какие механические свойства определяются при динамических испытаниях
Механические динамические испытания
Не секрет, что при эксплуатации детали конструкций, машины и механизмы испытывают ударные нагрузки. При этом металл, использующийся для их изготовления, получает и динамические нагрузки, наряду со статическими. Многие металлы имеют высокие характеристики статической прочности. Однако даже малые ударные нагрузки способны их повредить. Именно поэтому важны испытания, позволяющие оценить прочность материала с учетом потенциальных нагрузок.
Механические динамические испытания позволяют исследовать металл, подвергая его воздействию ударной нагрузки, что обеспечивает высокую скорость деформации. В данном контексте самым часто встречающимся является испытание на ударный изгиб.
Испытания на ударный изгиб
Перед испытанием в металле делают надрез, что дает возможность имитировать трещину. Надрез бывает трех форм. Конкретный тип надреза и свойства образца, используемого для проведения испытаний, установлены нормативными документами.
В процессе испытаний вычисляется суммарная энергия разрушений. Кроме характеристик надреза, на результаты тестов влияют размер изделия и температура во время испытаний. Несмотря на то, что нет прямой корреляции между прочностными свойствами и ударной вязкостью, последний показатель зависим от размера зерна феррита. Чем оно меньше, тем ударная вязкость больше.
В лаборатории компании «Феникс» все испытания проводятся в рамках следующих ГОСТов: 9554, 30456, 6996, 22848.
Испытания склонности к механическому старению
Механическим старением называют изменение свойств стали по истечению условного периода времени. Изменения, которые фиксируются в условиях комнатной температуры, принято называть естественным старением. При этом искусственное старение производится в условиях нагрева.
Проверить склонность к механическому старению можно так же, используя методику ударного изгиба. Процесс похож на определение характеристик ударной вязкости, о которых речь шла выше. Суть процедуры сводится к определению работы удара испытываемого металла, который подвергается холодной пластической деформации. Кроме того, применяются процессы искусственного старения. Для их обеспечения образцы выдерживают в печи в течение часа при температуре 250 градусов.
Испытания на механическое старение проводят по ГОСТу 7268.
Заказать механические динамические испытания
Вы можете заказать механические динамические испытания в компании «Феникс», воспользовавшись одним из способов, доступных на странице Контакты, либо заполнив следующую форму.
Какие механические свойства определяются при динамических испытаниях
нЕИБОЙЮЕУЛЙЕ УЧПКУФЧБ ИБТБЛФЕТЙЪХАФ УРПУПВОПУФШ НБФЕТЙБМБ УПРТПФЙЧМСФШУС ДЕЖПТНБГЙЙ Й ТБЪТХЫЕОЙА РТЙ ЧПЪДЕКУФЧЙЙ ЧОЕЫОЙИ УЙМ. пОЙ ЪБЧЙУСФ ПФ ТПДБ НБФЕТЙБМБ, ЕЗП ПВТБВПФЛЙ, ЧОХФТЕООЕЗП УФТПЕОЙС, ЖПТНЩ ЙЪДЕМЙС Й ТСДБ ДТХЗЙИ ЖБЛФПТПЧ. йИ ПРТЕДЕМСАФ РХФЕН ЙУРЩФБОЙС ПВТБЪГПЧ.
йЪ НЕИБОЙЮЕУЛЙИ ЙУРЩФБОЙК ОБЙВПМШЫЕЕ ТБУРТПУФТБОЕОЙЕ РПМХЮЙМЙ УМЕДХАЭЙЕ ЧЙДЩ: ОБ ТБУФСЦЕОЙЕ, ОБ ХДБТОЩК ЙЪЗЙВ Й ХДБТОХА ЧСЪЛПУФШ, ОБ ЧЩОПУМЙЧПУФШ, ОБ ФЧЕТДПУФШ, ОБ ЦБТПРТПЮОПУФШ.
еУМЙ Л ДЕФБМЙ РТЙМПЦЕОЩ УТБЧОЙФЕМШОП ОЕВПМШЫЙЕ УЙМЩ, РПД ДЕКУФЧЙЕН ЛПФПТЩИ БФПНЩ Ч ЛТЙУФБММЙЮЕУЛПК ТЕЫЕФЛЕ УНЕЭБАФУС ОБ ТБУУФПСОЙС НЕОШЫЕ НЕЦБФПНОЩИ, ФП РПУМЕ РТЕЛТБЭЕОЙС ДЕКУФЧЙС ЧОЕЫОЕК УЙМЩ ДЕФБМШ РТЙОЙНБЕФ УЧПА РЕТЧПОБЮБМШОХА ЖПТНХ, ФП ЕУФШ БФПНЩ ЧПЪЧТБЭБАФУС Ч ХУФПКЮЙЧПЕ РПМПЦЕОЙЕ, Й ДЕЖПТНБГЙС ЙУЮЕЪБЕФ. уЧПКУФЧП НБФЕТЙБМПЧ РТЙОЙНБФШ РЕТЧПОБЮБМШОХА ЖПТНХ РПУМЕ РТЕЛТБЭЕОЙС ДЕКУФЧЙС ЧОЕЫОЙИ УЙМ ОБЪЩЧБЕФУС ХРТХЗПУФША, Б ДЕЖПТНБГЙС, ЙУЮЕЪБАЭБС РПУМЕ УОСФЙС ОБЗТХЪЛЙ, РПМХЮЙМБ ОБЪЧБОЙЕ ХРТХЗПК.
еУМЙ Л ЪБЗПФПЧЛЕ РТЙМПЦЕОЩ ВПМШЫЙЕ ХУЙМЙС, РПД ДЕКУФЧЙЕН ЛПФПТЩИ БФПНЩ Ч ЛТЙУФБММЙЮЕУЛПК ТЕЫЕФЛЕ УНЕУФСФУС ОБ ТБУУФПСОЙС ВПМШЫЕ НЕЦБФПНОЩИ, ФПЗДБ ПОЙ ЪБОЙНБАФ ОПЧПЕ ХУФПКЮЙЧПЕ РПМПЦЕОЙЕ, УППФЧЕФУФЧХАЭЕЕ РПМПЦЕОЙА БФПНПЧ УПУЕДОЕЗП ТСДБ. рПУМЕ РТЕЛТБЭЕОЙС ДЕКУФЧЙС РТЙМПЦЕООПК УЙМЩ ДЕЖПТНБГЙС ОЕ ЙУЮЕЪБЕФ, Й ЪБЗПФПЧЛБ ПУФБЕФУС ДЕЖПТНЙТПЧБООПК. фБЛБС ДЕЖПТНБГЙС ОБЪЩЧБЕФУС РМБУФЙЮЕУЛПК.
пГЕОЛБ ЛБЮЕУФЧБ НЕФБММБ РТЙ ЙУУМЕДПЧБОЙЙ ЕЗП ОБ РМБУФЙЮОПУФШ РТПЙЪЧПДЙФУС РП УПУФПСОЙА РПЧЕТИОПУФЙ, РПУМЕ РТПЧЕДЕОЙС ФЕИ ЙМЙ ЙОЩИ ЙУРЩФБОЙК. йУРЩФБОЙС ВЩЧБАФ: УФБФЙЮЕУЛЙЕ, ГЙЛМЙЮЕУЛЙЕ, ДЙОБНЙЮЕУЛЙЕ.
3.2.1 уФБФЙЮЕУЛЙЕ ЙУРЩФБОЙС
пУОПЧОЩНЙ ОБЗТХЪЛБНЙ РТЙ ЙУРЩФБОЙСИ СЧМСАФУС НЕДМЕООП ЙЪНЕОСАЭЙЕУС, ЙМЙ УФБФЙЮЕУЛЙЕ ОБЗТХЪЛЙ. уЛПТПУФШ ЙЪНЕОЕОЙС ЬФЙИ ОБЗТХЪПЛ ЧП ЧТЕНЕОЙ ОБУФПМШЛП НБМБ, ЮФП ЛЙОЕФЙЮЕУЛБС ЬОЕТЗЙС, ЛПФПТХА РПМХЮБАФ РЕТЕНЕЭБАЭЙЕУС ЮБУФЙГЩ ДЕЖПТНЙТХЕНПЗП ФЕМБ, УПУФБЧМСЕФ ОЙЮФПЦОП НБМХА ДПМА ПФ ТБВПФЩ ЧОЕЫОЙИ УЙМ. йОБЮЕ ЗПЧПТС, ТБВПФБ ЧОЕЫОЙИ УЙМ РТЕПВТБЪХЕФУС ФПМШЛП Ч ХРТХЗХА РПФЕОГЙБМШОХА ЬОЕТЗЙА, Б ФБЛЦЕ Ч ОЕПВТБФЙНХА ФЕРМПЧХА ЬОЕТЗЙА, УЧСЪБООХА У РМБУФЙЮЕУЛЙНЙ ДЕЖПТНБГЙСНЙ ФЕМБ.
рПУФТПЕОЙЕ ДЙБЗТБННЩ ТБУФСЦЕОЙС-УЦБФЙС СЧМСЕФУС ПУОПЧОПК ЪБДБЮЕК ЙУРЩФБОЙК ОБ ТБУФСЦЕОЙЕ-УЦБФЙЕ. дМС ЬФЙИ ЙУРЩФБОЙК ЙУРПМШЪХАФУС ГЙМЙОДТЙЮЕУЛЙЕ ПВТБЪГЩ; РПМХЮЕООЩЕ ДЙБЗТБННЩ СЧМСАФУС ЪБЧЙУЙНПУФША НЕЦДХ УЙМПК, ДЕКУФЧХАЭЕК ОБ ПВТБЪЕГ, Й ЕЗП ХДМЙОЕОЙЕН. оБ ТЙУХОЛЕ 28 РПЛБЪБОБ ФЙРЙЮОБС ДМС ХЗМЕТПДЙУФПК УФБМЙ ДЙБЗТБННБ ЙУРЩФБОЙС ПВТБЪГБ Ч ЛППТДЙОБФБИ P, ∆l. лТЙЧБС ХУМПЧОП НПЦЕФ ВЩФШ ТБЪДЕМЕОБ ОБ ЮЕФЩТЕ ЪПОЩ.
ъПОБ пб ОПУЙФ ОБЪЧБОЙЕ ЪПОЩ ХРТХЗПУФЙ. ъДЕУШ НБФЕТЙБМ РПДЮЙОСЕФУС ЪБЛПОХ зХЛБ Й . хДМЙОЕОЙС ∆l ОБ ХЮБУФЛЕ пб ПЮЕОШ НБМЩ, Й РТСНБС пб, ВХДХЮЙ ЧЩЮЕТЮЕООПК Ч НБУЫФБВЕ, УПЧРБДБМБ ВЩ Ч РТЕДЕМБИ ЫЙТЙОЩ МЙОЙЙ У ПУША ПТДЙОБФ. чЕМЙЮЙОБ УЙМЩ, ДМС ЛПФПТПК ПУФБЕФУС УРТБЧЕДМЙЧЩН ЪБЛПО зХЛБ, ЪБЧЙУЙФ ПФ ТБЪНЕТПЧ ПВТБЪГБ Й ЖЙЪЙЮЕУЛЙИ УЧПКУФЧ НБФЕТЙБМБ.
рП НЕТЕ ТБУФСЦЕОЙС ПВТБЪГБ ХФПОЕОЙЕ ЫЕКЛЙ РТПЗТЕУУЙТХЕФ. лПЗДБ ПФОПУЙФЕМШОПЕ ХНЕОШЫЕОЙЕ РМПЭБДЙ УЕЮЕОЙС УТБЧОСЕФУС У ПФОПУЙФЕМШОЩН ЧПЪТБУФБОЙЕН ОБРТСЦЕОЙС, УЙМБ т ДПУФЙЗОЕФ НБЛУЙНХНБ (ФПЮЛБ у). ч ДБМШОЕКЫЕН ХДМЙОЕОЙЕ ПВТБЪГБ РТПЙУИПДЙФ У ХНЕОШЫЕОЙЕН УЙМЩ, ИПФС УТЕДОЕЕ ОБРТСЦЕОЙЕ Ч РПРЕТЕЮОПН УЕЮЕОЙЙ ЫЕКЛЙ Й ЧПЪТБУФБЕФ. хДМЙОЕОЙЕ ПВТБЪГБ ОПУЙФ Ч ЬФПН УМХЮБЕ НЕУФОЩК ИБТБЛФЕТ, Й РПЬФПНХ ХЮБУФПЛ ЛТЙЧПК CD ОБЪЩЧБЕФУС ЪПОПК НЕУФОПК ФЕЛХЮЕУФЙ. фПЮЛБ D УППФЧЕФУФЧХЕФ ТБЪТХЫЕОЙА ПВТБЪГБ. х НОПЗЙИ НБФЕТЙБМПЧ ТБЪТХЫЕОЙЕ РТПЙУИПДЙФ ВЕЪ ЪБНЕФОПЗП ПВТБЪПЧБОЙС ЫЕКЛЙ.
уППФЧЕФУФЧЕООП ε = εХРТ + εПУФ
еУМЙ ПВТБЪЕГ ВЩМ ОБЗТХЦЕО Ч РТЕДЕМБИ ХЮБУФЛБ пб Й ЪБФЕН ТБЪЗТХЦЕО, ФП ХДМЙОЕОЙЕ ВХДЕФ ЮЙУФП ХРТХЗЙН, Й ∆lПУФ = 0.
3.2.1.1 чМЙСОЙЕ РМБУФЙЮЕУЛПК ДЕЖПТНБГЙЙ ОБ УЧПКУФЧБ НЕФБММПЧ
йУРЩФЩЧБС РЕТЧЩК ПВТБЪЕГ, НЩ РПМХЮЙН ДЙБЗТБННХ ТБУФСЦЕОЙС OABCD, РПЛБЪБООХА ОБ ТЙУХОЛЕ 30 Б.
рТЙ ЙУРЩФБОЙЙ ЧФПТПЗП ПВТБЪГБ ПФУЮЕФ ХДМЙОЕОЙС ВХДЕФ РТПЙЪЧПДЙФШУС ПФ ОЕОБЗТХЦЕООПЗП УПУФПСОЙС, Й ПУФБФПЮОПЕ ХДМЙОЕОЙЕ OL ХЮФЕОП ОЕ ВХДЕФ. ч ТЕЪХМШФБФЕ РПМХЮЙН ХЛПТПЮЕООХА ДЙБЗТБННХ LKCD (ТЙУХОПЛ 30 В). пФТЕЪПЛ нл УППФЧЕФУФЧХЕФ УЙМЕ РТЕДЧБТЙФЕМШОПЗП ОБЗТХЦЕОЙС. фБЛЙН ПВТБЪПН, ЧЙД ДЙБЗТБННЩ ДМС ПДОПЗП Й ФПЗП ЦЕ НБФЕТЙБМБ ЪБЧЙУЙФ ПФ УФЕРЕОЙ ОБЮБМШОПЗП ОБЗТХЦЕОЙС (ЧЩФСЦЛЙ), Б УБНП ОБЗТХЦЕОЙЕ ЧЩУФХРБЕФ ФЕРЕТШ ХЦЕ Ч ТПМЙ ОЕЛПФПТПК РТЕДЧБТЙФЕМШОПК ФЕИОПМПЗЙЮЕУЛПК ПРЕТБГЙЙ. чЕУШНБ УХЭЕУФЧЕООЩН СЧМСЕФУС ФП, ЮФП ПФТЕЪПЛ LK (ТЙУХОПЛ 30 В) ПЛБЪЩЧБЕФУС ВПМШЫЕ ПФТЕЪЛБ пб. уМЕДПЧБФЕМШОП, Ч ТЕЪХМШФБФЕ РТЕДЧБТЙФЕМШОПК ЧЩФСЦЛЙ НБФЕТЙБМ РТЙПВТЕФБЕФ УРПУПВОПУФШ ЧПУРТЙОЙНБФШ ВЕЪ ПУФБФПЮОЩИ ДЕЖПТНБГЙК ВПМШЫЙЕ ОБЗТХЪЛЙ.
сЧМЕОЙЕ РПЧЩЫЕОЙС ХРТХЗЙИ УЧПКУФЧ НБФЕТЙБМБ Ч ТЕЪХМШФБФЕ РТЕДЧБТЙФЕМШОПЗП РМБУФЙЮЕУЛПЗП ДЕЖПТНЙТПЧБОЙС ОПУЙФ ОБЪЧБОЙЕ ОБЛМЕРБ, ЙМЙ ХРТПЮОЕОЙС (ОБЗБТФПЧЛЙ), Й ЫЙТПЛП ЙУРПМШЪХЕФУС Ч ФЕИОЙЛЕ.
оБРТЙНЕТ, ДМС РТЙДБОЙС ХРТХЗЙИ УЧПКУФЧ МЙУФПЧПК НЕДЙ ЙМЙ МБФХОЙ, ЕЕ Ч ИПМПДОПН УПУФПСОЙЙ РТПЛБФЩЧБАФ ОБ ЧБМЛБИ. гЕРЙ, ФТПУЩ, ТЕНОЙ ЮБУФП РПДЧЕТЗБАФ РТЕДЧБТЙФЕМШОПК ЧЩФСЦЛЕ УЙМБНЙ, РТЕЧЩЫБАЭЙНЙ ТБВПЮЙЕ, ЮФПВЩ ЙЪВЕЦБФШ ПУФБФПЮОЩИ ХДМЙОЕОЙК Ч ДБМШОЕКЫЕН. ч ОЕЛПФПТЩИ УМХЮБСИ СЧМЕОЙЕ ОБЛМЕРБ ПЛБЪЩЧБЕФУС ОЕЦЕМБФЕМШОЩН. ч ЬФПН УМХЮБЕ ДМС ФПЗП, ЮФПВЩ ЙЪВЕЦБФШ ТБЪТЩЧ МЙУФБ, ЧЩФСЦЛХ РТПЙЪЧПДСФ Ч ОЕУЛПМШЛП УФХРЕОЕК. пЮЕТЕДОХА ЧЩФСЦЛХ ДЕФБМЙ РТПЧПДСФ РПУМЕ ПФЦЙЗБ, Ч ТЕЪХМШФБФЕ ЛПФПТПЗП ОБЛМЕР УОЙНБЕФУС.
3.2.2 пУОПЧОЩЕ НЕИБОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ НБФЕТЙБМБ
дМС ФПЗП ЮФПВЩ ПГЕОЙФШ УЧПКУФЧБ ОЕ ПВТБЪГБ, Б НБФЕТЙБМБ, УФТПЙФУС ДЙБЗТБННБ ТБУФСЦЕОЙС P = f (∆l) Ч ЛППТДЙОБФБИ σ Й ε. фБЛ ЛБЛ ЬФЙ ЧЕМЙЮЙОЩ РПУФПСООЩ, ФП ДЙБЗТБННБ σ = f (ε) ЙНЕЕФ ФПФ ЦЕ ЧЙД, ЮФП Й ДЙБЗТБННБ ТБУФСЦЕОЙС, ОП ВХДЕФ ИБТБЛФЕТЙЪПЧБФШ ХЦЕ УЧПКУФЧБ НБФЕТЙБМБ.
оБЙВПМШЫЕЕ ОБРТСЦЕОЙЕ, ДП ЛПФПТПЗП НБФЕТЙБМ УМЕДХЕФ ЪБЛПОХ зХЛБ, ОБЪЩЧБЕФУС РТЕДЕМПН РТПРПТГЙПОБМШОПУФЙ (σn).
чЕМЙЮЙОБ РТЕДЕМБ РТПРПТГЙПОБМШОПУФЙ ЪБЧЙУЙФ ПФ ФПК УФЕРЕОЙ ФПЮОПУФЙ, У ЛПФПТПК ОБЮБМШОЩК ХЮБУФПЛ ДЙБЗТБННЩ НПЦОП ТБУУНБФТЙЧБФШ ЛБЛ РТСНХА. уФЕРЕОШ ПФЛМПОЕОЙС ЛТЙЧПК σ = f (ε) ПФ РТСНПК σ = еε ПРТЕДЕМСАФ РП ЧЕМЙЮЙОЕ ХЗМБ, ЛПФПТЩК УПУФБЧМСЕФ ЛБУБФЕМШОБС Л ДЙБЗТБННЕ У ПУША σ. ч РТЕДЕМБИ ЪБЛПОБ зХЛБ ФБОЗЕОУ ЬФПЗП ХЗМБ ПРТЕДЕМСЕФУС ЧЕМЙЮЙОПК 1/E. пВЩЮОП УЮЙФБАФ, ЮФП ЕУМЙ ЧЕМЙЮЙОБ dε/dσ ПЛБЪБМБУШ ОБ 50 % ВПМШЫЕ ЮЕН 1/е, ФП РТЕДЕМ РТПРПТГЙПОБМШОПУФЙ ДПУФЙЗОХФ.
рТЕДЕМ ФЕЛХЮЕУФЙ МЕЗЛП РПДДБЕФУС ПРТЕДЕМЕОЙА Й СЧМСЕФУС ПДОПК ЙЪ ПУОПЧОЩИ НЕИБОЙЮЕУЛЙИ ИБТБЛФЕТЙУФЙЛ НБФЕТЙБМБ.
хДМЙОЕОЙЕ РТЙ ТБЪТЩЧЕ РТЕДУФБЧМСЕФ УПВПК ЧЕМЙЮЙОХ УТЕДОЕК ПУФБФПЮОПК ДЕЖПТНБГЙЙ, ЛПФПТБС ПВТБЪХЕФУС Л НПНЕОФХ ТБЪТЩЧБ ОБ ПРТЕДЕМЕООПК УФБОДБТФОПК ДМЙОЕ ПВТБЪГБ. хДМЙОЕОЙЕ РТЙ ТБЪТЩЧЕ ВХДЕФ УМЕДХАЭЙН:
дЙБЗТБННБ ТБУФСЦЕОЙС, РПУФТПЕООБС У ХЮЕФПН ХНЕОШЫЕОЙС РМПЭБДЙ F Й НЕУФОПЗП ХЧЕМЙЮЕОЙС ДЕЖПТНБГЙЙ, ОБЪЩЧБЕФУС ЙУФЙООПК ДЙБЗТБННПК ТБУФСЦЕОЙС (ЛТЙЧБС OC’D’ ОБ ТЙУХОЛЕ 31).
3.2.2.1 рМБУФЙЮОПУФШ Й ИТХРЛПУФШ
рМБУФЙЮОЩЕ Й ИТХРЛЙЕ НБФЕТЙБМЩ ЧЕДХФ УЕВС РП-ТБЪОПНХ Й РТЙ ЙУРЩФБОЙЙ ОБ УЦБФЙЕ.
уПРПУФБЧМЕОЙЕ РТЕДЕМБ РТПЮОПУФЙ ИТХРЛЙИ НБФЕТЙБМПЧ РТЙ ТБУФСЦЕОЙЙ σЧТ У РТЕДЕМПН РТПЮОПУФЙ РТЙ УЦБФЙЙ σЧТ РПЛБЪЩЧБЕФ, ЮФП ЬФЙ НБФЕТЙБМЩ ПВМБДБАФ, ЛБЛ РТБЧЙМП, ВПМЕЕ ЧЩУПЛЙНЙ РТПЮОПУФОЩНЙ РПЛБЪБФЕМСНЙ РТЙ УЦБФЙЙ, ОЕЦЕМЙ РТЙ ТБУФСЦЕОЙЙ Й ИБТБЛФЕТЙЪХАФУС ПФОПЫЕОЙЕН
рТЕДЕМ РТПЮОПУФЙ ИТХРЛПЗП НБФЕТЙБМБ РТЙ УЦБФЙЙ ПРТЕДЕМСЕФУС ФБЛ ЦЕ, ЛБЛ Й РТЙ ТБУФСЦЕОЙЙ. тБЪТХЫЕОЙЕ ПВТБЪГБ РТПЙУИПДЙФ У ПВТБЪПЧБОЙЕН ФТЕЭЙО РП ОБЛМПООЩН ЙМЙ РТПДПМШОЩН РМПУЛПУФСН
чЕМЙЮЙОБ ПФОПЫЕОЙС k ДМС ЮХЗХОБ ЛПМЕВМЕФУС Ч РТЕДЕМБИ ПФ 0,2 ДП 0,4.
дМС ЛЕТБНЙЮЕУЛЙИ НБФЕТЙБМПЧ k = ПФ 0,1 ДП 0,2.
дМС РМБУФЙЮОЩИ НБФЕТЙБМПЧ УПРПУФБЧМЕОЙЕ РТПЮОПУФОЩИ ИБТБЛФЕТЙУФЙЛ ОБ ТБУФСЦЕОЙЕ Й УЦБФЙЕ ЧЕДЕФУС РП РТЕДЕМХ ФЕЛХЮЕУФЙ (σФТ Й σФУ). рТЙОСФП УЮЙФБФШ, ЮФП σФТ ≈ σФУ.
йУРЩФБОЙЕ ПВТБЪГПЧ ОБ ТБУФСЦЕОЙЕ Й УЦБФЙЕ ДБЕФ ПВЯЕЛФЙЧОХА ПГЕОЛХ УЧПКУФЧ НБФЕТЙБМБ. ч РТПЙЪЧПДУФЧЕ, ПДОБЛП, ДМС ПРЕТБФЙЧОПЗП ЛПОФТПМС ОБД ЛБЮЕУФЧПН ЙЪЗПФПЧМСЕНЩИ ДЕФБМЕК ЬФПФ НЕФПД ЙУРЩФБОЙС РТЕДУФБЧМСЕФ Ч ТСДЕ УМХЮБЕЧ ЪОБЮЙФЕМШОЩЕ ОЕХДПВУФЧБ. оБРТЙНЕТ, РТЙ РПНПЭЙ ЙУРЩФБОЙС ОБ ТБУФСЦЕОЙЕ Й УЦБФЙЕ ФТХДОП ЛПОФТПМЙТПЧБФШ РТБЧЙМШОПУФШ ФЕТНППВТБВПФЛЙ ЗПФПЧЩИ ЙЪДЕМЙК. рПЬФПНХ ОБ РТБЛФЙЛЕ ВПМШЫЕК ЮБУФША РТЙВЕЗБАФ Л УТБЧОЙФЕМШОПК ПГЕОЛЕ УЧПКУФЧ НБФЕТЙБМБ РТЙ РПНПЭЙ РТПВЩ ОБ ФЧЕТДПУФШ.
3.2.2.2 фЧЕТДПУФШ
рПД ФЧЕТДПУФША РПОЙНБЕФУС УРПУПВОПУФШ НБФЕТЙБМБ РТПФЙЧПДЕКУФЧПЧБФШ НЕИБОЙЮЕУЛПНХ РТПОЙЛОПЧЕОЙА Ч ОЕЗП РПУФПТПООЙИ ФЕМ. рПОСФОП, ЮФП ФБЛПЕ ПРТЕДЕМЕОЙЕ ФЧЕТДПУФЙ РПЧФПТСЕФ, РП УХЭЕУФЧХ, ПРТЕДЕМЕОЙЕ УЧПКУФЧ РТПЮОПУФЙ. ч НБФЕТЙБМЕ РТЙ ЧДБЧМЙЧБОЙЙ Ч ОЕЗП ПУФТПЗП РТЕДНЕФБ ЧПЪОЙЛБАФ НЕУФОЩЕ РМБУФЙЮЕУЛЙЕ ДЕЖПТНБГЙЙ, УПРТПЧПЦДБАЭЙЕУС РТЙ ДБМШОЕКЫЕН ХЧЕМЙЮЕОЙЙ УЙМ НЕУФОЩН ТБЪТХЫЕОЙЕН. рПЬФПНХ РПЛБЪБФЕМШ ФЧЕТДПУФЙ УЧСЪБО У РПЛБЪБФЕМСНЙ РТПЮОПУФЙ Й РМБУФЙЮОПУФЙ Й ЪБЧЙУЙФ ПФ ЛПОЛТЕФОЩИ ХУМПЧЙК ЧЕДЕОЙС, ЙУРЩФБОЙС.
3.2.2.2.1 йУРЩФБОЙЕ НЕФБММПЧ ОБ ФЧЕТДПУФШ
фЧЕТДПУФШ ИБТБЛФЕТЙЪХЕФ УЧПКУФЧБ РПЧЕТИОПУФОПЗП УМПС НБФЕТЙБМБ ПЛБЪЩЧБФШ УПРТПФЙЧМЕОЙЕ ХРТХЗПК Й РМБУФЙЮЕУЛПК ДЕЖПТНБГЙЙ РТЙ НЕУФОЩИ ЛПОФБЛФОЩИ ЧПЪДЕКУФЧЙСИ УП УФПТПОЩ ДТХЗПЗП, ВПМЕЕ ФЧЕТДПЗП Й ОЕ РПМХЮБАЭЕЗП ПУФБФПЮОПК ДЕЖПТНБГЙЙ ФЕМБ ХУФБОПЧМЕООЩИ ЖПТНЩ Й ТБЪНЕТПЧ.
фЧЕТДПУФШ УЧСЪБОБ ПРТЕДЕМЕООЩН УППФОПЫЕОЙЕН У РТЕДЕМПН РТПЮОПУФЙ РТЙ ТБУФСЦЕОЙЙ, ОЙЪЛПУФПКЛПУФША, ТЕЦХЭЙНЙ УЧПКУФЧБНЙ.
йУРЩФБОЙЕ ОБ ФЧЕТДПУФШ НПЦЕФ РТПЙЪЧПДЙФШУС ОБ ДЕФБМЙ ВЕЪ ТБЪТХЫЕОЙС ГЕМПУФОПУФЙ НЕФБММБ Й ЕЗП ЙУРПМШЪХАФ ЛБЛ НЕФПД ЛПОФТПМС ЛБЮЕУФЧБ НЕФБММБ Ч ЗПФПЧЩИ ЙЪДЕМЙСИ.
уХЭОПУФШ НЕФПДБ ЙЪНЕТЕОЙС ФЧЕТДПУФЙ РП вТЙОЕММА (оч) ЪБЛМАЮБЕФУС ЧП ЧДБЧМЙЧБОЙЙ УФБМШОПЗП ЫБТЙЛБ ДЙБНЕФТПН D Ч ПВТБЪЕГ РПД ДЕКУФЧЙЕН ОБЗТХЪЛЙ F(P), (о) Й ЙЪНЕТЕОЙЕ ДЙБНЕФТБ ПВТБЪХАЭЕЗПУС ПФРЕЮБФЛБ d НН РПУМЕ УОСФЙС ЙУРЩФБФЕМШОПК ОБЗТХЪЛЙ. юЙУМП ФЧЕТДПУФЙ ПРТЕДЕМСЕФУС ЛБЛ ПФОПЫЕОЙЕ ОБЗТХЪЛЙ т(но) Л S ЫБТПЧПК РПЧЕТИОПУФЙ ПФРЕЮБФЛБ F. еУМЙ РПЧЕТИОПУФШ ПФРЕЮБФЛБ ЧЩТБЪЙФШ ЮЕТЕЪ ДЙБНЕФТ ЫБТЙЛБ Й ДЙБНЕФТ ПФРЕЮБФЛБ РП ЖПТНХМЕ:
нЕФПД ЙУРПМШЪХЕФУС ДМС ПРТЕДЕМЕОЙС ФЧЕТДПУФЙ ДЕФБМЕК НБМПК ФПМЭЙОЩ.
рТЙВПТЩ ДМС ЙУРЩФБОЙС НЕФБММБ ОБ ФЧЕТДПУФШ.
фы-2 РТЕДОБЪОБЮЕО ДМС ЙУРЩФБОЙК НЕФБММПЧ, У ФЧЕТДПУФША ОЕ ЧЩЫЕ 4410 нрБ РП вТЙОЕММА.
фр- РТЙВПТ РТЕДОБЪОБЮЕО ДМС ПРТЕДЕМЕОЙС ФЧЕТДПУФЙ НСЗЛЙИ НЕФБММПЧ РП НЕФПДХ вТЙОЕММА Й ФЧЕТДПУФЙ НЕФБММПЧ РП НЕФПДХ чЙЛЛЕТУХ.
фл-2 РТЕДОБЪОБЮЕО ДМС ПРТЕДЕМЕОЙС ФЧЕТДПУФЙ НЕФБММБ РП НЕФПДХ тПЛЧЕММБ. рТЙВПТ РПЪЧПМСЕФ ПРТЕДЕМСФШ ФЧЕТДПУФШ НСЗЛЙИ НБФЕТЙБМПЧ, ФЧЕТДЩИ НБФЕТЙБМПЧ, Б ФБЛЦЕ ЙЪДЕМЙК ФЕТНЙЮЕУЛЙ Й ИЙНЙЛП-ФЕТНЙЮЕУЛЙ ПВТБВПФБООЩИ. зМХВЙОБ ЧДБЧМЙЧБОЙС ЛПОХУБ ЙЪНЕТСЕФУС ЙОДЙЛБФПТПН.
3.2.3 йУРЩФБОЙЕ ОБ РПМЪХЮЕУФШ
йУРЩФБОЙЕ ОБ РПМЪХЮЕУФШ ФБЛЦЕ ПФОПУЙФУС Л УФБФЙЮЕУЛЙН ЙУРЩФБОЙСН. йУРЩФБОЙС РТПЧПДСФ Ч РЕЮЙ, ОБЗТХЦБС ПВТБЪГЩ, Й УФТПСФ ЗТБЖЙЛ «ХДМЙОЕОЙЕ-ЧТЕНС». рП РПМХЮЕООЩН ДБООЩН ПРТЕДЕМСАФ РТЕДЕМ РПМЪХЮЕУФЙ.
рТЕДЕМПН РПМЪХЮЕУФЙ ОБЪЩЧБЕФУС ОБРТСЦЕОЙЕ, РТЙ ЛПФПТПН РМБУФЙЮЕУЛБС ДЕЖПТНБГЙС ЪБ ЪБДБООЩК РТПНЕЦХФПЛ ЧТЕНЕОЙ ДПУФЙЗБЕФ ЪБДБООПК ЧЕМЙЮЙОЩ.
лБЛ ЧЙДЙН, ДМС ПРТЕДЕМЕОЙС РТЕДЕМБ РПМЪХЮЕУФЙ ОЕПВИПДЙНП ЪБДБФШ ЙОФЕТЧБМ ЧТЕНЕОЙ (ЛПФПТЩК ПРТЕДЕМСЕФУС УТПЛПН УМХЦВЩ ДЕФБМЙ) Й ЙОФЕТЧБМ ДПРХУФЙНЩИ ДЕЖПТНБГЙК (ЛПФПТЩК ПРТЕДЕМСЕФУС ХУМПЧЙСНЙ ЬЛУРМХБФБГЙЙ ДЕФБМЙ). рТЕДЕМ ДМЙФЕМШОПК РТПЮОПУФЙ Й РТЕДЕМ РПМЪХЮЕУФЙ УЙМШОП ЪБЧЙУСФ ПФ ФЕНРЕТБФХТЩ. у ХЧЕМЙЮЕОЙЕН ФЕНРЕТБФХТЩ ПОЙ ХНЕОШЫБАФУС.
3.2.4 йУРЩФБОЙС ОБ ХУФБМПУФШ
хУФБМПУФОЩН ТБЪТХЫЕОЙЕН ОБЪЩЧБАФ СЧМЕОЙЕ ТБЪТХЫЕОЙС НЕФБММПЧ РПД ДЕКУФЧЙЕН РПЧФПТОЩИ ЙМЙ ЪОБЛПРЕТЕНЕООЩИ ОБРТСЦЕОЙК, РТЙЮЕН ХУФБМПУФОПЕ ТБЪТХЫЕОЙЕ НПЦЕФ ОБУФХРЙФШ РТЙ ЪОБЮЕОЙЙ ОБРТСЦЕОЙС НЕОШЫЕ РТЕДЕМБ РТПЮОПУФЙ Й ДБЦЕ ФЕЛХЮЕУФЙ. уПРТПФЙЧМЕОЙЕ ХУФБМПУФЙ ОБЪЩЧБАФ ЧЩОПУМЙЧПУФША. хУФБМПУФШ ОБУФХРБЕФ РТЙ РТЕЧЩЫЕОЙЙ РТЕДЕМБ ЧЩОПУМЙЧПУФЙ.
уТЕДЙ ТБЪМЙЮОЩИ ФЙРПЧ УФБФЙЮЕУЛЙИ ОБЗТХЪПЛ ПУПВПЕ НЕУФП ЪБОЙНБАФ РЕТЙПДЙЮЕУЛЙ ЙЪНЕОСАЭЙЕУС, ЙМЙ ГЙЛМЙЮЕУЛЙЕ, ОБЗТХЪЛЙ. чПРТПУЩ РТПЮОПУФЙ НБФЕТЙБМПЧ Ч ХУМПЧЙСИ ФБЛЙИ ОБЗТХЪПЛ УЧСЪЩЧБАФУС У РПОСФЙСНЙ ЧЩОПУМЙЧПУФЙ ЙМЙ ХУФБМПУФЙ НБФЕТЙБМБ.
3.2.5 дЙОБНЙЮЕУЛЙЕ ЙУРЩФБОЙС
л ПГЕОЛЕ ДЙОБНЙЮЕУЛЙИ ОБЗТХЪПЛ УХЭЕУФЧХАФ ДЧБ РПДИПДБ. у ПДОПК УФПТПОЩ, ОБЗТХЪЛБ УЮЙФБЕФУС ВЩУФТП ЙЪНЕОСАЭЕКУС, ЕУМЙ ПОБ ЧЩЪЩЧБЕФ ЪБНЕФОЩЕ УЛПТПУФЙ ЮБУФЙГ ДЕЖПТНЙТХЕНПЗП ФЕМБ, РТЙЮЕН ОБУФПМШЛП ВПМШЫЙЕ, ЮФП УХННБТОБС ЛЙОЕФЙЮЕУЛБС ЬОЕТЗЙС ДЧЙЦХЭЙИУС НБУУ УПУФБЧМСЕФ ХЦЕ ЪОБЮЙФЕМШОХА ДПМА ПФ ПВЭЕК ТБВПФЩ ЧОЕЫОЙИ УЙМ. у ДТХЗПК УФПТПОЩ, УЛПТПУФШ ЙЪНЕОЕОЙС ОБЗТХЪЛЙ НПЦЕФ ВЩФШ УЧСЪБОБ УП УЛПТПУФША РТПФЕЛБОЙС РМБУФЙЮЕУЛЙИ ДЕЖПТНБГЙК. оБЗТХЪЛБ НПЦЕФ ТБУУНБФТЙЧБФШУС, ЛБЛ ВЩУФТП ЙЪНЕОСАЭБСУС, ЕУМЙ ЪБ ЧТЕНС ОБЗТХЦЕОЙС ФЕМБ РМБУФЙЮЕУЛЙЕ ДЕЖПТНБГЙЙ ОЕ ХУРЕЧБАФ ПВТБЪПЧБФШУС РПМОПУФША. ьФП ЪБНЕФОП УЛБЪЩЧБЕФУС ОБ ИБТБЛФЕТЕ ОБВМАДБЕНЩИ ЪБЧЙУЙНПУФЕК НЕЦДХ ДЕЖПТНБГЙСНЙ Й ОБРТСЦЕОЙСНЙ.
чЕУШНБ ВЩУФТП ЙЪНЕОСАЭЙЕУС ОБЗТХЪЛЙ ЧПЪОЙЛБАФ РТЙ ХДБТЕ ФЕМ, ДЧЙЦХЭЙИУС УП УЛПТПУФСНЙ Ч ОЕУЛПМШЛП УПФЕО НЕФТПЧ Ч УЕЛХОДХ Й ЧЩЫЕ. у ЬФЙНЙ ОБЗТХЪЛБНЙ РТЙИПДЙФУС ЙНЕФШ ДЕМП РТЙ ЙЪХЮЕОЙЙ ЧПРТПУПЧ ВТПОЕРТПВЙЧБЕНПУФЙ, РТЙ ПГЕОЛЕ ТБЪТХЫБАЭЕЗП ДЕКУФЧЙС ЧЪТЩЧОПК ЧПМОЩ, РТЙ ЙУУМЕДПЧБОЙЙ РТПВЙЧОПК УРПУПВОПУФЙ НЕЦРМБОЕФОПК РЩМЙ, ЧУФТЕЮБАЭЕКУС ОБ РХФЙ ЛПУНЙЮЕУЛПЗП ЛПТБВМС. фБЛ ЛБЛ ЬОЕТЗЙС ДЕЖПТНБГЙЙ НБФЕТЙБМБ Ч ХУМПЧЙСИ ЧЕУШНБ ВПМШЫЙИ УЛПТПУФЕК ОБЗТХЦЕОЙС ПЛБЪЩЧБЕФУС УТБЧОЙФЕМШОП НБМПК, ФП УЧПКУФЧБ НБФЕТЙБМБ ЛБЛ ФЧЕТДПЗП ФЕМБ ЙНЕАФ Ч ДБООПН УМХЮБЕ ЧФПТПУФЕРЕООПЕ ЪОБЮЕОЙЕ. оБ РЕТЧЩК РМБО ЧЩУФХРБАФ ЪБЛПОЩ ДЧЙЦЕОЙС МЕЗЛП ДЕЖПТНЙТХЕНПК (РПЮФЙ ЦЙДЛПК) УТЕДЩ, Й ПУПВХА ТПМШ РТЙПВТЕФБАФ ЧПРТПУЩ ЖЙЪЙЮЕУЛПЗП УПУФПСОЙС Й ЖЙЪЙЮЕУЛЙИ УЧПКУФЧ НБФЕТЙБМБ Ч ОПЧЩИ ХУМПЧЙСИ.
3.2.6 чМЙСОЙЕ ФЕНРЕТБФХТЩ Й ЖБЛФПТБ ЧТЕНЕОЙ ОБ НЕИБОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ НБФЕТЙБМБ
чУЕ УЛБЪБООПЕ ЧЩЫЕ П УЧПКУФЧБИ НБФЕТЙБМПЧ ПФОПУЙМПУШ Л ЙУРЩФБОЙСН Ч ФБЛ ОБЪЩЧБЕНЩИ ОПТНБМШОЩИ ХУМПЧЙСИ, ОП ДЙБРБЪПО ФЕНРЕТБФХТ, Ч РТЕДЕМБИ ЛПФПТПЗП ТЕБМШОП ТБВПФБАФ ЛПОУФТХЛГЙПООЩЕ НБФЕТЙБМЩ, ЧЩИПДЙФ ДБМЕЛП ЪБ ТБНЛЙ ХЛБЪБООЩИ ОПТНБМШОЩИ ХУМПЧЙК. еУФШ ЛПОУФТХЛГЙЙ, ЗДЕ НБФЕТЙБМ ОБИПДЙФУС РПД ДЕКУФЧЙЕН ЮТЕЪЧЩЮБКОП ЧЩУПЛЙИ ФЕНРЕТБФХТ, ЛБЛ, ОБРТЙНЕТ, Ч УФЕОЛБИ ЛБНЕТ ЧПЪДХЫОП-ТЕБЛФЙЧОЩИ Й ТБЛЕФОЩИ ДЧЙЗБФЕМЕК. йНЕАФУС ЛПОУФТХЛГЙЙ, ЗДЕ ТБВПЮЙЕ ФЕНРЕТБФХТЩ ПЛБЪЩЧБАФУС ОЙЪЛЙНЙ. ьФП-ЬМЕНЕОФЩ ИПМПДЙМШОЩИ ХУФБОПЧПЛ Й ТЕЪЕТЧХБТЩ, УПДЕТЦБЭЙЕ ЦЙДЛЙЕ ЗБЪЩ.
ч ЫЙТПЛЙИ РТЕДЕМБИ ЙЪНЕОСАФУС Й УЛПТПУФЙ ОБЗТХЦЕОЙС, Й ЧТЕНС ДЕКУФЧЙС ЧОЕЫОЙИ УЙМ. уХЭЕУФЧХАФ ОБЗТХЪЛЙ, ПЮЕОШ НЕДМЕООП НЕОСАЭЙЕУС Й ВЩУФТП НЕОСАЭЙЕУС. еУФШ ОБЗТХЪЛЙ, ДЕКУФЧХАЭЙЕ ЗПДБНЙ, Б ЕУФШ ФБЛЙЕ, ЧТЕНС ДЕКУФЧЙС ЛПФПТЩИ ЙУЮЙУМСЕФУС НЙММЙПООЩНЙ ДПМСНЙ УЕЛХОДЩ. рПОСФОП, ЮФП Й ЪБЧЙУЙНПУФЙ ПФ ХЛБЪБООЩИ ПВУФПСФЕМШУФЧ НЕИБОЙЮЕУЛЙЕ УЧПКУФЧБ НБФЕТЙБМПН ВХДХФ РТПСЧМСФШУС РП-ТБЪОПНХ. пВПВЭБАЭЙК БОБМЙЪ УЧПКУФЧ НБФЕТЙБМБ У ХЮЕФПН ФЕНРЕТБФХТЩ Й ЧТЕНЕОЙ ПЛБЪЩЧБЕФУС ПЮЕОШ УМПЦОЩН Й ОЕ ХЛМБДЩЧБЕФУС Й РТПУФЩЕ ЬЛУРЕТЙНЕОФБМШОП РПМХЮЕООЩЕ ЛТЙЧЩЕ, РПДПВОЩЕ ДЙБЗТБННБН ТБУФСЦЕОЙС. жХОЛГЙПОБМШОБС ЪБЧЙУЙНПУФШ НЕЦДХ ЮЕФЩТШНС РБТБНЕФТБНЙ σ, ε, ФЕНРЕТБФХТПК tњ Й ЧТЕНЕОЕН t ОЕ СЧМСЕФУС ПДОПЪОБЮОПК Й УПДЕТЦЙФ Ч УМПЦОПН ЧЙДЕ ДЙЖЖЕТЕОГЙБМШОЩЕ Й ЙОФЕЗТБМШОЩЕ УППФОПЫЕОЙС ЧИПДСЭЙИ Ч ОЕЕ ЧЕМЙЮЙО.
дЕМЕОЙЕ ОБ ЛМБУУЩ РТПЙЪЧПДЙФУС Й ПУОПЧОПН РП ФЙРХ ДЕКУФЧХАЭЙИ ЧОЕЫОЙИ УЙМ. тБЪМЙЮБАФ НЕДМЕООП ЙЪНЕОСАЭЙЕУС, ВЩУФТП Й ПЮЕОШ ВЩУФТП ЙЪНЕОСАЭЙЕУС ОБЗТХЪЛЙ.
еУМЙ ЧЕУФЙ ЙУРЩФБОЙС ОБ ТБУФСЦЕОЙЕ РТЙ ТБЪМЙЮОЩИ ФЕНРЕТБФХТБИ ПВТБЪГБ, ПУФБЧБСУШ Ч РТЕДЕМБИ «ОПТНБМШОЩИ» УЛПТПУФЕК ДЕЖПТНБГЙЙ ФП НПЦОП Ч ПРТЕДЕМЕООПН ЙОФЕТЧБМЕ РПМХЮЙФШ ЪБЧЙУЙНПУФШ НЕИБОЙЮЕУЛЙИ ИБТБЛФЕТЙУФЙЛ ПФ ФЕНРЕТБФХТЩ. ьФБ ЪБЧЙУЙНПУФШ ПВХУМПЧМЕОБ ФЕНРЕТБФХТОЩН ЙЪНЕОЕОЙЕН ЧОХФТЙЛТЙУФБММЙЮЕУЛЙИ Й НЕЦЛТЙУФБММЙЮЕУЛЙИ УЧСЪЕК, Б Ч ОЕЛПФПТЩИ УМХЮБСИ Й УФТХЛФХТОЩНЙ ЙЪНЕОЕОЙСНЙ НБФЕТЙБМБ.
юЕН ЧЩЫЕ ФЕНРЕТБФХТБ, ФЕН ФТХДОЕЕ ПРТЕДЕМЙФШ НЕИБОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ НБФЕТЙБМБ. йЪНЕОЕОЙЕ ЧП ЧТЕНЕОЙ ДЕЖПТНБГЙК Й ОБРТСЦЕОЙК, ЧПЪОЙЛБАЭЙИ Ч ОБЗТХЦЕООПК ДЕФБМЙ, ОПУЙФ ОБЪЧБОЙЕ РПМЪХЮЕУФЙ. юБУФОЩН РТПСЧМЕОЙЕН РПМЪХЮЕУФЙ СЧМСЕФУС ТПУФ ОЕПВТБФЙНЩИ ДЕЖПТНБГЙК РТЙ РПУФПСООПН ОБРТСЦЕОЙЙ. ьФП СЧМЕОЙЕ ОПУЙФ ОБЪЧБОЙЕ РПУМЕДЕКУФЧЙС. оБЗМСДОПК ЙММАУФТБГЙЕК РПУМЕДЕКУФЧЙС НПЦЕФ УМХЦЙФШ ОБВМАДБЕНПЕ ХЧЕМЙЮЕОЙЕ ТБЪНЕТПЧ ДЙУЛБ Й МПРБФПЛ ЗБЪПЧПК ФХТВЙОЩ, ОБИПДСЭЙИУС РПД ЧПЪДЕКУФЧЙЕН ВПМШЫЙИ ГЕОФТПВЕЦОЩИ УЙМ Й ЧЩУПЛЙИ ФЕНРЕТБФХТ. ьФП ХЧЕМЙЮЕОЙЕ ТБЪНЕТПЧ ОЕПВТБФЙНП Й РТПСЧМСЕФУС ПВЩЮОП РПУМЕ НОПЗЙИ ЮБУПЧ ТБВПФЩ ДЧЙЗБФЕМС.
фБЛЙН ПВТБЪПН, РТЕДЕМ ДМЙФЕМШОПК РТПЮОПУФЙ ЪБЧЙУЙФ ПФ ЪБДБООПЗП РТПНЕЦХФЛБ ЧТЕНЕОЙ ДП НПНЕОФБ ТБЪТХЫЕОЙС. рПУМЕДОЙК ЧЩВЙТБЕФУС ТБЧОЩН УТПЛХ УМХЦВЩ ДЕФБМЙ Й НЕОСЕФУС Ч РТЕДЕМБИ ПФ ДЕУСФЛПЧ ЮБУПЧ ДП УПФЕО ФЩУСЮ ЮБУПЧ. уППФЧЕФУФЧЕООП УФПМШ ЫЙТПЛПНХ ДЙБРБЪПОХ ЙЪНЕОЕОЙС ЧТЕНЕОЙ НЕОСЕФУС Й РТЕДЕМ ДМЙФЕМШОПК РТПЮОПУФЙ. у ХЧЕМЙЮЕОЙЕН ЧТЕНЕОЙ ПО РБДБЕФ.
2.2. Характеристики механических свойств, определяемые при динамических испытаниях
Особенностью динамических испытаний является резкое приложение нагрузки к образцу. Динамические испытания на ударный изгиб проводят для определения ударной вязкости. Образцы для испытаний имеют надрез, который является концентратором напряжений. Метод основан на разрушении такого образца ударом маятникового копра (рис. 12).
Отношение этой работы к площади рабочего поперечного сечения образца называется ударной вязкостью:
, [Дж/м 2 ], (6)
где F0 – площадь поперечного сечения образца в месте надреза.
Рис. 12. Схема маятникового копра (а) и образец (б) для испытаний на ударную вязкость
В зависимости от вида надреза ударная вязкость обозначается (ГОСТ 9454-78):
KCV – при радиусе надреза r=0,25 мм,
KCT – при концентраторе в виде трещины.
Ударная вязкость характеризует склонность металла к хрупкому разрушению, она включает работу зарождения трещины (аз) и работу распространения трещины (ар):
Чем больше работа распространения трещины, тем меньше возможность внезапного хрупкого разрушения.
Ударная вязкость зависит от:
размера зерна металла – измельчение зерна приводит к значительному повышению ударной вязкости;
— наличия концентраторов напряжений в изделии;
природы материала и особенностей его обработки,
наличия вредных примесей;
скорости деформации – чем выше скорость, тем ударная вязкость ниже;
При уменьшении температуры ниже некоторого предельного значения опасность хрупкого разрушения резко возрастает. Порог хладноломкости – это температура (интервал температур), при котором происходит переход от вязкого разрушения к хрупкому, сопровождающийся резким снижением ударной вязкости. Нижний (tн) и верхний (tв) пределы порога хладноломкости определяют в серии ударных испытаний при разных температурах (рис. 13).
Рис. 13. Зависимость ударной вязкости от температуры и определение порога хладноломкости
Рис. 14. Вязкий (а) и хрупкий (б) изломы металла
Рабочая температура эксплуатации изделия должна быть выше порога хладноломкости материала, который составляет для большинства сталей –40…– 50С. Чем выше температурный запас вязкости материала, т.е. разница между порогом хладноломкости и рабочей температурой, тем меньше риск катастрофического разрушения изделия.
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Механические свойства, определяемые при динамических испытаниях
Механические свойства, определяемые при динамических испытаниях
Этот метод основан с концентратором в центре при 1 попадании копры My Topeak (рис. 63).
на разрушении образца Людмила Фирмаль
Ударная вязкость sn, кгс-м / см2, (КС)* 1 определяется работой Ln, которая необходима для разрушения образца.
Неопределенная величина Образец крепится к 2 опорам, ударяя по центру (рис.63, б) с противоположной стороны насечки.
1-маятник; 2-Образец; 3-шкала; 4-стрелка; 5-тормоз Разрушение образца (рис. 63,а), An = Phi (cosp-cosa), где P-масса маятника, кг; ht-расстояние от оси маятника до его центра масс m. (3-угол возвышения маятника после разрушения образца.
а высота маятника перед ударом. Людмила Фирмаль
Эта формула позволяет вычислить Ln по измеренным углам a и P(P и / jj являются постоянными для конкретной головки). В пластическом состоянии, для металлов, Ак> 5-7 кгс-м / см2,а в хрупком состоянии-АА
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Механические свойства, определяемые при динамических нагрузках
Эксплуатационные свойства
Эксплуатационными называют свойства материала, которые определяют работоспособность деталей машин, приборов или инструментов, их силовые, скоростные, стойкостные и другие технико-эксплуатационные показатели.
Работоспособность подавляющего большинства деталей машин и изделий обеспечивает уровень механических свойств. Механические свойства характеризуют поведение материала под действием внешней нагрузки.
Эта группа свойств включает показатели прочности, жесткости (упругости), пластичности, твердости и вязкости. Основную группу таких показателей оставляют стандартные характеристики механических свойств, которые определяют в лабораторных условиях на образцах стандартных размеров.
В зависимости от условий нагружения механические свойства могут определяться при:
1. статическом нагружении – нагрузка на образец возрастает медленно и плавно;
2. динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер;
3. повторно, переменном или циклическим нагружении – нагрузка в процессе испытания многократно изменяется по величине или по величине и направлению.
Для получения сопоставимых результатов образцы и методика проведения механических испытаний регламентированы ГОСТами.
Механические свойства
Механические свойства, определяемые при статических нагрузках
Рис. 1. Диаграмма растяжений
Временное сопротивление характеризует максимальную несущую способность материала, его прочность, предшествующую разрушению,
При испытании на растяжение определяются и характеристики пластичности.
Пластичность –– способность материала к пластической деформации, т.е. способность получать остаточное изменение формы и размеров без нарушения сплошности. Это свойство используют при обработке металлов давлением.
Пластичность характеризуется относительным удлинением δ и относительным сужением ψ:
где lк— конечная длина образца; l0и F0— начальные длина и площадь поперечного сечения образца; Fк— площадь поперечного сечения в месте разрыва.
Для малопластичных материалов испытания на растяжения вызывают значительные затруднения. Такие материалы, как правило, подвергают испытанию на изгиб.
Рис. 2. Схема испытаний на изгиб
Предел прочности при изгибе вычисляют по формуле:
Для пластичных материалов испытания на изгиб не применяют, так как образцы изгибаются без разрушения до соприкосновения обоих концов.
Рис. 3. Схемы определения твердости
На практике при измерении твердости расчет по указанной выше формуле не производят, а используют заранее составленные таблицы, указывающие значение НВ в зависимости от диаметра отпечатки и выбранной нагрузки. Чем меньше диаметр отпечатка, тем выше твердость.
Способ измерения по Бринеллю не является универсальным. Его используют для материалов малой и средней твердости: сталей с твердостью ≤ 450 НВ, цветных металлов с твердостью ≤ 200 НВ и т.п.
где Р в Н, d в мм. На практике число твердости определяют по специальным таблицам по значению диагонали отпечатка при выбранной нагрузке.
Метод Виккерса применяют главным образом для материалов, имеющих высокую твердость, а также для испытания на твердость деталей малых сечений или тонких поверхностных слоев. Как правило, используют небольшие нагрузки: 10, 30, 50, 100, 200, 500 Н. Чем тоньше сечение детали или исследуемый слой, тем меньше выбирают нагрузку.
Числа твердости по Виккерсу и по Бринеллю для материалов, имеющих твердость до 450 НВ, практически совпадают.
Метод царапания. Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.
Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.
Динамический метод (по Шору). Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.
Механические свойства, определяемые при динамических нагрузках
где S’0— площадь поперечного сечения образца в месте надреза.
Основным критерием ударной вязкости является КCU. Она, состоит из двух составляющих:
Хладноломкость— свойство металлического материала терять вязкость, хрупко разрушаться при понижении температуры. Хладноломкость проявляется у железа, стали, металлов и сплавов, имеющих ОЦК или ГП решетку. Она отсутствует у металлов с ГЦК решеткой.
Дата добавления: 2018-04-04 ; просмотров: 1375 ; Мы поможем в написании вашей работы!