какие материалы могут называться наноматериалами

Различные типы наноматериалов

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Известно четыре основных класса материалов, которые используются для производства наноразмерных изделий, включая :

Эти продукты имеют множество применений и используются в автомобильной промышленности, биомедицинской промышленности, в киноиндустрии и многом другом.

Наноматериалы уникальны из-за своих размеров, которые могут варьироваться от одного нанометра до нескольких сотен нанометров. Электрические, оптические и химические свойства очень сильно различаются в наноматериалах. Одна из причин того, что свойства материалов настолько различны, состоит в том, что более половины атомов материалов находятся на поверхности. Крупномасштабные предметы имеют гораздо меньшее количество атомов на поверхности.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Некоторые из применений продуктов на основе углерода включают создание тонкой, но прочной пленки. Они также улучшат качество и срок службы различных покрытий, используемых на механических деталях.

Композиты представляют собой третий класс материалов, изготовленных из других наноматериалов, которые объединены с крупными объемными материалами или другими наночастицами. Эти композиты используются для огнезащитных свойств, повышают механические характеристики и действуют как барьер для упаковки. Небольшое количество композитов, всего два процента, может увеличить силу предметов на целых 100 процентов. Создание композитов может быть довольно простым, с использованием технологии ионного обмена и нагрев. Реакции, использующие полимеризацию, являются еще одним способом быстрого создания композитов.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Источник

Описание наноматериалов: структура, свойства, технологии

Концепция нанотехнологии впервые была введена в научную практику американским физиком и лауреатом Нобелевской премии Ричардом Фейнманом в 1959 году. Последующее развитие науки и техники подтвердило актуальность теории Фейнмана – наноматериалы стали одним из ключевых разделов современного материаловедения. Фейнман описал также своё видение использования машин, предназначенных для создания оборудования меньших размеров вплоть до молекулярного уровня.

В определении японского учёного Норио Танигучи, нанотехнология состоит из целенаправленной совокупности методов обработки, разделения, консолидации и деформации вещества на уровне и с помощью одного атома или одной молекулы.

Структура нанокристаллических материалов

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Продукты нанотехнологий с типичным размером зерна менее 100 нм благодаря своим новым свойствам и разнообразным возможностям применения привлекает возрастающий интерес во всем мире. Эти структуры традиционно подразделяются на:

Одно- и и двумерные структуры широко исследуются для нанесения покрытий в электронных компонентах, а с трёхмерными равноосными структурами ведутся эксперименты по их использованию в объёмных изделиях. Из-за небольшого размера зерна и, как следствие, большой объёмной доле атомов на границах зерен (или вблизи них), наноматериалы демонстрируют свойства, которые часто превосходят свойства обычных крупнозернистых материалов.

Установлено, что структура кристаллитов по существу такая же, как у крупнозернистых наноматериалов, с той разницей, что параметры решётки в нанокристаллическом состоянии немного увеличены (от 0,2% до 0,8%). Впрочем, это касается только изделий, которые получены путём кристаллизации аморфной фазы.

Классификация наноматериалов

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Большинство современных нано материалов можно разделить на четыре типа:

Материалы на основе металлов включают квантовые точки, нанозолото, наносеребро и оксиды металлов, например, диоксид титана. Квантовая точка представляет собой плотно упакованный кристалл полупроводника, состоящий из сотен или тысяч атомов, размер которого составляет от нескольких нанометров до нескольких сотен нанометров. При изменении размера квантовых точек их оптические свойства также меняются.

Способы получения

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Производственные подходы к синтезу различных наноструктур подразделяются на две категории: нисходящие и восходящие, которые различаются по степени качества, скорости и стоимости.

Технология наноматериалов базируется на основе синтеза, при этом исходный образец может находиться в парообразном, жидком или твёрдом состоянии. Исторически первым методом, который был использован для синтеза нанокристаллических металлов и сплавов был метод конденсации инертного газа, при которой испаряющееся вещество закаливается на холодную подложку.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Впоследствии также использовались плазменная обработка и другие методы физического и химического осаждения из паровой фазы. При электроосаждении и быстром затвердевании в качестве исходного сырья используется жидкое состояние веществ.

Механическое легирование, сварка трением с перемешиванием, сильная пластическая деформация, искровая эрозия, износ при скольжении и многократная холодная прокатка также приводят к образованию нанокристаллических структур. Некоторые из этих методов используются в достаточно крупных производственных масштабах для конденсации инертного газа, расположения электродов и при механическом легировании

Остальные пока не вышли из стадии лабораторных исследований.

Выбор метода синтеза нанокристаллических материалов определяется следующими факторами:

Большинство упомянутых технологий производят нанокристаллическую заготовку в форме порошка. Применение таких структур требует, чтобы порошки были уплотнены до максимально возможных значений, когда пористость практически отсутствует. Уплотнение с полным связыванием частиц требует воздействия на порошок высоких температур и давлений в течение продолжительных периодов времени, что приводит к укрупнению микроструктурных особенностей. Однако сохранение материала в сверхплотном состоянии возможно лишь при условии, что порошок не подвергается воздействию высоких температур в течение длительных периодов времени. Таким образом, успешное уплотнение до полной плотности требует инновационных методов уплотнения.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Известно, что рассматриваемые вещества имеют преобладающую долю атомов на границах зерен, поэтому эффективный коэффициент диффузии нанокристаллических материалов намного выше, чем у крупнозернистых структур того же состава. Это будет способствовать достижению полной консолидации наноматериалов при температурах на 300…400 ° C ниже, чем те, которые требуются для крупнозернистых материалов. Успешное уплотнение нанокристаллических порошков может достигаться:

Уплотнение не требуется, если порошок может использоваться в исходном состоянии, например, в виде суспензии.

Свойства наноматериалов

При выяснении свойств данных веществ решающим фактором оказывается их термоустойчивость. Из-за своего малого размера зерна, нанокристаллические материалы с большой площадью поверхности обладают сильной потенциальной энергией роста зёрен. Знание термической стабильности важно как по научным, так и по технологическим причинам. С технологической точки зрения термостойкость важна для консолидации нанокристаллического порошка без огрубления микроструктуры. С научной точки зрения было бы полезно проверять, отличается ли поведение роста зёрен в нанокристаллических материалах от подобных процессах, протекающих в крупнозернистых структурах.

Энергию активации роста зёрен в нанокристаллических материалах обычно сравнивают с энергией активации решёточной, либо межзёренной диффузии в крупнозернистых веществах. Отмечено, что энергия активации роста зерен в нанокристаллических материалах более выгодна по сравнению с межзёренной диффузией. При этом рост зёрен в нанокристаллических материалах, полученных любым способом, очень мал до достаточно высокой температуры. Это сопротивление росту зёрен объясняется такими факторами, как узким распределением зёрен по своим размерам, равноосной морфологией зёрен, низкоэнергетической границей зёрен.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Из-за очень маленького размера зерна и, как следствие, высокой плотности поверхностей раздела, нанокристаллические материалы обладают множеством свойств, которые отличаются (и часто превосходят) от свойств обычных крупнозернистых образцов. К ним относятся:

Следует отметить, что первые результаты исследования свойств нанокристаллитов не очень надёжны, в основном из-за значительной пористости, присутствующей в исследуемых образцах. Например, в керамических образцах при комнатной температуре не удаётся воспроизвести пластичность. Некоторые исследователи утверждают, что коэффициент теплового расширения увеличивается с уменьшением размера зерна. В то же время другие сообщают о том, что данный параметр примерно одинаков как для нанокристаллических, так и для крупнозернистых материалов. Аналогичным образом, уменьшение модуля упругости может быть связано с пористостью и трещинами, присутствующими в консолидированном продукте.

Таким образом, важно сравнивать между собой свойства только полностью плотных материалов, не имеющих пористости, трещин или неоднородностей.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Наиболее важными для практического применения являются механические свойства. Достоверно устанавливать их сложно из-за отсутствия достаточно больших и бездефектных образцов, необходимых при испытаниях. Поэтому наиболее распространенным показателем для оценки механических свойств нанокристаллических материалов является твёрдость.

В результате испытаний установлено, что увеличение твёрдости и предела текучести связано с уменьшением размера зерна. Поскольку существующие экспериментальные методики разработаны на основе активности дислокаций в крупнозернистых образцах, допустимо считать, что в нанокристаллических материалах активность дислокаций минимальна и, следовательно, упрочнения не происходит. Приравнивая силу отталкивания дислокаций к приложенному усилию силе, можно вычислить критический размер зерна, ниже которого будет наблюдаться размягчение размера зерна. По расчетам, это значение составляет около 10…30 нм для большинства материалов.

Прочность нанокристаллитов намного выше, чем у крупнозернистых материалов. Однако другой подход к синтезу высокопрочных продуктов, по-видимому, заключается в создании нанокристаллических композитов с частицами, размерная фаза которых диспергирована в аморфной матрице. Это может быть достигнуто путём получения полностью аморфной фазы такими методами, как быстрым затвердеванием из расплава, механическим легированием, а также низкотемпературной первичной кристаллизацией, которая воздействует на образование нанокристаллической фазы.

Области применения

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Широкое использование и поиск технологических приложений требуют экономичного производства хорошо изученных нанокристаллитов в промышленных масштабах и с воспроизводимыми свойствами.

В настоящее время нановещества используются:

Получение наноматериалов может способствовать созданию более прочных, легких, чистых и «умных» поверхностей и систем. Например, прозрачные наночастицы оксида титана, используемые в солнцезащитных кремах, имеют тот же химический состав, что и более крупные частицы белого оксида титана. Наночастицы оксида сурьмы и олова обеспечивают устойчивость к царапинам и прозрачную защиту от ультрафиолетового излучения, которую невозможно увидеть с частицами большего размера.

Наноматериалы, которые используются в качестве наполнителя в шинах, могут улучшить сцепление с дорогой, уменьшая тормозной путь во влажных условиях, а жёсткость кузова автомобиля можно повысить за счет использования стали, упрочненной нановеществами. Новые методы гель-напыления позволяют экономично наносить просветляющие слои диоксида кремния или других материалов нанометровой толщины на дисплеи или панели. Ультратонкие прозрачные слои на серебряной основе можно использовать для обогреваемых оконных стекол, которые очищаются от запотевания и льда.

Установлено, что использование нанотехнологий перспективно в производстве, переработке, обеспечении безопасности и упаковке пищевых продуктов. Не исключено, что нанотехнологии позволят манипулировать молекулярными формами пищевых продуктов, чтобы обеспечить больше возможностей повышения качества и пищевой ценности, а также более низкие затраты.

Источник

Наноматериалы: на грани фантастики

То далекое время, когда наши предки додумались использовать простые предметы для добычи пропитания, стало Большим взрывом в развитии технологий. Сперва люди использовали «готовые» инструменты вроде палок и камней. Затем они научились превращать их во что-то более пригодное к применению. Потом научились выплавлять бронзу, а еще чуть позже стало ясно, что и она не идеальна. Начали использовать железо… С тех пор человечество открыло неисчислимое количество различных материалов, обладающих самыми разнообразными свойствами. Сегодня материаловедение переживает второе рождение: ученые разрабатывают собственные материалы в соответствии с желаемыми характеристиками.

Нанотехнологии

Пожалуй, все хотя бы раз в неделю слышат это слово. У широкой публики оно уже давно ассоциируется с чем-то средним между передовой наукой, волшебством и шарлатанством, а ученые продолжают добавлять магическую приставку «нано» с целью получить солидный грант. Давайте разберемся, что же представляют собой нанотехнологии и что они могут нам предложить в ближайшем и отдаленном будущем.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Иллюстрация размера в 1 нм, собранная из атомов меди инженерами IBM.

Прежде всего, нанометр (нм) — это одна миллиардная часть метра. Несколько фактов, чтобы ощутить масштаб: щетина растет со скоростью 5 нм в секунду, диаметр двойной спирали ДНК составляет примерно 2 нм, а толщина человеческого волоса — от 20 до 150 тысяч нм в зависимости от цвета. В то же время диаметр атома гелия — 0,1 нм. Таким образом, нанотехнологии подразумевают под собой создание и манипулирование многоатомными структурами, размеры которых хотя бы в одном измерении (длина, ширина или толщина) не превышают 100 нм.

Дело в том, что свойства вещества, состоящего из таких частиц, значительно отличаются от того же вещества в более привычном для нас (компактном) виде. С приближением к атомарному масштабу сильно возрастает удельная поверхность материалов (суммарная площадь поверхности, деленная на массу). Сильно возрастает роль квантово-механических эффектов. Зачастую именно они определяют новые удивительные и часто неожиданные свойства наноструктурированных материалов.

Для примера: в наноразмере существенно возрастает способность веществ вступать в химические реакции. В повседневной жизни алюминий — инертный металл, в фольге из которого можно спокойно запекать мясо в духовке. А вот наночастицы алюминия добавляют в качестве катализатора к твердому ракетному топливу, что сильно увеличивает его тепловыделение и эффективность.

Также значительно изменяются оптические свойства веществ. Например, ничем не примечательный в макромире полупроводник — селенид кадмия — в наномасштабе флуоресцирует всеми цветами радуги, причем цвет зависит лишь от диаметра частиц. Это свойство флуоресцентных наночастиц (так называемых квантовых точек) уже давно используется в лазерах и биологии, а также имеет хорошие шансы найти применение в производстве гибких цветных дисплеев и в медицинской диагностике.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Не стоит считать, что нанотехнологии — это что-то искусственное, придуманное человеком. На самом деле множество идей позаимствовано у природы. Например, недавно ученые из Калифорнийского технологического института под руководством профессора Грир сконструировали сверхпрочный материал, который состоит из «нанобалок» нитрида титана. Каким образом нужно соединить структурные элементы, ученые подсмотрели у морских губок. Образовавшаяся нанорешетка на 85% состоит из воздуха, но во много раз превосходит по прочности исходный материал. А с ним вы наверняка встречались: он уже давно используется как жаропрочное покрытие для стальных деталей, а также… для изготовления зубных протезов и окраски куполов православных церквей, так как в быту похож на золото.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Листья лотоса и многих других тропических растений практически не задерживают воду на своей поверхности. Наноматериалы, копирующие структуру поверхности листа, уже сейчас продаются в качестве супергидрофобного (водоотталкивающего) и суперолеофобного (маслоотталкивающего) покрытия.

Зная исходный принцип, можно разработать покрытие с совершенно противоположными свойствами — супергидрофильное. Такие материалы можно использовать для изготовления мембранных фильтров для глубокой очистки воды. В нашем организме их роль играют белки аквапорины, в большом количестве содержащиеся в почечных канальцах.

Производство наноматериалов

Естественно, какими бы чудесными ни были свойства наноматериалов, главным критерием их массового внедрения является дешевизна производства. Как правило, в лаборатории ученые имеют дело с небольшими образцами. Так, описанный выше наноструктурированный нитрид титана был получен в виде кубика с ребром 1 мм. Этого достаточно, чтобы измерить его характеристики, но согласитесь — говорить о промышленном производстве еще рано.

В настоящее время ученые используют два основных подхода для получения наноструктурированных веществ: разработка «снизу вверх» и «сверху вниз». Как можно догадаться, первый подразумевает сборку наноматериалов из отдельных атомов, а второй, наоборот, основан на дроблении более крупных агрегатов.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Оба подхода имеют свои недостатки. Если в случае разработки «снизу вверх» главной проблемой будет неупорядоченная организация получаемых частиц, то подход «сверху вниз» обеспечивает высокую точность, но очень трудозатратен. Поэтому в настоящее время внимание большого количества ученых направлено на изучение управляемой самоорганизации наночастиц. Особенно большие надежды связывают с разработкой принципов неравновесной самоорганизации. А это не что иное, как принцип устройства живых организмов. Нужно признать, что в создании наноструктур и наномеханизмов природа все еще далеко впереди нас.

Ниже перечислены некоторые последние достижения наноматериаловедения, которые, возможно, через несколько лет изменят наш мир до неузнаваемости.

Графен

Это вещество, за открытие которого была выдана Нобелевская премия по физике в 2010 году, является поистине чемпионом по количеству опубликованных о нем научных статей. И заслуженно: спектр уникальных свойств и применений графена поражает воображение. И это несмотря на то, что получить материал можно с помощью всего лишь куска графита и канцелярского скотча! Некоторые оптимисты уже сейчас считают, что XXI век будет веком графена. Что же в нем такого особенного?

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

В первую очередь, в отличие от всех предметов, окружающих нас, графен — двухмерный материал. По сути это плоскость, состоящая из атомов углерода, образующих шестиугольники, как в пчелиных сотах. Поэтому графен обладает самой высокой удельной поверхностью — он сам по себе лишь поверхность.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Как и его трехмерный прародитель (графит), графен — хороший проводник. При этом благодаря двухмерности его удельное сопротивление при комнатной температуре ниже, чем у серебра, а теплопроводность в 10 раз выше, чем у меди. Стоит ли упоминать, что транзисторы на основе графена намного быстрее кремниевых? И это все при том, что материал прозрачный и гибкий.

Графен обладает также уникальными механическими свойствами: он тверже и прочнее, чем алмаз, но при этом может быть растянут на четверть своей длины. Так, по словам нобелевских лауреатов 2010 года, графеновый гамак площадью в квадратный метр способен выдержать вес 4-килограммового кота и при этом сам будет весить меньше миллиграмма — как кошачий ус.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

В довесок ко всем уникальным свойствам графена их можно еще и регулировать, например с помощью магнитного поля, различных подложек либо путем создания композитных материалов. А если проделать в нем нанометровые отверстия, то из графена можно делать эффективные фильтры для опреснения воды!

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

В отличие от многих других наноматериалов массовое производство графена относительно дешево и уже активно осваивается ведущими производителями электроники.

Топологические изоляторы

Это материалы, являющиеся диэлектриками внутри, но имеющие на поверхности атомы, в которых электроны могут находиться близко к зоне проводимости. Поэтому движение электронов в топологических изоляторах возможно лишь по поверхности. Как следствие, возникающее сопротивление минимально, и электрон может легко разгоняться практически до скорости света без обратного рассеяния и разогревания проводящего слоя.

Принципиальная возможность их существования была предсказана в 2007 году, и уже вскоре были получены материалы, обладающие нужными свойствами: селенид и теллурид висмута.

Благодаря своим свойствам топологические изоляторы могут в недалеком будущем стать заменой полупроводникам. Дополнительным их преимуществом над полупроводниками является малая чувствительность к примесям. К тому же по сути они являются одновременно и проводниками, и собственными изоляторами.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Еще одной примечательной особенностью таких материалов является то, что спин (магнитный момент) электронов в поверхностном слое квантово-механически связан с его импульсом. До сих пор на атомарном уровне физики могли манипулировать лишь электрическими (но не магнитными) полями. Создание же топологических изоляторов позволяет надеяться, что скоро этот технологический пробел будет ликвидирован и откроется дорога к принципиально новому классу устройств, основанных на «спинтронике» (по аналогии с электроникой). А это уже прямой путь к созданию квантовых компьютеров, способных производить вычисления, для которых современным суперкомпьютерам потребовалось бы астрономическое количество времени.

Мемристоры

Более 40 лет назад китайский физик Леон Чуа теоретически предсказал существование «недостающего» четвертого базового элемента электрической цепи, связывающего электрический заряд и магнитный поток. В дополнение к хорошо известным резисторам (связывающим ток и напряжение), конденсаторам (напряжение и заряд) и катушкам индуктивности (ток и магнитный поток) он описал свойства гипотетического элемента — мемристора.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

В 2008 году группа ученых из Hewlett-Packard сообщила в журнале Nature о первом реальном устройстве такого типа. Оно состояло из нанопленки (50 нм) оксида титана, зажатой между титановым и платиновым электродами (каждый в 5 нм толщиной). Уникальным свойством прибора является его способность изменять собственное сопротивление и таким образом хранить информацию, а размеры (к 2010 году инженеры HP довели их до 3×3 нм) и скорость работы (1 ГГц) делают очевидным их огромный потенциал.

К концу 2013 года компания планирует наладить серийный выпуск первых устройств памяти на базе мемристоров, которые в скором времени призваны заменить «громоздкие» flash, SSD и т. д.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Что касается научной ценности мемристоров, то их открытие потенциально может совершить переворот в нейронауке. Дело в том, что собранные в достаточно несложную цепь устройства ведут себя подобно человеческим нейронам. Первые эксперименты уже показали, что такие цепи способны на «запоминание» и «забывание» информации, причем обучение происходит по тому же принципу, по которому работают клетки в нашем головном мозге. Ценность такого свойства для разработки искусственного интеллекта очевидна.

Метаматериалы

Создавать что-то новое — в человеческой природе. Если чего-то не существует самого по себе, то почему бы это не сделать. Метаматериалы — это полностью искусственные устройства, обладающие свойствами, которых в природе попросту нет. Они состоят из упорядоченных наноэлементов, например наноэлектрических цепей. Строгая организация усиливает свойства отдельных элементов и позволяет метаматериалам проявлять их в макромире.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

В результате метаматериалы проявляют ряд уникальных электромагнитных, оптических, акустических, механических и других свойств. Так, первая 10-микрометровая двухмерная «шапка-невидимка» была создана именно с помощью метаматериала на основе наноколец золота и полиметилметакрилата (оргстекла). Наноэлементы «шапки» расположены таким образом, что свет, падающий на ее поверхность, огибает материал по контуру и выходит с противоположной стороны без искажения. Поэтому для наблюдателя и «шапка», и предмет в ней невидимы. Похожий принцип может быть применен для защиты зданий от землетрясений — путем обведения сейсмических колебаний вокруг объекта, находящегося под защитой.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Другое применение метаматериалов — это так называемые суперлинзы. Они состоят из искусственного материала, имеющего отрицательный коэффициент преломления. Суперлинзы позволяют фокусировать свет на участке меньше длины волны, открывая тем самым новые горизонты в оптической микроскопии: они позволят непосредственно наблюдать биологические макромолекулы (ДНК и белки) и создавать еще более миниатюрные компьютерные чипы. Акустические аналоги суперлинз в будущем улучшат качество УЗИ-диагностики.

какие материалы могут называться наноматериалами. Смотреть фото какие материалы могут называться наноматериалами. Смотреть картинку какие материалы могут называться наноматериалами. Картинка про какие материалы могут называться наноматериалами. Фото какие материалы могут называться наноматериалами

Перечислять достижения нанотехнологий можно долго, так же как и фантазировать на тему нашего нанобудущего. Но нужно четко понимать, что нанотехнологии — это не волшебство и не панацея. Технологическая революция — это непрерывный процесс, от каменного века и до наших дней. Он происходит здесь и сейчас, творится руками движимых любопытством людей и для людей.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *