня функций системы, перечня видов их отказов и перечня аварийных ситуаций, по которым регламентируют требования к надежности.

Указания по выбору показателей надежности АСУ по отдельным функциям и по аварийным ситуациям приведены в разд.2.

1.8. Требуемые числовые значения выбранных показателей надежности АСУ (требования к надежности) устанавливают по определенным критериям на основе анализа влияния отказов АСУ в выполнении ее функций и аварийных ситуаций на эффективность функционирования автоматизированного комплекса (АСУ и объект управления) в целом, а также затрат, связанных с обеспечением надежности.

Примечание. Требования к надежности АСУ вносят в техническое задание на АСУ в соответствии с п.3.5.

1.9. Оценку надежности АСУ проводят на различных стадиях создания и эксплуатации АСУ.

1.9.1. При разработке АСУ проводят проектную (априорную) оценку надежности системы.

При опытной и промышленной эксплуатации АСУ проводят экспериментальную (апостериорную) оценку надежности системы.

1.9.2. Оценку надежности АСУ производят с учетом надежности КТС АСУ и, при необходимости, с учетом надежности ПО АСУ и действий персонала АСУ.

Необходимость учета надежности ПО АСУ и действий персонала АСУ при оценке надежности АСУ на разных стадиях создания и эксплуатации устанавливают техническим заданием на АСУ.

1.10. Комплекс работ, направленных на обеспечение требуемого уровня надежности конкретной разрабатываемой (модернизируемой) АСУ, определяют при разработке технического задания на АСУ и оформляют в виде «Программы обеспечения надежности АСУ».

Примерный перечень и последовательность выполнения указанных работ приведены в приложении 2.

1.11. Данные о надежности АСУ вносят в техническую документацию согласно стандартам Единой системы стандартов автоматизированных систем управления.

2. ПОКАЗАТЕЛИ НАДЕЖНОСТИ АСУ

2.1. В качестве показателей надежности АСУ используют показатели, характеризующие:

— надежность реализации функций системы;

— опасность возникновения в системе аварийных ситуаций.

2.2. Описание надежности АСУ по функциям (по ФП АСУ) осуществляют:

Для описания надежности АСУ по непрерывно-выполняемым функциям (Н-функции) и по дискретно-выполняемым функциям (Д-функции) используют различные показатели.

2.3. Описание безотказности и ремонтопригодности АСУ по Н-функциям осуществляют с помощью единичных или комплексных показателей надежности.

2.3.1. Основными единичными показателями безотказности являются:

Допускается использовать следующие показатели:

Источник

Диагностики автоматизированных систем (методы и средства технической диагностики систем т.д.)

Одним из важнейших средств обеспечения и поддержания надежности АСУ является техническая диагностика.

Под технической диагностикой понимается область знаний, разрабатывающая методы и средства поиска отклонений в режимах работы (или состояниях) АС, обнаружения и устранения дефектов в системах (или ее элементах) и средства их локализации.

При диагностировании необходимо определить, прежде всего, техническое состояние системы в данный момент времени. Это означает, что нужно проверить исправность, работоспособность и (или) правильность функционирования системы (определить, находятся ли значения параметров системы в требуемых пределах, т.е. система не отказала и правильно выполняет заданную функцию) или обнаружить дефекты, нарушающие исправность, работоспособность и правильное функционирование системы. Тогда основную цель диагностирования АСУ можно сформулировать следующим образом: необходимо оценить выходные параметры системы и выявить причины их отклонения от заданных значений. При этом необходимо учитывать весь диапазон режимов работы системы и условий ее эксплуатации, а также возможность изменения выходных параметров во времени (так называемая параметрическая надежность).

Различают тестовое и функциональное диагностирование.

Тестовое диагностирование позволяет проверить техническое состояние системы по тестовому воздействию на нее. По тесту проверяются параметры системы и ее элементов и причины их отклонения от заданных значений.

Функциональное диагностирование позволяет определить техническое состояние системы (или ее элементов) по рабочему воздействию на нее. Рабочее воздействие контролирует исполнение системой заданных функций при заданных параметрах и выявить причины нарушения ее функционирования.

Тестовое и функциональное диагностирование выполняется по так называемому алгоритму диагностирования.

В алгоритмах тестового диагностирования контрольные точки определены предварительно и они одинаковы для всех проверок и подбираются только тестовые воздействия.

В алгоритмах функционального диагностирования предварительно определены входные воздействия, а выбору подлежат контрольные точки.

При проведении различных элементарных проверок могут требоваться различные затраты на их реализацию. Эти проверки могут давать разную информацию о техническом состоянии системы. Одни и те же элементарные проверки могут быть реализованы в различной последовательности. Т.е. для решения даже одной задачи диагностирования, можно построить несколько алгоритмов. Таким образом, встает задача разработки оптимальных алгоритмов диагностирования, при которых затраты на их реализацию будут уменьшены (задача минимизации в некоторых случаях может быть сильно затруднена, например, трудностями вычислений).

Эффективность диагностирования оценивается качеством алгоритмов диагностирования и качеством средств диагностирования. Средства диагностирования разделяют, прежде всего, на программные и аппаратные, а также внешние (конструктивно выполненные отдельно от системы) и встроенные (являющиеся составной частью системы); ручными, автоматизированными и автоматическими; специализированными и универсальными.

Методы диагностирования АСУ определяются различными факторами: выбором объекта диагностирования (узла, блока, элемента и т.п.), используемыми диагностическими параметрами (временные, силовые, электрические, виброакустические и др.), в зависимости от используемых средств диагностирования.

Широко применяется при диагностировании метод контрольных осциллограмм. Метод основан на использовании графиков функций различных параметров во времени, по которым оцениваются техническое состояние и работоспособность отдельных узлов, блоков и системы в целом.

Суть метода заключается в следующем. Составляют диагностическую модель, определяют диагностическую ценность разных параметров, оценивают трудоемкость использования параметров для диагностирования, предварительно определяют диагностические параметры, экспериментально проверяют чувствительность к дефектам и диагностическую ценность параметров, выбирают основные диагностические параметры для контрольной осциллограммы, определяют внешний вид и характерные особенности кривых выбранных параметров, амплитудные значения и допустимые пределы для кривых основных параметров, составляют и экспериментально проверяют контрольные осциллограммы, выявляют взаимосвязь между характерными признаками кривых и состоянием обследуемых объектов, накапливают и расшифровывают дефекты, составляют диагностические карты и инструкции для выполнения диагностирования.

Метод контрольных осциллограмм может быть реализован как средствами приборной диагностики, так и с помощью ЭВМ в автоматическом режиме. Использовать метод целесообразно также на специализированных испытательных стендах для контроля качества изготовления механизмов и узлов станков и в условиях эксплуатации.

Контроль технического состояния систем в процессе их эксплуатации

АСУТП может нормально функционировать тогда и только тогда, когда создается возможность получать непрерывно информацию о ее техническом состоянии. Осуществить получение такой информации с помощью некоторого одного универсального метода невозможно из-за большого разнообразия элементов АСУТП и их функционального назначения. Процесс создания АСУТП всегда сопровождается процессом поиска наиболее подходящих методов контроля технического состояния системы и ее частей.
Существуют следующие основные виды контроля.
По целевому назначениюразличают:
контроль работоспособности, который осуществляется с целью определения, в каком состоянии находится объект – работоспособном или неработоспособном;
диагностический контроль, который определяет не только состояние объекта, но и причину его неисправности, если он находится в неисправном состоянии;
прогнозирующий контроль предназначен не только для того, чтобы определить состояние объекта, но также и для того, чтобы определить, какие отказы возможны в объекте в ближайший момент времени, с тем, чтобы своевременно принять меры по их устранению.
По степени автоматизации различают:
автоматический контроль, который осуществляется специальными устройствами и программой без вмешательства человека-оператора;
автоматизированный контроль – с частичным вмешательством человека;
ручной контроль – без средств автоматизации.
По временным характеристикам различают:
периодический контроль;
непрерывный контроль.
По полноте контроля может быть:
полный контроль;
частичный контроль.
По последовательности контрольных операций:
последовательный контроль, при котором устройства объекта контролируются последовательно одно за другим;
параллельный контроль, при котором устройства объекта контролируются одновременно.
По используемым методам контроль бывает:
прямой контроль, который основан на непосредственном (прямом) измерении параметров, определяющих техническое состояние объекта. Он может быть программным и аппаратурным;
косвенный контроль, который основан на наблюдениях косвенных (побочных, сопутствующих) признаков, которые могут быть использованы для определения или прогнозирования технического состояния (повышенный нагрев, повышенный шум и т. д.).
Программный контроль основан на использовании специальных программ. Он, в свою очередь, подразделяется на контроль программно-логический и тестовый.
Программно-логический контроль предназначен для контроля за правильностью функционирования системы и ее отдельных частей. Правильность функционирования системы может быть проверена повторением операций переработки информации или повторной пересылкой информации, а также с помощью сравнения получаемых результатов с эталонными.
Тестовый контроль (тестирование) предназначен для проверки состояния аппаратуры и программ с помощью специальных испытательных (тестовых) программ. На вход проверяемого объекта подается определенный набор входных данных, которому должен соответствовать определенный набор выходных данных. Анализ выходных данных позволяет определить состояние объекта и даже причину неисправного состояния.
Тестирование – основной метод измерения качества, определение корректности и реальной надежности функционирования программ на любых этапах разработки. Результаты тестирования и измерения показателей качества должны сравниваться с требованиями технического задания для определения степени соответствия предъявлявшимся требованиям, полученным разработчиком от заказчика. Такие достаточно полные эталоны, как совокупность требований технического задания и поэтапная их декомпозиция в спецификациях, необходимы для тестирования при промежуточных и завершающих испытаниях.
Важная особенность тестирования сложных ПС – необходимость достаточно полной их проверки при ограниченной длительности испытаний. Это определяет целесообразность тщательного планирования тестирования с учетом всех результатов, полученных на предыдущих этапах разработки. При планировании основная задача состоит в достижении максимальной достоверности испытаний, определения качества и надежности ПС при ограниченных затратах ресурсов на проведение тестирования.
Аппаратурный контроль – это контроль, осуществляемый с помощью специальной контрольной аппаратуры, введенной в структуру объекта. Контрольная аппаратура работает одновременно с основной. Большое разнообразие контролируемых объектов и широкие возможности в выборе методов контроля, каждый из которых обладает своими недостатками и преимуществами в конкретных условиях применения, привели к тому, что в инженерной практике используются многочисленные методы аппаратурного контроля. Наиболее распространенными являются: числовой по модулю; кодовый по модулю; аппаратурно-микропрограммный; мажоритарный; с использованием корректирующих кодов, шлейфовых каналов, контрольных сумм; основанный на проверке запрещенных выходных слов и запрещенных переходов.

О влиянии контроля на надежность АСУ ТП в общих чертах можно сказать следующее:
1. Контроль, рассматриваемый в узком смысле этого термина, т. е. только как средство обнаружения состояния объекта, не может влиять на повышение надежности объекта. Влияние контроля на повышение надежности обнаруживается тогда, когда он сопровождается восстановлением работоспособности, исправлением обнаруженных ошибок, устранением неблагоприятных явлений, обнаруженных в процессе контроля.
2. Контроль и диагностика в сочетании с восстановлением оказывают существенное влияние на показатели надежности объекта по следующим основным направлениям:
а) контроль обеспечивает нормальное функционирование объекта в заданной конфигурации и в заданных режимах; позволяет определить степень готовности объекта к включению, время переключения на резерв, необходимость формирования резервных направлений передачи данных. Новой конфигурации системы и т. п. Без средств контроля и диагностики невозможно нормальное функционирование большой системы;
б) контроль и восстановление повышают показатели безотказности объекта. Одним из показателей качества контроля служит время, затрачиваемое на восстановление работоспособности объекта, а оно существенно влияет на коэффициент готовности объекта;
в) контроль повышает достоверность информации при ее хранении, переработке и пересылке. Кодовый контроль по модулю 2 позволяет обнаружить все одиночные ошибки, т. е. ошибки в одном разряде кодовой комбинации. Кодовый контроль по модулю 3 дает возможность обнаружить ошибки, число которых не кратно 3; кодовый контроль по модулю 5 – ошибки, число которых не кратно 5.
Таким образом, увеличение модуля позволяет повысить достоверность кодового контроля, но приводит к усложнению контрольной аппаратуры;
г) усложнение основной аппаратуры за счет включения дополнительной контрольной аппаратуры может привести к снижению аппаратурной надежности, а ошибки в результатах контроля – к снижению достоверности.
Контроль с использованием корректирующих кодов позволяет свести время устранения ошибки к пренебрежимо малому значению, но требует еще большего усложнения аппаратуры.
Более детальный анализ количественного влияния контроля и восстановления на показатели надежности требует учета двойственного характера влияния контроля на надежность контролируемого изделия. Это означает, что при проектировании системы контроля необходимо проводить либо расчет, либо моделирование надежности изделия с учетом влияния контроля и на основании такого расчета выбирать оптимальную стратегию контроля.
В самом общем виде рекомендация по проектированию контроля в АСУ может быть сформулирована следующим образом:
в основу системы контроля должен быть положен системный принцип (подход), т. е. организация контроля должна учитывать многосторонний характер влияния контроля на характеристики АСУ и представлять по своей структуре сложную систему, в которой должны сочетаться различные методы и средства контроля. Система контроля должна иметь многоуровневый характер: на первом, самом низком, уровне – контроль состояния отдельных технических средств; на втором – контроль выполнения функциональных задач, решаемых различными подсистемами; на третьем – объединение всех видов контроля в единую систему, позволяющую получить информацию о состоянии системы и ее функционировании, а также управлять системой путем реорганизации ее структуры, подключения резервных средств, вывода отдельных технических средств на профилактику, применения приоритетного принципа обработки информации и т. д.

Источник

Какие критерии диагностирования должны выполняться предусмотрены в асу

Единая система стандартов автоматизированных систем управления

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Unified system of standards of computer control systems. Computer control systems. General requirements

МКС 35.240
ОКСТУ 0024

Дата введения 1987-01-01

Постановлением Государственного комитета СССР по стандартам от 20.12.85 N 4632 дата введения установлена 01.01.87

ИЗДАНИЕ (июль 2009 г.) с Поправкой (ИУС 8-2003).

Настоящий стандарт распространяется на автоматизированные системы управления (АСУ) всех видов (кроме общегосударственных) и устанавливает общие требования к АСУ в целом, функциям АСУ, подготовленности персонала и видам обеспечения АСУ, безопасности и эргономики, виды и порядок проведения испытаний при вводе АСУ в действие, комплектность АСУ, гарантии.

Стандарт не устанавливает требования к АСУ, определяемые спецификой объектов управления. Эти требования формулируются в техническом задании на создание или развитие каждой АСУ или в других нормативно-технических документах ведомства заказчика АСУ.

Дополнительные требования к АСУ технологическими процессами, АСУ предприятиями, производственными и научно-производственными объединениями, отраслевыми АСУ установлены в обязательных приложениях 2-3 соответственно.

В приложении 4 приведены пояснения к некоторым терминам, применяемым в стандарте.

1. ТРЕБОВАНИЯ К АСУ

1.1. Требования к АСУ в целом

1.1.2. Ввод в действие АСУ должен приводить к полезным технико-экономическим, социальным или другим результатам, например:

— снижению численности управленческого персонала;

— повышению качества функционирования объекта управления;

— повышению качества управления и др.

1.1.3. Конкретное содержание требований по пп.1.1.2, 1.1.5-1.1.11, 1.2, 1.3, 1.4.2, 1.4.3, 1.4.6, 1.4.9, 1.5.2, 1.5.4, 1.5.6, 1.5.7, 1.6.2, 1.6.6, 1.6.12, 1.7.2, 1.7.3 устанавливают в ТЗ на АСУ.

1.1.4. АСУ должна обеспечивать достижение целей ее создания (развития), установленных в ТЗ на АСУ.

1.1.5. В АСУ должна быть обеспечена совместимость между ее частями, а также с автоматизированными системами (АС), взаимосвязанными с данной АСУ.

В случаях, когда АСУ или совокупность АСУ (АС) создана на базе вычислительной сети, для обеспечения совместимости между элементами такой сети должны быть применены системы протоколов многоуровневого взаимодействия.

1.1.6. АСУ в целом и все виды ее обеспечения должны быть приспособлены к модернизации, развитию и наращиванию в пределах требований, указанных в ТЗ на АСУ.

1.1.7. Надежность АСУ в целом и каждой ее автоматизированной функции должна быть достаточна для достижения установленных целей функционирования системы при заданных условиях применения.

1.1.8. Адаптивность АСУ должна быть достаточной для достижения установленных целей ее функционирования в заданном диапазоне изменений условий применения.

1.1.9. В АСУ должны быть предусмотрены контроль правильности выполнения автоматизированных функций и диагностирование, с указанием места, вида и причины возникновения нарушений правильности функционирования АСУ.

1.1.10. В АСУ, имеющих измерительные каналы, должна быть предусмотрена возможность контроля метрологических характеристик измерительных каналов.

1.1.11. В АСУ должны быть предусмотрены меры защиты от неправильных действий персонала, приводящих к аварийному состоянию объекта или системы управления, от случайных изменений и разрушения информации и программ, а также от несанкционированного вмешательства.

1.1.12. Любая поступающая в АСУ информация вводится в систему однократно с помощью одного входного канала, если это не приводит к невыполнению требований, установленных в ТЗ на АСУ (по надежности, достоверности и т.п.).

1.1.13. Выходная информация одного и того же смыслового содержания должна быть сформирована в АСУ однократно, независимо от числа адресатов.

1.1.14. Информация, содержащаяся в базах данных АСУ, должна быть актуализирована в соответствии с периодичностью ее использования при выполнении функций системы.

1.1.15. АСУ должна быть защищена от утечки информации, если это оговорено в ТЗ на АСУ.

1.1.16. Наименование АСУ должно включать наименования вида АСУ и объекта управления.

— АСУТП нагрева металла в методической печи;

— организационно-технологическая АСУ цехом N 5;

— АСУП завода «Серп и молот».

1.2. Требования к функциям АСУ

1.2.1. АСУ в необходимых объемах должна автоматизированно выполнять:

— сбор, обработку и анализ информации (сигналов, сообщений, документов и т.п.) о состоянии объекта управления;

— выработку управляющих воздействий (программ, планов и т.п.);

— передачу управляющих воздействий (сигналов, указаний, документов) на исполнение и ее контроль;

— реализацию и контроль выполнения управляющих воздействий;

— обмен информацией (документами, сообщениями и т.п.) с взаимосвязанными автоматизированными системами.

1.2.3. Состав автоматизированных функций АСУ и степень их автоматизации должны быть технико-экономически и (или) социально обоснованы с учетом необходимости освобождения персонала от выполнения повторяющихся действий и создания условий для использования его творческих способностей в процессе работы.

1.3. Требования к подготовленности персонала АСУ

1.3.1. Квалификация персонала АСУ должна обеспечивать эффективное функционирование системы во всех заданных режимах.

1.3.2. Персонал АСУ должен быть подготовлен к выполнению своих обязанностей в соответствии с инструкциями организационного обеспечения.

1.3.3. Каждое лицо, входящее в состав персонала АСУ, должно уметь применять соответствующие информационные модели и работать с используемыми им техническими средствами и документацией, определяющей порядок его деятельности.

1.4. Требования к техническому обеспечению АСУ

1.4.1. Комплекс технических средств АСУ должен быть достаточным для выполнения всех автоматизированных функций АСУ.

1.4.2. В комплексе технических средств АСУ должны в основном использоваться технические средства серийного производства. При необходимости допускается применение технических средств единичного производства.

1.4.3. Тиражируемые АСУ и их части должны строиться на базе унифицированных технических средств.

1.4.4. Технические средства АСУ должны быть размещены с соблюдением требований, содержащихся в технической, в том числе эксплуатационной, документации на них, и так, чтобы было удобно использовать их при функционировании АСУ и выполнять техническое обслуживание.

1.4.5. Размещение технических средств, используемых персоналом АСУ при выполнении автоматизированных функций, должно соответствовать требованиям эргономики: для производственного оборудования по ГОСТ 12.2.049-80, для средств представления зрительной информации по ГОСТ 21829-76, в том числе для табло коллективного пользования из цифровых знакосинтезирующих электролюминесцентных индикаторов по ГОСТ 29.05.002-82.

1.4.6. Технические средства АСУ, используемые при взаимодействии АСУ с другими системами, должны быть совместимы по интерфейсам с соответствующими техническими средствами этих систем и используемых систем связи.

1.4.7. В АСУ должны быть использованы технические средства со сроком службы не менее десяти лет. Применение технических средств с меньшим сроком службы допускается только в обоснованных случаях и по согласованию с заказчиком АСУ.

1.4.8. Любое из технических средств АСУ должно допускать замену его средством аналогичного функционального назначения без каких-либо конструктивных изменений или регулировки в остальных технических средствах АСУ (кроме случаев, специально оговоренных в технической документации на АСУ).

1.4.9. Технические средства АСУ допускается использовать только в условиях, определенных в эксплуатационной документации на них. В случаях, когда необходимо их использование в среде, параметры которой превышают допустимые значения, установленные для этих технических средств, должны быть предусмотрены меры защиты отдельных технических средств АСУ от влияния внешних воздействующих факторов.

1.4.10. В АСУ должны быть использованы средства вычислительной техники, удовлетворяющие общим техническим требованиям по ГОСТ 21552-84.

1.4.11. В АСУ должны быть использованы технические средства, соответствующие:

* На территории Российской Федерации действует ГОСТ Р 52931-2008.

1.4.12. Защита технических средств АСУ от воздействия внешних электрических и магнитных полей, а также помех по цепям питания должна быть достаточной для эффективного выполнения техническими средствами АСУ своего назначения при функционировании АСУ.

* На территории Российской Федерации действует ГОСТ Р 51318.11-2006.

1.5. Требования к программному обеспечению АСУ

1.5.1. Программное обеспечение АСУ должно быть достаточным для выполнения всех функций АСУ, реализуемых с применением средств вычислительной техники, а также иметь средства организации всех требуемых процессов обработки данных, позволяющие своевременно выполнять все автоматизированные функции во всех регламентированных режимах функционирования АСУ.

1.5.2. Программное обеспечение АСУ должно обладать следующими свойствами:

— функциональная достаточность (полнота);

— надежность (в том числе восстанавливаемость, наличие средств выявления ошибок);

— модульность построения и удобство эксплуатации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *