какие материалы называются магнитно мягкими
Какие материалы называются магнитно мягкими
Развита методика измерения основных магнитных параметров при определении основной кривой намагничивания и петли магнитного гистерезиса в статических магнитных полях индукционно-импульсным методом. Методика позволяет измерять начальную и максимальную магнитные проницаемости, остаточную магнитную индукцию, коэрцитивную силу по намагниченности и индукции и индукцию технического насыщения тороидальных и прямолинейных образцов прецизионных магнитомягких сплавов и легированных и нелегированных электротехнических сталей и других магнитомягких материалов с коэрцитивной силой до 4кА/м с методической погрешностью менее 1% при снижении времени измерения.
Железо-кобальтовый сплав Fe-27Co с высокой намагниченностью и микролегирующими добавками
В статье сообщается о разработке нового варианта железо – кобальтового Fe – 27Co сплава обладающего высокой индукцией технического насыщения. Обнаружено, что легирование ниобием (Nb) или танталом (Ta) придает горячекатаному материалу пластичность посредством измельчения зерна. При этом магнитные и пластические свойства нового сплава с торговым названием VACOFLUX ® 27 сравнимы со стандартным Fe – 27Co сплавом, легированным хромом (Cr). В сплаве VACOFLUX ® 27 наблюдается уменьшение удельного электрического сопротивления, и высокая намагниченность насыщения.
Fe – 27Co сплав VACOFLUX ® 27 является зарубежным аналогом отечественного сплава 27КХ ГОСТ 10160-75. Исходя из анализа публикаций по данной тематике становится ясно, что к сожалению аналогичные работы в отечественной металлургии не проводились. А если учесть тот факт, что сплав 27КХ на сегодняшний день находит широкое применение при производстве различных приборов как специального, так и гражданского назначения, то данный материал является актуальным.
Магнитомягкие материалы
Магнитомягкие материалы.
Магнитомягкие материалы включают в себя широкий спектр железоникелевых и железокобальтовых прецизионных магнитомягких сплавов, кремнистых и нелегированных электротехнических сталей и чистое железо. Магнитомягкие материалы находят применение в устройствах, требующих от материалов высокой начальной и максимальной магнитной проницаемости в сочетании с простотой изготовления.
Для производства прецизионных магнитомягких сплавов используется сложное оборудование, передовые технологии и опыт, накопленный при производстве сплавов для авиационной промышленности. Производство магнитомягких материалов включает в себя применение ультрачистого сырья, специальные процессы и технологии плавки в индукционных печах в инертной атмосфере и рафинирования расплава. Конечный продукт изготавливается путем ковки, горячей и холодной прокатки, волочения проволоки и термообработки в зависимости от технических требований заказчика.
К средненикелевым пермаллоям относят сплавы на основе никеля (Ni) и железа (Fe) с содержанием никеля от 45% до 65%. По уровню основных магнитных параметров в соответствии с ГОСТ 10160-75 среднелегированные пермаллои относятся к сплавам с повышенной магнитной проницаемостью и повышенной индукцией технического насыщения. Наиболее часто сплавы применяются для изготовления деталей сердечников малогабаритных силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенной индукции без подмагничивания или с небольшим подмагничиванием.
Кремнистая электротехническая сталь
Кремнистая изотропная и анизотропная электротехническая сталь нашла широкое применение в ленточных сердечниках, силовых и низкочастотных трансформаторах, электромагнитах, роторах и статорах электрических машин, работающих в динамических электромагнитных полях с частотой до 20 кГц. Применению кремнистых электротехнических сталей способствуют еевысокие значения удельного сопротивления, нанесение электроизоляционных покрытий и малая толщина лент. По содержанию кремния (Si) электротехническая сталь классифицируется на несколько групп: нелегированную: до 0.5%, слаболегированную: 0.5 – 0.8%, легированную ниже среднего: 0.8 – 2.1%, среднелегированную: 1.8 – 2.8%, с повышенным легированием: 2.5 – 3.8% и высоколегированную 3.8 – 4.8%. Легирование электротехнических сталей кремнием (Si) и алюминием (Al) позволяет повысить значения начальной µн и максимальной µmax магнитных проницаемостей, а так же удельного сопротивления, что в свою очередь позволяет сократить удельные магнитные потери. Так при толщине листа электротехнической стали 0.27 мм удельные потери P1,5/50 не превышают 1,5Вт/кг за счет снижения потерь на гистерезис и вихревые токи соответственно. В зависимости от технологии изготовления лент, кремнистая электротехническая сталь выпускается с анизотропией и изотропией магнитных свойств. Кремнистая электротехническая сталь поставляется в виде рулонов с толщиной листа от 0.05 мм до 0.8 мм без покрытия, с нанесенным электроизоляционным, термостойким, или покрытием для облегчения штамповки. С целью снятия внутренних напряжений, возникающих в процессе механической обработки и приводящих к смещению доменных границ, дроблению и перестройки доменной структуры, что в приводит к ухудшению магнитных свойств, кремнистую электротехническую сталь поставляемую без термообработки в зависимости от содержания кремния отжигают при температурах от 800°С до 1150°С с медленным охлаждением в инертной среде.
Нелегированная электротехническая сталь
Нелегированная элекротехническая сталь по уровню своих основных магнитных параметров отностится к магнитомягким материалам и представляет собой сплав железа с углеродом. Отличительной особенностью электротехнических сталей является способность намагничиваться до насыщения в слабых магнитных полях за счет незначительного содержания в ней углерода и примесей, а так же серы и фосфора. Вследствие чего, электротехнические стали характеризуются высокими значениями начальной и максимальной магнитными проницаемостями, индукцией технического насыщения и малыми значениями коэрцитивной силы. Металлургическая промышленность поставляет на рынок электротехническую сталь по ГОСТ 3836-83 Сталь электротехническая нелегированная тонколистовая и ленты марок: 10832, 20832, 11832, 21832, 10848, 20848, 11848, 21848, 10860, 20860, 11860, 21860, 10880; 20880,11880, 21880,10895, 20895, 11895, 21895 и ГОСТ 11036-75 Сталь сортовая электротехническая нелегированная, в соответствии с которым сталь изготовляется следующих марок: 10880, 20880, 10895, 20895, 11880, 21880, 11895, 21895, 10850, 11850, 20850, 21850, 10860, 20860, 11860, 21860. Согласно последнему, для восстановления основных магнитных параметров электротехническую сталь необходимо термообработать в инертной среде при температурах 950±10°С.
Эксплуатация электромагнитных и электромеханических изделий в агрессивных средах требует применения в них магнитомягких материалов, способных не только длительное время противостоять этой среде, но и сохранять свои магнитные свойства. К магнитомягким материалам, обладающими коррозионной стойкостью к морской воде относится прецизионный магнитомягкий сплав 36КНМ ГОСТ 10160–75, а сплав стойкий к среде повышенной влажности до 98%, тропическим условиям и к воздействию инея, россы и морского тумана – 16Х ГОСТ 10160–75. Не смотря на то, что сплав 36КНМ не рекомендуется к применению в новых разработках, на сегодняшний день эти сплавы находят широкое применение в производстве магнитопроводов для электрических машин, якорей и электромагнитов, которые без защитных покрытий способны работать в сложных условиях воздействия среды, температуры и давления. Кроме коррозионной стойкости, по которой сплавы 16Х и 36КНМ выделяют в отдельную группу, они обладают высокой магнитной индукцией в слабых и средних магнитных полях и низкой коэрцитивной силой. Достижение параметров коррозионной стойкости и восстановление магнитных свойств осуществляется высокотемпературным отжигом в вакууме при температурах 1100°С – 1200°С.
Магнитомягкие сплавы с высокой магнитной индукцией технического насыщения – пермендюры 49К2ФА и 49КФ
Магнитомягкие сплавы с наивысшей магнитной проницаемостью в слабых магнитных полях – пермаллои 79НМ и 80НХС
К высоконикелевым пермаллоям относят прецизионные магнитомягкие сплавы на основе никеля (Ni) и железа (Fe) с содержанием никеля до 85%, наиболее востребованными представителями которых, являются пермаллои 79НМ – ГОСТ 10160-75 и 80НХС – ГОСТ 10160-75. По уровню магнитных параметров, пермаллои относятся к группе сплавов с наивысшей магнитной проницаемостью в слабых полях. Основной областью применения высоконикелевых пермаллоев является производство сердечников малогабаритных импульсных трансформаторов, роторов высокомоментных двигателей, низкочастотных дросселей и бесконтактных реле, магнитных экранов для различных устройств и кабелей и множества других устройств, работающих в слабых статических и динамических магнитных полях. Преимуществом Fe-Ni сплавов является хорошая технологичность, что позволяет получить ленты толщиной до 0,5 мкм и расширить частотный диапазон их применения. Доменная структура высоконикелевых пермаллоев 79НМ и 80НХС чувствительна к малейшим упругим напряжениям, которые возникают вследствие деформаций металла, под действием которых может происходить смещение доменных границ, дробление и перестройка доменной структуры. Аналогичное воздействие оказывает появление наклепа в поверхностных слоях металла, возникающего вследствие механической обработки. Это приводит к образованию напряженного состояния кристаллической решетки, что в свою очередь приводит к изменению доменной структуры. Данные процессы способствуют значительному снижению магнитных параметров и, как следствие, к несоответствию продукции требуемому качеству. Для восстановления магнитных свойств высоконикелевые пермаллои подвергают термообработке – высокотемпературному отжигу в вакууме при Т=1250°С в течение 3 – 6 часов в зависимости от класса, а для стабилизации магнитных параметров и незначительным их варьированиям – низкотемпературному отжигу, температура которого не превышает Т=500°С.
Магнитные материалы их свойства, применение, классификация
Для создания элементов и устройств систем управления и автоматики используются магнитные материалы, в которых, главным образом, выставляют такие требования:
1.Материал должен легко намагничиваться под действием постоянного поля или однополярного импульса поля и легко перемагничиваются в переменном поле, есть петля гистерезиса должна быть достаточно узкой с малым значением Н С и большим значением m. Такие требования позволяют повысить чувствительность электромагнитных элементов.
2.Материалы должен иметь большое значение индукции насыщения В S, т.е. обеспечивать проникновение большого магнитного потока в сердечник с соответствующим поперечным сечением. Выполнение такого требования позволяет получить наименьшие габариты и массу устройства, а если заданы габариты — то наибольшую мощность или напряжение на выходе устройства.
Кроме перечисленных основных требований к магнитных материалов, используемых в тех или других электромагнитных устройствах, выставляют специфические требования.
Так, для улучшения температурной стабильности (неизменности магнитных свойств при изменении температуры окружающей среды) важно, чтобы точка Кюри материала была как можно выше.
Чем ближе к единице коэффициент прямоугольности материала, тем линейная зависимость выходного сигнала от входного, тем легче распознаются сигналы в цифровых устройствах.
Ярко обнаружена магнитная анизотропия повышает качество устройств на тонких магнитных пленках, а высокая чистота кристаллической структуры материала является необходимым условием создания устройств на цилиндрических магнитных доменах.
Магнитные материалы можно разделить на магнитно-твердые, для которых напряженность Н с составляет десятки и сотни ампер на сантиметр и магнитно-мягкие с напряженностью Н с в десятые и сотые доли ампера на сантиметр. Магнитно-твердые материалы используются для изготовления постоянных магнитов, магнитно-мягкие — для изготовления элементов, в которых поле создается токами, проходящими по обмотках.
Для создания элементов и устройств СУА применяют, главным образом, магнитно-мягкие материалы. Магнитно-твердые порошковые материалы входят в феролакы, которыми покрывают магнитные ленты и диски.
Магнитно-мягкие материалы, можно разделить на три группы: электротехнические стали, сплавы на основе железа с другими металлами (никель, кобальт, алюминий) и ферриты (неметаллические ферромагнетики).
Электротехнические стали наиболее дешевые материалы, имеющие большие индукции насыщения (порядка 1,8 … 2,3 Тл), и это позволяет создавать из них компактные и дешевые электромагнитные элементы. Но из-за относительно большой (по сравнению с железоникелевых сплавами) коэрцитивная силу электротехнической стали (порядка 0,1 ¸ 0,5 А / см) чувствительность стальных элементов к изменениям внешнего поля, которое образуется обмотками, невелика.
Зализоникелевые сплавы (пермаллоя) дороже стальных в 15-20 раз, имеют меньшую индукцию насыщения, но позволяют получать высокочувствительные магнитные элементы за счет малой коэрцитивной силы и высокой начальной магнитной проницаемости. Зализоникелеви сплавы изготовляют в виде листов или лент. Толщина ленты иногда достигает нескольких микрометров.[adsense_id=»1″]
Зализоалюминиевые сплавы 16ЮХ и 16ЮМ, которые содержат в своем составе 16% алюминия, по магнитным свойствам не уступают пермаллой, но имеют повышенную (10 … 20 раз больше, чем в пермаллой) износостойкость. Их широко применяют для изготовления магнитных головок в устройствах магнитной записи, где в процессе работы головка непрерывно трется о поверхность ленты.
Ферриты — это неметаллические магнитные материалы (твердые растворы), изготовленные из смеси оксидов железа с оксидами магния, меди, марганца, никеля и других металлов. Общая формула ферритов имеет вид МеO × Fе2 Оз, где Me — любой металл.
Оксиды измельчают на маленькие куски и смешивают в определенной пропорции. Магнитопроводы необходимых размеров и конфигураций прессуют из полученной смеси при давлении 10-30 кН / см 2 (1-3 т / см 2) и выжигают при температуре 1200-1400 ° С. Готовые магнитопроводы серо-черного цвета имеют высокую твердость, но довольно хрупкие. Обмотки обычно наматывают без непосредственно на ферритовые магнитопроводы без дополнительной изоляции последних. Удельный
электрическое сопротивление ферритов в миллионы раз больше чем у металлических ферромагнетиков, что практически устраняет вихревые токи. Это позволяет перемагничиные ферриты с частотой в сотни килогерц и обеспечивать высокую скорость выполнения операций современных управляющих и вычислительных машин. Наиболее распространенные магниево-марганцевые ферриты марок ВТ (1.3ВТ, 0,16 ВТ и др.).. Они имеют относительно низкую точку Кюри (140 — 300 ° С), что обусловливает значительную изменение их магнитных параметров при нагревании. Ферриты на базе лития, с точкой Кюри 630 ° С, имеют значительно лучшие температурные характеристики. Для магнитопроводов цифровых устройств широко применяют бифериты, есть ферриты с двумя металлами, например магниево-марганцевые или литий-натриевые ферриты, а также полифериты, которые являются твердыми растворами трех и более ферритов.
Магнитно-твердые материалы. Магнитно-твердые материалы, как уже отмечалось, применяют:
— Для изготовления постоянных магнитов;
— Для записи информации (например, для звукозаписи).
При оценке свойств магнитно-твердых материалов могут оказаться существенными механические свойства (прочность), обрабатываемость материала в процессе производства, а также плотность, удельное электрическое сопротивление, стоимость и др.. Особенно важно в некоторых случаях вопрос стабильности магнитных свойств.
Важнейшими материалами для постоянных магнитов являются сплавы Fe-Ni-Al. Большую роль в образовании высококоэрцитивной состояния этих сплавов играет механизм дисперсионного твердения.
Такие материалы имеют большое значение коэрцитивной силы, потому что их намагничивания происходит в основном за счет процессов вращения.[adsense_id=»1″]
Сплавы Fe-Ni-Al без легирующих элементов не применяют из-за их сравнительно низкие магнитные свойства. Наиболее распространенными являются сплавы, легированные медью и кобальтом. Висококобальтови сплавы, содержащие более 15% Co, как правило, используют с магнитной или с магнитной и кристаллической текстурой.
Магнитная текстура является результатом термомагнитного обработки, которая заключается в охлаждении в магнитном поле напряженностью 160-280 кА / м сплава от высоких температур (1250-1300 0 С) до примерно 500 0 С. При этом рост магнитных характеристик происходит только в направлении действия поля, т.е. материал становится магнитно-анизотропными.
Дальнейшее существенное повышение магнитных свойств сплавов Fe-Ni-Al-(Co) возможно созданием магнитов из макроструктурой в виде столбчатых кристаллов. Кристаллическую структуру получают в процессе особых условий охлаждения сплава.
Приведем краткие рекомендации по выбору марок сплавов. Безкобальтови сплавы (ЮНД и др.). Есть дешевые, их свойства относительно низкие. Сплавы ЮНДК15 и ЮНДК18 применяют, когда требуются относительно высокие магнитные свойства и материал не должен иметь магнитную анизотропию. Сплавы, содержащие 24% Со (ЮН13ДК24 и др.)., Имеют высокие магнитные свойства в направлении магнитной текстуры, хорошо технологически освоены и имеют широкое применение.
Сплавы с направленной кристаллизацией, например ЮН13ДК25БА, и др. Имеющих наибольшую W max и, следовательно, могут обеспечить наименьшие массу и габариты магнитных систем.
В тех случаях, когда система разомкнутая, применяют сплавы с наиболее высокой Н с, например титанистий сплав ЮНДК35Т5.
Сплавы с монокристалевой структурой (ЮНДК35Т5АА и ЮНДК40Т8АА) по сравнению со сплавами с направленной кристаллизацией имеют следующие преимущества: более высокие магнитные свойства за счет дальнейшего совершенствования структуры, наличие трех взаимно перпендикулярных направлений, в которых свойства оптимальны; лучшие механические свойства.
Основные недостатки сплавов Fe-Ni-Al-(Co) — плохие механические свойства (высокие твердость и хрупкость), что значительно усложняет их механическую обработку.
Магниты из порошков. Магниты, которые получают методами порошковой металлургии, можно разделить на металлокерамические, металопластични и оксидные.
Для первых двух групп физические процессы образования высококоэрцитивной состояния зависят от тех же причин, что и для монолитных магнитов, для двух других групп необходимым условием получения высококоэрцитивной свойств является измельченный до определенной степени дисперсии состояние, которому соответствует однодоменна структура.
Металлокерамические магниты получают из металлических порошков прессованием их без материала, что их связывает, и спеканием при высокой температуре. По магнитным свойствам они лишь немного уступают литым магнитам, но дороже остальных.
Металопластичные магниты производят, как металлокерамические, из металлических порошков, но прессуют их вместе с изолирующей связкой и подвергают нагреву до невысокой температуры, необходимой для полимеризации вещества, что их связывает. По сравнению с отлитыми магнитами они снижены магнитные свойства, но имеют большой электрическое сопротивление, малый плотностью и относительно дешевы.
Среди окислительных магнитов практическое значение имеют магниты на основе ферритов бария и кобальта.
Бариевые магниты. Промышленность выпускает две группы бариевых магнитов: изотропные (БИ) и анизотропные (БА).
Бариевые магниты по сравнению с отлитыми имеют очень большую коэрцитивная силу и малый остаточную индукцию. Удельное электрическое сопротивление r бариевых магнитов в миллионы раз выше, чем r металлических материалов, что позволяет использовать бариевые магниты в магнитных цепях, которые подвергаются воздействию полей высокой частоты. Бариевые магниты не содержат дефицитных и дорогих материалов, они примерно в 10 раз дешевле чем магниты с ЮНДК24.
К недостаткам бариевых магнитов следует отнести плохие механические свойства (высокие хрупкость и твердость) и, самое главное, большую зависимость магнитных свойств от температуры. Температурный коэффициент остаточной магнитной индукции ТК В r бариевых магнитов примерно в 10 раз больше, чем ТК B r литых магнитов. Кроме того, бариевые магниты имеют необратимость свойств при охлаждении, т.е. имеют более высокую температурную стабильность, чем бариевые. Однако и они имеют температурный гистерезис, но он появляется не в области отрицательных температур, как в бариевых магнитов, а при положительных температурах (при нагревании свыше 80 ° С).
Другие материалы для постоянных магнитов.
Мартенситные стали. Мартенсит называют вид микроструктуры стали, получаемой при ее закалке. Образование мартенсита сопровождается значительными объемными изменениями, созданием большого внутреннего напряжения решетки и возникновением больших значений коэрцитивной силы.
Мартенситные стали начали применять для изготовления постоянных магнитов раньше других материалов. В данное время их используют сравнительно мало из-за низких магнитные свойства. Однако полностью от них еще не отказались, потому что они недороги и допускают механическую обработку на металлорежущих станках.
Сплавы, пластически деформируются. Эти сплавы обладают высокими в отношении механической обработки свойства. Они хорошо штампуются, режутся ножницами, обрабатываются на металлорежущих станках. Из сплавов, пластически деформируются, можно изготовить ленты, пластины, листы, проволока. В отдельных случаях (при изготовлении мелких магнитов сложной конфигурации) целесообразно применение металлокерамической технологии. Марок сплавов, пластически деформируются много, и физические процессы, благодаря которым они имеют высокие магнитные свойства, разнообразны. Наиболее распространенные сплавы кунифе (Cu-Ni-Fe) и викалой (Co-V). Сплавы кунифе анизотропные, намагничиваются в направлении прокатки, часто применяются в виде проволоки малых толщин, а также штамповки. Викалой применяют для изготовления мельчайших магнитов сложной или ажурной конфигурации и как высокопрочные магнитные ленты или проволока.
Сплавы на основе благородных металлов. К ним относятся сплавы серебра с марганцем и алюминием (сильманал) и сплавы платины с железом (77,8% Pt; 22,2% Fe) или платины с кобальтом (76,7% Pt; 23,3 % Со). Материалы этой группы, особенно те, которые содержат платину, очень дорогие, поэтому их применяют только для сверхминиатюрных магнитов массой в несколько миллиграммов. При изготовлении магнитов из всех сплавов этой группы широко используют металлокерамическую технологию.
Эластичные магниты. Как отмечалось, важнейшим недостатком основных групп материалов для постоянных магнитов — литых сплавов и магнитотвердых ферритов — является их плохие механические свойства (высокие твердость и хрупкость). Применение же сплавов, пластически деформируются ограничено их высокой стоимостью. В последнее время появились магниты на резиновой основе. Они могут быть любой формы, что позволяет технология резины — в виде шнуров, длинных полос, листов и т.п. Такой материал легко режется ножницами, штампуется, сгибается, скручивается. Известно применение «магнитной резины» как писем магнитной памяти для вычислительных машин, магнитов для систем отклонения в телевидении, магнитов, корректируют, и др..
Эластичные магниты изготавливаются из резины и мелкого порошка магнитотвердых материалов (наполнитель). В качестве наполнителя чаще всего используют феррит бария.
Материалы для магнитных лент. Под магнитными лентами понимают носители магнитной записи информации. Наибольшее распространение имеют сплошные металлические ленты из нержавеющей стали, биметаллические ленты и ленты на пластмассовой основе с порошковым рабочим слоем. Сплошные металлические ленты используют, главным образом, в специальных целях и при работе в широком температурном диапазоне; ленты на пластмассовой основе имеют более широкое применение. Основное назначение носителя магнитной записи состоит в создании на поверхности воспроизведенной головки магнитного поля, напряженность которого меняется (при протяжке ленты) во времени так же, как и сигнал, что записывается. Свойства лент с покрытием магнитными порошками существенно зависят не только от свойств исходных материалов, но и от степени измельчения частиц, объемной плотности магнитного материала в рабочем слое, ориентации частиц при наличии у них анизотропии формы и т.п.
Рабочий слой (или толщина металлической ленты) должен быть как можно тоньше, а сама лента — гладкой и гибкой для обеспечения максимального взаимодействия (магнитного контакта) между магнитными материалами ленты и головки. Остаточная намагниченность материала должна быть возможно более высокой.
К коэрцитивной силы предъявляют противоречивые требования: для уменьшения саморозмагничування необходимо по возможности более высокое значение Н с (не менее 24 кА / м), а для облегчения процесса стирания записи желательна малая Н с. Требования высокой остаточной намагниченности и минимальной чувствительности к саморозмагничування наилучшим образом удовлетворяются при прямоугольной форме участка розмагничувальнои петли гистерезиса, т.е. желательно иметь максимальное значение коэффициента выпуклости. Температурные и другие изменения магнитных свойств материала ленты должны быть наименьшими.
Промышленность выпускает магнитофонные ленты из сплава, не ржавеет, ЭП-31А и биметалла ЕП-352/353. Ленты имеют толщину 0,005-0,01 мм, Н с = 24 — 40 кА / м; В r = 0,08 Тл.
Отечественные ленты на пластмассовой основе изготавливают преимущественно типов А2601-6 (тип 6 — для студийных магнитофонов) и А4402 — 6 (тип 10 — для бытовых и репортажных). В соответствии ГОСТу в обозначениях лент используют следующее: первый элемент — буквенный индекс означает назначение ленты: А — звукозапись, Т — видеозапись, В — вычислительная техника, И — точный запись: второй элемент — цифровой индекс (от 0 до 9), обозначает материал основы: 2 — диацетилцелюлоза, 3 — триацетилцелюлоза, 4 — полиетилентерефталаг (лавсан), третий элемент — цифровой индекс (от 0 до 9), означает толщину ленты:
2 — 18 мкм, 3 — 27 мкм, 4 — 36 мкм, 6 — 55 мкм, 9 — более 100 мкм, четвертый элемент — цифровой индекс (от 01 до 99), означает номер технологической разработки; пятый элемент — числовое значение номинальной ширины ленты в миллиметрах. После пятого элемента должен быть дополнительный буквенный индекс: П — для перфорированных лент; Р — для лент, используемых в радиовещании Б — для лент с бытовых магнитофонов.
В качестве материалов для магнитных порошков находят применение: феррит железа (магнетит), феррит кобальта, двуокись хрома и др.. Каждый из них имеет свои преимущества и недостатки. Наибольшее применение получил гамма-окись железа (g-Fe 2 O 3) игольчатой формы с длиной частиц около 0,4 мкм и отношением длины к диаметру, приблизительно равным трем. Получается порошок (g-Fe 2 O 3) за счет окисления магнетита (феррита железа) FeО × Fe 2 O 3 нагреванием его на воздухе при температуре около 150 о С.
Изготовление магнитных лент может быть разнообразным. Чаще рабочий слой (магнитный лак) наносят на готовую основу, например, поливом лака из фильеры. Магнитный лак готовится заранее и состоит из магнитного порошка, связующего, растворителя, пластификатора и различных добавок, способствующих смачиванию и разделения частиц порошка и уменьшению абразивности рабочего слоя.
При использовании порошков с анизотропией формы частиц (например, игольчатых g-Fe) в процессе производства ленты доли ориентируются определенным образом в результате воздействия на них магнитного поля. Окончательное обработки ленты состоит в каландрирования и полировке для улучшения качества ее поверхности.
Лента типа 6 обеспечивает высокое качество записи и воспроизведения звука при использовании в профессиональной аппаратуре на скорости 19,05 см / с и в бытовых магнитофонах на скорости 9,53 и 4,75 см / с.[adsense_id=»1″]
Ленты необходимо хранить при температуре 10-25 ° С и относительной влажности воздуха 50-60%; недопустима температура выше 30 ° С, температура ниже 10 ° С не рекомендуется.
Помимо типов 6 и 10 отечественная промышленность производит и другие типы лент, например ленту Т4402-50 шириной 50,8 мм для поперечно-строчной записи черно-белого изображения.
Сплавы на основе редкоземельных металлов (РЗМ). Ряд соединений и сплавов с РЗМ имеет очень высокие значения коэрцитивной силы и максимальной удельной энергии. Из этой группы материалов наиболее интересные интерметаллических соединения типа RСо 5, где R — редкоземельный металл.
Кроме рассмотренных основных групп магнитных материалов в технике используют и некоторые другие, которые имеют ограниченную область применения.
Магнитострикционные материалы. Магнитострикции имеет непосредственное техническое применение в магнитострикционных вибраторах (генераторах) звуковых и ультразвуковых колебаний, а также в некоторых радиотехнических схемах и устройствах (вместо кварца для стабилизации частоты, в электромеханических фильтрах и т.д.).
В качестве магнитострикционных материалов применяют никель, пермендюр (сплавы Fe-Co, отличающиеся высокой намагниченностью насыщения), Альфер (сплавы Fe-Al), никелевый и никелькобальтовий ферриты и др..
В последнее время более широко применяют магнитострикционные ферриты, особенно в прецизионных фильтрах.
Сплавы с высокой индукцией насыщения. Из обычных материалов наивысшую индукцию имеет железо (»2,1 Тл).
В тех случаях, когда выдвигаются наиболее высокие требования к габаритам устройства, его массы и размера потока, применяют зализокобальтови сплавы, в которых индукция насыщения достигает 2,43 Тл, что позволяет получить экономию в массе и объеме по сравнению с железом на 15 — 20%. На практике используют сплавы, содержащие 30-51% Со и 1,5-2,0% V, улучшает технологические свойства сплавов, возможность обработки их в холодном состоянии. Эти сплавы называют пермендюр.
Индукция насыщения сплавов с большим и малым содержанием кобальта примерно одинакова. Висококобальтови сплавы в слабых и средних полях имеют большие значения магнитной проницаемости, чем низькокобальтови, однако последние дешевле.[adsense_id=»1″]
Кроме большого значения индукции насыщения пермендюр имеет значительную обратимую проницаемость, что делает его особенно ценным как материал для телефонных мембран. Недостатки пермендюр: малый удельное электрическое сопротивление r, высокая стоимость и дефицитность кобальта и ванадия. Пермендюр применяют в постоянных магнитных полях или в слабых переменных полях с сильным подмагничиванием постоянным полем. Из материалов этой группы нормированный сплав 50 КФ (49,0-51% Со; 1,5-2,0% V). Сплав имеет индукцию насыщения не менее 2,35 Тл и q = 980 ° С.
Преимущество зализокобальтових сплавов перед технически чистым железом ощущается при магнитной индукции выше 1,0 Тл. Различие в значениях магнитной проницаемости достигает максимума при значении магнитной индукции около 1,8 Тл, при этом проницаемость кобальтовых сплавов больше проницаемости мягких сортов железа в десятки раз.
Васюра А.С. — Книга «Элементы и устройства систем управления автоматики»