какие лучи входят в состав солнечного спектра
Я на солнышке лежу.
Кандидат физико-математических наук Е. ЛОЗОВСКАЯ.
Спектральный состав солнечного света во многом зависит от времени года, погоды, географической широты и высоты над уровнем моря. Например, чем дальше от экватора, тем сильнее коротковолновая граница сдвигается в сторону длинных волн, поскольку в этом случае свет падает на поверхность под косым углом и проходит большее расстояние в атмосфере, а значит, сильнее поглощается. На положение коротковолновой границы влияет и толщина озонового слоя, поэтому под «озоновыми дырами» на поверхность Земли попадает больше ультрафиолета.
В полдень интенсивность излучения на длине волны 300 нм в 10 раз выше, чем за три часа до этого или три часа спустя. Облака рассеивают ультрафиолет, но только темные тучи способны блокировать его полностью. Ультрафиолетовые лучи хорошо отражаются от песка (до 25%) и снега (до 80%), хуже от воды (менее 7%). Поток ультрафиолета возрастает с высотой, приблизительно на 6% с каждым километром. Соответственно в местах, расположенных ниже уровня моря (например, у берегов Мертвого моря), интенсивность излучения меньше.
Без света жизнь на Земле не могла бы существовать. Растения используют солнечную энергию, запасают ее с помощью фотосинтеза и обеспечивают энергией через пищу всех остальные живые существа. Человеку и другим животным свет обеспечивает возможность видеть окружающий мир, регулирует биологические ритмы организма.
Эту жизнерадостную картину немного осложняет ультрафиолет, поскольку его энергии достаточно, чтобы вызвать серьезные повреждения ДНК. Ученые насчитывают более двух десятков различных болезней, которые возникают или усугубляются под действием солнечного света, среди них пигментная ксеродерма, плоскоклеточный рак кожи, базалиома, меланома, катаракта.
Долгое время белая кожа считалась отличительной чертой знатных и богатых: сразу было видно, что ее обладателям не приходится с утра до ночи работать в поле. Но в ХХ веке все изменилось, бедные слои населения теперь проводили целые дни на заводах и фабриках, а богатые могли позволить себе отдыхать на свежем воздухе, у моря, демонстрируя красивый золотистый загар. После Второй мировой войны мода на загар приобрела массовый характер; загорелая кожа стала считаться признаком не только достатка, но и отменного здоровья. Разрослась туристическая индустрия, предлагающая отдых у моря в любое время года. Но прошло некоторое время, и врачи забили тревогу: оказалось, у любителей загара частота рака кожи возросла в несколько раз. И в качестве спасительного средства было предложено всем без исключения пользоваться солнцезащитными кремами и лосьонами, в состав которых входят вещества, отражающие или поглощающие ультрафиолет.
Известно, что еще во времена Колумба индейцы имели обыкновение раскрашивать себя красной краской, чтобы защититься от солнца. Возможно, древние греки и римляне использовали для этих целей смесь песка с растительным маслом, поскольку песок отражал солнечные лучи. Применение химических солнцезащитных средств началось в 1920-х годах, когда в качестве солнцезащитного средства была запатентована парааминобензойная кислота (ПАБК). Однако она растворялась в воде, так что защитный эффект исчезал после купания, и к тому же раздражала кожу. В 1970-е годы на смену ПАБК пришли ее эфиры, почти нерастворимые в воде и не вызывающие сильного раздражения. Настоящий бум в области солнцезащитной косметики начался в 1980-е годы. Поглощающие ультрафиолет вещества (в косметологии за ними закрепилось название «УФ-фильтры») стали добавлять не только в специальные «пляжные» кремы, но и почти во все косметические продукты, предназначенные для использования в дневное время: крем, жидкую пудру, губную помаду.
Естественно, что производителей косметики больше привлекали прозрачные и хорошо растворимые «химические» УФ-фильтры (известные в фотохимии как УФ-абсорберы). К ним относятся уже упоминавшаяся ПАБК и ее эфиры (сейчас их почти не используют, так как появились сведения, что они разлагаются с образованием мутагенов), салицилаты, производные коричной кислоты (циннаматы), антраниловые эфиры, оксибензофеноны. Принцип действия УФ-абсорбера заключается в том, что, поглотив квант ультрафиолета, его молекула изменяет свою внутреннюю структуру и преобразует энергию света в тепло. Наиболее эффективные и светостойкие УФ-абсорберы работают по внутримолекулярному циклу переноса протона.
Большинство УФ-абсорберов поглощают свет только в УФ-В области. Обычно солнцезащитные средства содержат не один УФ-фильтр, а несколько, как физических, так и химических. Общее содержание УФ-фильтров может превышать 15 процентов.
Для характеристики защитной эффективности кремов, лосьонов и прочей косметической продукции стали использовать так называемый солнцезащитный фактор (по-английски «sun protection factor», или SPF). Идея солнцезащитного фактора была впервые предложена в 1962 году австрийским ученым Францем Грайтером и принята представителями косметической и фармацевтической промышленности. Солнцезащитный фактор определяется как отношение минимальной дозы ультрафиолета, необходимой для возникновения эритемы при действии на защищенную кожу, к дозе, вызывающей такой же эффект при незащищенной коже. Получила широкое распространение популярная интерпретация: если без защиты вы обгораете за 20 минут, то, намазав кожу кремом с защитным фактором, скажем, 15, получите солнечный ожог только пробыв на солнце в 15 раз дольше, то есть через 5 часов.
ОБМАНЧИВОЕ ЧУВСТВО ЗАЩИТЫ
Казалось бы, решение проблемы ультрафиолета найдено. Но на деле все не так просто. В научной литературе стали появляться сообщения, что у людей, которые постоянно пользуются солнцезащитными препаратами, частота возникновения таких разновидностей рака кожи, как меланома и базалиома, не только не снизилась, но и возросла. Было предложено несколько объяснений этого обескураживающего факта.
Результаты опросов показывают, что те, кто пользуется кремами с более высоким фактором защиты, проводят на солнце больше времени, а значит, неосознанно подвергают себя большему риску.
Другие полезные эффекты ультрафиолета связаны в основном с медициной. Ультрафиолетом лечат такие заболевания, как псориаз, экзема, розовый лишай. Датский врач Нильс Финсен в 1903 году получил Нобелевскую премию за применение ультрафиолета в лечении волчаночного туберкулеза кожи. Метод облучения крови ультрафиолетом сейчас успешно применяют для лечения воспалительных и других заболеваний.
СОЛОМЕННАЯ ШЛЯПКА ОТ ЗАГАРА
Вопрос о том, полезен или вреден ультрафиолет, не имеет однозначного ответа: и да, и нет. Многое зависит от дозы, спектрального состава и особенностей организма. Избыток ультрафиолета безусловно опасен, но на защитные кремы полностью полагаться нельзя. Требуются дополнительные исследования, чтобы установить, в какой степени употребление солнцезащитных средств может способствовать развитию раковых заболеваний.
Рекомендации достаточно просты. Избегайте бывать на солнце в самые жаркие часы. Будьте особенно осторожны с солнцем, если принимаете лекарства, обладающие свойствами фотосенсибилизаторов: сульфаниламиды, тетрациклины, фенотиазины, фторхинолоны, нестероидные противовоспалительные препараты и некоторые другие. Фотосенсибилизаторы входят и в состав некоторых растений, например зверобоя (см. «Наука и жизнь» № 3, 2002 г.). Усиливать действие света могут ароматические вещества, входящие в состав косметики и духов.
Защита от солнца должна быть индивидуальной, в зависимости от места жительства, сезона и типа кожи.
Радиация нашей звезды
Солнечный свет это электромагнитное излучение, исходящее от Солнца. На Земле наша атмосфера фильтрует излучение Солнца, защищая нас от вредного излучения и изменяя его цвет.
Откуда он берется?
Давайте посмотрим на все длины волн света в солнечном излучении. Как вы, наверное, знаете, огромная температура и давление в ядре, заставляют превращаться водород в атомы гелия. Часть энергии, из этого слияния, выделяется в форме гамма-лучей. Эти гамма-лучи поглощаются частицами на Солнце, а затем повторно переизлучаются. Фотонам требуется 200.000 лет, чтобы выбраться из ядра в космическое пространство. Поверхность Солнца, называется фотосферой, и именно в фотосфере, свет, наконец, вырывается в космос. Спустя долгое путешествие сквозь Солнце, фотоны теряют энергию и их длина волны изменяется.
Это хорошая новость, иначе развитие жизни на Земле, под постоянным облучением гамма-лучами, было бы затруднительно.
Спектр излучения света Солнца это смесь различных длин волн. Тепло, которое мы ощущаем, это инфракрасное излучение с диапазоном длин волн от 1400 нм до 1 мм. Видимый свет, имеет длину волны от 400 до 700 нм.
В космосе, солнечный свет кажется белым, но здесь, на Земле, мы видим его желтым, потому что наша атмосфера отклоняет синие и фиолетовые фотоны.
Ультрафиолетовое излучение, к счастью, поглощается атмосферой Земли, оно довольно опасно для жизни. Спектр Солнечного света непрерывный, и в нем множество темных линий, вызванных его поглощением в холодных слоях его атмосферы. Вся жизнь на Земле зависит от солнечной радиации. Это основной источник энергии на Земле, он управляет погодой на планете и океанической циркуляцией. Без этого источника энергии, Земля замерзнет.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Из чего состоит солнечный свет?
Каждый день мы чувствуем на себе когда-то теплый и согревающий, когда-то бледный и, казалось бы, леденящий, а иногда яркий обжигающий солнечный свет. Он всегда ощущается по-разному, но какой эффект он оказывает на самом деле и что собой представляет?
Солнечный свет это — это доносящиеся до Земли электромагнитные волны, исходящие от Солнца. Благодаря этому гигантскому резервуару энергии зародилась жизнь и продолжает свою активность и доселе. Эта энергия передается в нескольких формах, но до нас доходят лишь часть из этого, изрядно прореженная и ослабленная атмосферой Земли. Если не углубляться в физику, сам свет состоит из ультрафиолетовых коротких волн (280-400 нм), привычного для нас видимого света средних волн (400-700 нм) и из длинных, инфракрасных волн (700 нм – 1мм). Кардинальное и определяющее различие между ними состоит в их способности проникать сквозь ткани и материалы, а также влиять на них.
Ультрафиолетовый свет (UV) — самый опасный вид солнечного излучения для человека. Он не может проникать так глубоко, как другие составляющие света, но может наносить сильный ущерб поверхностным слоям кожи человека. Это проявляется как в солнечных ожогах, ускорении старения кожи, и аллергических реакциях, так и в более серьезных проявлениях как, например, рак кожи и меланома. И это ещё с учетом того, что значительная часть ультрафиолета отсеивается атмосферой. Такой ущерб ультрафиолетовый свет наносит путем увеличения числа свободных радикалов (атомов или молекул с несколькими неспаренными электронами) в клетках кожи, которые повреждают ДНК или нарушают метаболические реакции.
Чтобы противодействовать этому, на данный момент разработано немало солнцезащитных гелей и мазей, которые хорошо справляются с ультрафиолетом, но, и это стоит подчеркнуть, практически никак не мешают воздействию на кожу и тело других спектров света. Эту задачу, однако, выполняет другое средство защиты от этого агрессора — поддержание диеты с достаточным количеством антиоксидантов, которые будут противодействовать генерированию свободных радикалов. В небольших количествах же UV приносит больше пользы, чем вреда, так как способствует естественному производству витамина D в организме.
Второй кусок волнового спектра — видимый свет. Он нам очень хорошо знаком, потому что именно из этого белого пучка и рождается известное нам освещение во всем многообразии его палитры и оттенков. Примитивные формы цветов, а конкретнее — фиолетовый (400 нм), синий (425 нм), голубой (470 нм), зеленый (550 нм), жёлтый (600 нм), оранжевый (630 нм) и красный (665 нм), вместе и выглядят как белый свет, являются его составным частями, находящимися в разных частях волнового спектра, а при определенных условиях, как вы уже догадались, могут материализовываться в виде радуги. Сочетание этих базовых цветов в совокупности с параллельным изменением других параметров, таких как интенсивность света и её распределение по спектру белого, а также светлость цвета, отражающие качества материала, фоновые цвета и т.д. образуют эту безумную, визуально насыщенную картину нашего мира.
Интересно, что именно видимым спектром, в основном, питаются растения, и поэтому они эволюционно к нему больше всего приспособлены. Тем не менее, нельзя сказать, что видимый свет только полезен, он может воздействовать на объекты примерно также, как и другие два компонента солнечного излучения, только в более умеренной форме. Исключением может быть его влияние на зрение человека, так как глаза человека особо к нему чувствительны, и потому высокоинтенсивный, мигающий или резкий видимый свет гораздо чаще других вариантов на практике приводит к повреждению зрительного аппарата человека.
И последний тип света — инфракрасный (IR). Из всех перечисленных он может проникать глубже всего в тело человека, достигая костей и других глубинных тканей, и влияя даже на внутренние процессы в организме. Однако, в отличии от ультрафиолетового света, инфракрасный свет не вызывает такого сильного выделения свободных радикалов и не наносит большой урон человеку. В каком-то смысле, если видимый спектр — это лицо солнечного света, то инфракрасный— его тело, потому что последний отвечает за нагревание, позволяет человеку к нему «прикоснуться». Это происходит из-за того, что длинные волны могут легче сочетаться в колебаниях с молекулами веществ и в разы эффективнее передавать энергию. Забавно, что эта теплота, передаваемая Солнцем, имеет свойство не только расслаблять и доставлять удовольствие, но и приводит к ускорению заживления ран, а также к улучшению циркуляции крови.
И все же как бы не вел себя в тех или иных условиях солнечный свет, в итоге у него гораздо больше позитивных сторон. Он позволяет нам видеть и чувствовать красоту и эффективно выполнять наши задачи, и даже улучшает на наше психологическое самочувствие, настроение и иммунитет. Без него немыслима наша жизнь, это закреплено в самих человеческих генах. И даже самые прогрессивные фантасты и футуристы в своем творчестве не могут представить, каким бы было и как бы себя вело человечество, будучи незрячим и безразличным к свету.
СПЕКТРАЛЬНЫЙ СОСТАВ солнечного излучения
Солнечная радиация – это интегральный поток корпускулярных частиц (протоны, γ-частицы, электроны, нейтроны, нейтрины) и электромагнитного (фотонного) излучения.
В результате солнечной активности образуется большое количество корпускулярных частиц, которые движутся со скоростью – от 300 до 2000 км/сек и достигают атмосферы Земли за 2 суток, однако задерживаются его магнитным полем. Образуется также электромагнитное излучение, двигающееся со скоростью 300 000 км/сек и достигающее Земли за 8 мин.
Корпускулярные частицы: α-частицы, β-частицы, протоны, электроны, нейтроны, позитроны и т. п.
· γ- излучение (длина волны 100 000 нм)
Физические свойства, биологическое действие и, соответственно, возможные нарушения, в состоянии здоровья возникающие при недостаточном или избыточном облучении, зависят от длины волны преобладающей в составе солнечной радиации на данной территории. Корпускулярные частицы и волны, имеющие длину менее чем 280 нм, полностью поглощаются в озоновом слое, в верхних слоях земной атмосферы. Однако, загрязнение атмосферы промышленными выбросами, особенно фреоном, способствует разрушению и утончению озонового слоя атмосферы, появлению в некоторых регионах так называемых “озоновых дыр”, сквозь которые к поверхности земли проникают более опасные для всего живого, с меньшей длиной волны УФ лучи.
Количество солнечного излучения, которое достигает Земли, называется световым климатоми зависит от природных и антропогенных факторов. В зависимости от обеспечения ультрафиолетом регионов выделяют зоны:
УФ-ДЕФИЦИТА (северные регионы, >57 широты);
УФ-КОМФОРТА (42-57 широты);
УФ-избытка (южные регионы, 2 ×мин.
Физические свойства и биологическое действие ультрафиолетового излучения
Весь диапазон УФ-излучения Солнца и искусственных источников делятся на три области:
· область А – длинноволновое УФ-излучение λ = 320–400 нм;
· область В – средневолновое УФ-излучение λ = 280–320 нм;
· область С – коротковолновое УФ- излучение: λ = 10–280 нм.
Биологическое действие УФИ:
А. Биогенное:
2. Д-витаминообразующее воздействие УФИ свойственно для области В. Эффект заключается в расщеплении кальциферола: из эргостерина (7,8-дегидрохолестерина) в кожном жире (секрете сальных желез) под воздействием УФО вследствии расщепления бензолового кольца образуется витамин Д2 (ергохолекальциферол) и витамин Д3 (холекальциферол), а из провитамина 2,2-дегидроэргостерина – витамин Д4.
3. Пигментообразующий эффект УФИ – область А, В. Обусловлен образованием меланина. Меланин защищает кожу (и весь организм) от избытка УФИ, видимого и инфракрасного излучения.
Б. Абиогенное:
1. Бактерицидное действие свойственно для области С. Под влиянием УФИ сначала возникает возбуждение бактерий с активацией их жизнедеятельности, которое с увеличением дозы УФИ сменяется бактериостатическим эффектом, а затем – фотодеструкцией, денатурацией белков, гибелью микроорганизмов.
2. Канцерогенное действие УФИ появляется в условиях жаркого тропического климата и на производстве с высоким уровнем и длительным воздействием технических источников УФИ (электросварка и т. п.).
Недостаточность УФ-излучения (световое голодание) приводят к:
· снижению резистентности организма и, как следствие, к увеличению заболеваемости, обострению хронической патологии
· возникновению рахита у детей
· возникновению остеопороза у взрослых
Профилактика: солнечная ванна, солярии, фотарии, витамин D в медикаментозной форме
Избыток УФ-излучения приводят к:
· снижению резистентности организма и, как следствие, увеличению заболеваемости, обострению хронической патологии
· поражению глаз (фотоофтальмия при природном происхождении УФИ, например, в горах, электрофтальмия при искусственном происхождении, например, у электросварщиков, кератоконъюнктивиты, катаракта, птеригий – рак роговицы)
· фотодерматозу, солнечному эластозу (нарушение образования коллагена)
· выведению из организма витаминов В2, РР, С
· нарушению липидного обмена
Профилактика: одежда из натуральной ткани, головные уборы, солнцезащитные и специальные очки, используемые на производстве.
Методы определения интенсивности УФИ:
2) Фотоэлектрический метод – измерение интенсивности УФИ ультрафиолетметром или уфиметром (фотоинтенсиметром или фотоэкспозиметром) в мкВт/см 2
3) Биологический (эритемний) метод – определение эритемной дозы при помощи биодозиметра М.Ф. Горбачева. Биологическая (эритемная) доза (биодоза) является минимальным временем облучения участка кожи ультрафиолетовым излучением, в результате которого возникает ее слабое покраснение (эритема). Биодозиметр является планшеткой с 6 отверстиями-окошками, которые закрываться двигающейся пластинкой. Биодозиметр располагается на незагорелой чувствительной к ультрафиолетовому излучению части кожи (нижняя часть кожи живота либо внутренняя часть предплечья) исследуемого, располагающегося на расстоянии 0,5 м от источника излучения.
В начале исследования открывают все отверстия. В дальнейшем, через 1 минуту закрывают первое, через 2 минуты – второе, через 3 минуты – третье и т.д.
Контроль появления эритемы следует проводить через 6 – 8 часов после облучения. Биодозу (в минутах) определяют в соответствии с номером отверстия (по времени экспозиции), в котором было зарегистрировано наименьшее покраснение.
Профилактическая доза ультрафиолетового излучения составляет 1/8 биодозы, физиологическая доза –1/4-1/2 биодозы. Максимальная доза – 1 биодоза для детей и 2 биодозы для взрослых.
Для определения биологической (эритемной) дозы биодозиметр Горбачева-Дальфельда разместили на коже нижней трети брюшной полости школьника и облучали на протяжении 6 минут.
Через 4 часа после облучения на коже было обнаружено 2 красные полоски. Учитывая, что биодоза представляет собой наименьшее время облучения вызывающее наименьшее покраснение, в данном случае она составляет 5 минут или 300 секунд.
Профилактическая доза составляет 1/8 биодозы или 38 секунд.
Оптимальная доза составляет – от 1 мин 15 сек до 1 мин 30 сек.
Максимальная доза составляет 5 или 10 минут.
УФИ используютв стоматологической практике для закрепления фотополимерного пломбировочного материала, для лечения афтозных стоматитов, парадонтоза, для дезинфекции инструментария, санации воздуха. В медицинской практике – при лечении гнойничковых заболеваний кожи, воспалительных заболеваний органов дыхания, артритов, псориаза, при частых простудных заболеваниях для повышения резистентности организма, для профилактики рахита, а также для профилактики хронических сердечно–сосудистых заболеваний.
Искусственные источники ультрафиолетового излучения: бактерицидно-увиолевая лампа (БУВ-30, БУВ-60), эритемно-увиолевая лампа (ЭУВ-30), ртутно-кварцевая лампа (ПРК).
Для санации воздуха используют кварцевание. В итоге кварцевания воздух обогащается озоном, который в свою очередь также дезинфицирует воздух. Озон ядовит, поэтому после кварцевания помещение следует проветрить. Во время работы кварцевой лампы следует покинуть помещение. На работающую лампу категорически запрещено смотреть и пытаться с ее помощью загорать.
Облучение искусственными источниками ультрафиолетового излучения с лечебной или профилактической целью проводятся в фотариях (солярии – природное УФИ). Фотарии могут быть разными по своему строению. Различают фотарии кабинного типа, проходного или лабиринтного типа и фотарии маячного типа. В качестве источников искусственного УФ излучения используют лампы эритемные (ЛЭ–30 и др.) или прямые ртутно-кварцевые, которые не генерируют нежелательного коротковолнового УФ излучения с длиной волны менее 280 нм
Методика расчета необходимого количества бактерицидных ламп для санации воздуха стоматологических кабинетов
Методика оценки эффективности санации воздуха в условиях использования
Для оценки эффективности санации воздуха необходимо провести посев воздуха на чашке Петри с питательной средой аспирационно-седиментацонным методом Ю.Кротова до и после облучения (рис. 1).
Облучение проводят с помощью бактерицидных ламп ЛБ–30 или ртутно-кварцевых типа ПРК с учетом рассчитанной экспозиции. После облучения проводят повторный посев воздуха на чашки Петри. После инкубации чашек в термостате на протяжении 24 часов при температуре 37°С подсчитывают количество колоний, которые выросли на обеих чашках, засеянных воздухом до и после облучения.
Мал. 1. Прибор Кротова для бактериологического исследования воздуха
(1 – клиновидна щель; 2 – вращательный диск; 3 – реометр)
Оценка микробного загрязнения воздуха проводится путем определения показателя микробного загрязнения воздуха или микробного числа, характеризующего общее количество микроорганизмов и количество гемолитического стафилококка, в 1 м 3 воздух.
Микробное число рассчитывается по формуле (2):
где М.ч. – количество микроорганизмов в 1 м 3 воздуха;
А – количество колоний выросших на чашке с питательной средой;
Т – время забора воздуха (мин);
V – скорость пропускания воздуха (л/мин).
Бактерицидное действие ультрафиолетовой радиации характеризуется степенью эффективности, которая показывает, на сколько процентов уменьшилось число микроорганизмов в 1 м 3 воздуха после санации, или коэффициентом эффективности, показывающим, во сколько раз уменьшилось количество микроорганизмов в данном объеме.
Санация считается эффективной, если степень эффективности составляет 80%, а коэффициент эффективности – не менее 5.
Микробное число, после санации воздуха в стоматологическом кабинете не должно превышать 1000. Гемолитического стафилококка быть не должно.