какие молекулы есть в космосе

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Считается, что границы наблюдения человека в космосе сейчас составляют примерно 93 миллиарда световых лет. Оставшиеся же масштабы вселенной нашему разуму пока не удается ни осознать, ни изучить. Тем не менее многие деятели науки сегодня считают, что наша галактика и прочие существующие в космосе тела помещаются лишь в пределы одного атома. Давайте разбираться, возможно ли это.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Согласно имеющимся у ученых сведениям, недоступные нашему взору просторы вселенной составляют в диаметре 20 триллионов световых лет, при этом подавляющую часть этого пространства занимают пустоты. Однако и они, и другие космические тела состоят из мельчайших частиц – атомов. Именно эти частицы являют собой материю, из которой соткано все наше мироздание: и огромные далекие планеты, и наша атмосфера, и мы – люди.

Атомы настолько малы, что даже самые современные микроскопы не позволяют сделать их подробный и четкий снимок, поэтому с уверенностью утверждать, что мы знаем о них все, было бы неправильно. На сегодняшний день мы не можем со стопроцентной точностью сказать, как выглядят эти частицы: воссоздание их наиболее полного образа происходит согласно всевозможным теоретическим данным. Впрочем, кое-что об атоме мы все-таки знаем: он состоит из еще более мелких частиц, таких как протоны, нейтроны, кварки и электроны. Также известно, что организм отдельно взятого взрослого представителя человечества состоит из порядка 7 октиллионов атомов.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

В 1911 году Эрнест Резерфорд впервые обнародовал свою «Планетарную модель атома», созданную им на основании результатов эксперимента Гейгера и Марсдена по рассеиванию альфа-частиц в тонкой золотой фольге. Этот знаменитый британский физик представил строение атома как положительно заряженное ядро, сосредоточившее в себе почти всю массу частицы, вокруг которого вращаются электроны. Согласитесь, весьма похоже на устройство нашей солнечной системы. Именно эта структура заставила ученых впервые задуматься над теорией микро-вселенной.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Чтобы эта теория не казалась вам слишком уж фантастичной, следует задуматься о том, насколько относительны размеры любого существующего в мире объекта. К примеру, муравьи и другие насекомые кажутся нам нереально маленькими. А что же они думают о нас? Понимают ли, что живут в мире гигантов? Вероятнее всего, нет, ведь наш мир не пропорционален их размерам. Возможно, что их разум даже неспособен осознать людей как живых существ, каким-либо образом оказывающих влияние на их существование.

То же самое и с нами: по сравнению со многими другими космическими объектами, к примеру, галактиками, наш мир не просто крошечный – он незаметен. Отсюда напрашивается вывод: предположение, что наша реальность находится на субатомном уровне какой-либо иной вселенной, существующей на уровне атомов, вполне логично. Еще один аргумент данной теории звучит следующим образом: абсолютно все объекты в мире, будь то один из этих космических гигантов или еда, находящаяся в вашей тарелке, состоят из одного и того же «строительного материала».

Если верить, что вселенная – всего лишь атом другого мира, вполне возможно, что астрономы, биологи и физики, изучающие, казалось бы, разные сферы науки, занимаются на самом деле одним делом: один, наблюдая в телескоп скопления галактик, оставшиеся – задумываясь над строением живой клетки и атома. Кто знает, возможно, руководствуясь этим подходом, мы сможем лучше понять мир, в котором живем, и даже защититься от реальных космических угроз.

Источник

Чем заполнен космический вакуум?

Так ли пуст космос как принято считать? Отличия светлых и темных туманностей и подсчет количества звездного вещества в чайной ложке космической пустоты

Принято считать, что космические пространства заполнены разве что вакуумом, то есть пустотой. Однако, такое утверждение не совсем верно.

Начнем хотя бы с того, что даже сами наши представления о вакууме, то есть безвоздушном пространстве, весьма относительны. Например, в электрической лампочке «нет воздуха», говорим мы, он оттуда выкачан. Сравнительно с комнатным воздухом там — вакуум. Но физик с помощью своих лучших насосов может так выкачать воздух из какой-либо стеклянной трубки, что по сравнению с ним пространство внутри электрической лампы будет просто кишеть мириадами молекул.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Так выглядит газовая диффузная туманность

Вот и космический вакуум также относителен. Газовые диффузные туманности, хотя и имеют плотность, меньшую чем одна миллиардная от миллиардной доли грамма в кубическом сантиметре, но все же никак не могут считаться “пустотой”. Но и там, где нет ни звезд ни туманностей, тоже не царит абсолютное “ничто”. Оно также заполнено газом, пускай и ничтожной плотности. Вот и выходит, что космический вакуум это никакая не пустота, а та же газовая среда, хотя и ужасно разряженная.

Впрочем, не только газовая! На спектрографе космический вакуум “светится” громадным количеством атомов различных химических элементов, но преобладают среди них ничто иное как кальций. Сперва это вызывало недоумение, но потом выяснилось, что ионизированный кальций поглощает свет главным образом в тех двух своих линиях, которые находятся в легко наблюдаемой части спектра. Атомы других элементов поглощают свет либо в очень многих линиях, как, например, железо, либо в такой области спектра (ультрафиолетовой), которая недоступна для изучения из-за ее полного поглощения в нашей атмосфере.

Поэтому-то линии других межзвездных атомов, если они есть, либо вообще не могут быть обнаружены, либо они менее заметны, потому что их общее поглощение разбивается на много разных поглощений — в каждой линии понемногу. Поэтому нет оснований считать ионизированный кальций единственным или преобладающим газом в межзвездных далях. Фигурально выражаясь, он только заявляет о своем присутствии громче других.

Можно все же попытаться найти и другие межзвездные газы, хотя бы слабые следы их. И действительно, после специальных поисков в спектрах звезд был найден межзвездный натрий, титан, калий, железо, циан и даже углеводород.

Общая плотность поглощающего межзвездного газа в несколько тысяч раз меньше плотности излучающих свет газовых туманностей. Полная же плотность межзвездного газа значительно больше и составляет не менее одной миллионной от миллиардной части одной миллиардной доли грамма в кубическом сантиметре. Если бы этот газ состоял из одного лишь водорода, то при такой плотности в 1 кубическом сантиметре содержалось бы только по одному атому, тогда как в таком же объеме комнатного воздуха их содержится 10 миллиардов миллиардов!

В действительности дело почти так и обстоит, так как водород на самом деле является главной составной частью межзвездного газа. Следующее за ним место занимает натрий, но на водород приходится 90% всей межзвездной среды, включая космическую пыль и метеориты. На долю последних приходится, как оказывается, ничтожная доля массы всей межзвездной среды, и больше всего в них весит самый легкий из газов.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

И темные и светлые туманности которые мы видим с Земли, состоят из очень разряженных газов

Светлые туманности, то тут, то там видимые среди звезд и состоящие из газов, также светятся благодаря воздействию со стороны звезд, но в данном случае мы наблюдаем процесс так называемой флюоресценции – сама туманность не излучает света, а только отражает звездный, как правило исходящий от очень горячих звезд.

Подводя итог, хочу вновь задать вопрос, как и в начале: можно ли считать, что космос наполнен лишь пустотой? Нет, и мы в этом только что убедились. Однако, положа руку на сердце, мы должны признать и то, что такое утверждение не так уж далеко от действительности. Не смотря на наличие в космическом вакууме громадного числа атомов самых разных химический элементов, их количество, все-таки ничтожно мало.

В пределах доступной исследованиям части Вселенной на каждый кубический сантиметр звездного вещества приходится приблизительно 10 000 000 000 000 000 000 000 000 000 кубических сантиметров почти пустого пространства. А поскольку средняя плотность звезды лишь немного выше плотности воды, предыдущее утверждение можно перефразировать, сказав, что средняя плотность Вселенной порядка одного грамма на каждые 5 000 000 000 000 000 000 000 000 000 кубических сантиметров.

Это примерно в 10 триллионов раз меньше той плотности, которая считается высоким вакуумом, достигаемым при помощи обычной лабораторной техники.

Источник

В космосе существуют молекулы, которые не могут существовать на Земле

В туманности Конская Голова обнаружено что-то странное. Эта туманность, названная так за свой жеребцовый силуэт, представляет собой вытянутое облако пыли и газа в 1500 световых годах от Земли, в котором постоянно рождаются новые звезды. Это один из самых узнаваемых небесных объектов, и ученые хорошо его изучили. В 2011 году астрономы из Института миллиметровой радиоастрономии (IRAM) и других мест снова к ней обратились.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

С 30-метровым телескопом IRAM в испанской Сьерре-Неваде, они изучили две части гривы лошади в радиоспектре. Нет, они собирали не изображения Конской Головы; их интересовал спектр — они считывали свет, разбивающийся на составляющие его длины волн, раскрывающие химический состав туманности. На экране эти данные похожи на всплески кардиомонитора; каждый пик показывает, что определенная молекула туманности испустила свет определенной длины волны.

Каждая молекула во Вселенной образует свою характерную сигнатуру на основе положения протонов, нейтронов и электронов в ней. Большинство сигнатур на данных Конской Головы легко объясняются обычными химическими веществами: окись углерода, формальдегид, нейтральный углерод. Но была также небольшая неизвестная линия на 89,957 гигагерц. Это была тайна — молекула, совершенно неизвестная науке.

Сразу после получения этих данных, Эвелин Руэфф из Парижской обсерватории и другие химики в ее команде начали выдвигать теории на тему молекулы, которая могла создать сигнал. Они пришли к выводу, что неизвестный тип должен быть линейной молекулой — соединением, в котором атомы расположены в прямой цепи. И только определенный тип линейной молекулы мог произвести спектральный отпечаток, увиденный химиками. Проработав список таких молекул, они наткнулись на C3H+, пропинилидиниум. Этот молекулярный ион раньше никогда не видели. По сути, он вообще не должен был существовать. А если бы существовал, то был бы крайне нестабильным. На Земле он практически моментально прореагировал бы с чем-то еще и образовал бы привычную форму. Но в космосе, где давление низкое, а молекулы редко сталкиваются с чем-то, с чем можно образовать связь, C3H+ вполне может существовать.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Поначалу некоторые скептики оспаривали этот вывод — если C3H+ никто не видел раньше, откуда они уверены, что это та молекула? Решающий довод появился в прошлом году, когда ученые из Университета Кельна в Германии решили создать ненадолго C3H+ в лаборатории. Они не только доказали, что молекула существует, они также позволили ученым измерить ее спектр — и он оказался тем же, который был в Конской Голове. «Было приятно обнаружить молекулу, о существовании которой мы раньше и не думали, — говорит Руэфф. — Когда вы можете прийти к такому выводу с помощью логики, вы настоящий детектив».

С одной непонятной молекулой определились, но осталось еще много таких. Туманность Конская Голова не исключение. Почти везде во Вселенной, куда смотрят астрономы — если, конечно, смотрят внимательно, — они видят неопределенные спектральные линии. Соединения, с которыми мы, люди, знакомы и которые создают огромное многообразие материалов на этой планете, всего лишь часть созданного этой природой. В конце концов, после десятилетий разработки теоретических моделей и методик компьютерной симуляции, а также лабораторных экспериментов по воспроизводству новых молекул, астрохимики начинают давать имена многим таким неопределенным линиям.

Пустой космос

Совсем недавно, в 60-х годах большинство ученых сомневалось, что в межзвездном пространстве вообще могут существовать молекулы — излучение там должно быть настолько суровым, что не позволит существовать чему-то, что больше атома или пары свободных радикалов. В 1968 году физик Чарльз Таунс из Калифорнийского университета в Беркли решил в любом случае поискать молекулы в космосе. «У меня было ощущение, что большинство астрономов Беркли считало мою идею немного диковатой», — вспоминал Таунс, нобелевский лауреат, в 2006 году. Но Таунс не сдавался и построил новый усилитель для шестиметровой антенны радиообсерватории Хэт-Крик в Калифорнии, которая выявила наличие аммиака в облаке Стрельца B2. «Как просто и как прекрасно! — писал он. — СМИ и ученые начали нас обсуждать».

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Космос — в буквальном смысле иная среда. Температуры могут быть намного, намного выше, чем на Земле (например, в атмосфере звезды), и намного, намного ниже (в относительно пустом межзвездном пространстве). Точно так же, давление (высокое или низкое) отличается от земного. Следовательно, молекулы, которые могут образовываться в космосе, на нашей планете могут не появиться вообще никогда — а если и появятся, то будут обладать высокой активностью. «Молекула может годами болтаться в межзвездном пространстве, прежде чем столкнется с другой молекулой, — говорит Тимоти Ли, астрофизики Исследовательского центра Эймса в NASA. — Может существовать область без радиации, поэтому если молекула даже не будет стабильной, она просуществует долгое время».

Эти космические молекулы после идентификации могли бы многому нас научить. Некоторые из них, возможно, окажутся полезными, если ученые смогут воссоздать их в лаборатории и научатся использовать их свойства. Другие молекулы могут помочь в объяснении происхождения органических компонентов, которые дали начало жизни на Земле. Все они также могут расширить границы наших знаний о том, что вообще возможно химически в нашей Вселенной.

Телескопы, которые все изменят

В прошлом десятилетии, когда появились мощные новые телескопы, способные улавливать слабые спектральные линии, поиск чужих молекул ускорился. «Сейчас по сути происходит расцвет астрохимии, — говорит Сюзанна Видикус Вивер, руководящая группой астрохимиков в Университете Эмори. Данные, которые сейчас доступны, существенно улучшились за десять лет. Высотная обсерватория NASA SOFIA (стратосферная обсерватория инфракрасной астрономии), установленная на борту Boeing 747SP, начала наблюдать инфракрасный и микроволновый свет в 2010 году, а космическая обсерватория Гершеля Европейского космического агентства вышла на орбиту в 2009 году и наблюдает те же длины волн.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

В поисках связи

Чтобы определить молекулы, соответствующие этим линиям, ученые могут пойти двумя путями. Как и в случае с C3H+, астрохимики могут начать с теории, используя гадание по спектру, чтобы попробовать угадать, какая молекула может скрываться под ним. Методика квантовой химии ab initio (ab initio на латыни означает «с начала») позволяет ученым начинать с чистой квантовой механики — теории, описывающей поведение субатомных частиц — чтобы рассчитать свойства молекул на основе движения протонов, нейтронов и электронов в атомах, их составляющих. На суперкомпьютере можно запустить повторяющееся моделирование молекулы, каждый раз слегка подстраивая ее структуру и расположение ее частиц, и смотреть на результаты, чтобы определить оптимальную геометрию составляющих. «С квантовой химией мы не ограничены в том, что можем синтезировать, — говорит Фортенберри. — Мы ограничены размером молекул. Нам нужно больше вычислительной силы, чтобы проводить расчеты».

Ученые также могут найти неопровержимые доказательства новых молекул, создав их в лаборатории и напрямую измерив их спектральные особенности. Общий метод начинается с газовой камеры, через которую пропускается электричество. Электрон в токе может столкнуться с молекулой газа и разрушить ее химические связи, породив нечто новое. Ученые поддерживают газ при очень низком давлении, поэтому любое новое химическое вещество имеет шансы прожить пару моментов, прежде чем столкнется с другой молекулой и прореагирует. Затем ученые просвечивают камеру светом разных длин волн, чтобы измерить спектр того, что находится внутри. «Вы можете оказаться в положении, когда произвели в лаборатории ту же молекулу, что существует в космосе, но не знаете точно какую, — говорит Майкл Маккарти, физик из Гарвард-Смитсоновского астрофизического центра. — Поэтому вам остается попытаться вывести элементный состав из комбинации разных лабораторных экспериментов с разными образцами».

В 2006 году Маккарти и его коллеги создали отрицательно заряженную молекулу C6H- и изменили ее спектр. Вскоре после этого они обнаружили такой же спектральный отпечаток в межзвездном молекулярном облаке Тельца в 430 световых годах отсюда. Предыдущие поиски отрицательно заряженных частиц в космосе ни к чему не привели, поэтому многие ученые сомневались в том, что они существуют в значимых объемах. «Это привело нас к множеству открытий, благодаря которым мы могли выявлять молекулы в лаборатории, а после и в космосе», — говорит Маккарти. Команда с тех пор нашла C6H- во многих, больше десятка, космических источниках.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Мир новых молекул

Многие из молекул, скрывающихся в звездах и туманностях, до крайности странные. Спрашивать, как они будут выглядеть или какими будут на ощупь, бесполезно, поскольку даже если вы их возьмете в руки, они мгновенно прореагируют. Если вам все же удастся установить с ними контакт, они почти наверняка окажутся токсичными и канцерогенными. Как ни странно, ученые имеют грубое представление о том, как будут пахнуть некоторые чужие молекулы: многие из них относятся к классу ароматических соединений, производных бензола, которые первоначально делили названия с сильными запахами.

Некоторые из новых соединений демонстрируют удивительные атомные структуры и делят заряд между атомами странным образом. Иногда они ставят под вопрос современные теории молекулярных связей. Недавний пример — молекула SiCSi, обнаруженная в 2015 году в умирающей звезде, состоящая из двух атомов кремния и одного атома углерода, которые соединены неожиданным образом. В результате получается такая вот странная молекула, которая обладает спектральной подписью, отличной от тех, что предсказывают обычные теоретические модели.

Космические молекулы могут помочь нам ответить на один из самых фундаментальных вопросов Вселенной: как началась жизнь? Ученые не знают, где первоначально возникли аминокислоты, строительные блоки жизни, на Земле или в космосе (и после были занесены на нашу планету кометами и метеоритами). Ответ на этот вопрос может также подсказать, много ли аминокислот во Вселенной и могли ли они теоретически посеять жизнь на мириадах других экзопланет. Астрохимики уже заметили признаки наличия аминокислот в космосе, а также соединения молекул, которые лежат в их основе.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Хороший пример — молекулы «фуллерены». Эти крупные собрания 60 атомов углерода впервые были созданы в лаборатории в 1985 году (и принесли Нобелевскую премию). Спустя почти десять лет астрономы видели спектральные линии в межзвездном газе, которые в точности указывали на положительно заряженные версии фуллеренов, и эта связь подтвердилась в июле, когда ученые сравнили их сигнатуры со спектром фуллеренов, которые были создали в космосоподобных условиях в лаборатории. Позднее фуллерены оказались не просто странной космической находкой, а вполне приличным практическим инструментом для нанотехнологий, полезным для укрепления материалов, улучшения солнечных батарей и даже в фармацевтике.

Пока что астрохимики все еще плескаются на мелководье огромного моря молекул где-то там, в космосе. Их находки напоминают нам, что наш собственный уголок в космосе относительно мал — может быть незначительным, не показательным, лишь примером возможностей. Возможно, те молекулы, которые мы имеем на Земле, являются на самом деле экзотическими, а C3H+, фуллерены и другие пока неизвестные молекулы — обычный вселенский материал.

Источник

Химия в космосе

Дмитрий Зигфридович Вибе,
доктор физико-математических наук, Институт астрономии РАН (ИНАСАН)
«Химия и жизнь» №2, 2014

Астрохимия межзвездного вещества

Космос в популярном сознании представляется царством холода и пустоты (помните песню: «Здесь холод космический, цвет неба иной»?). Однако примерно с середины XIX века исследователи стали понимать, что пространство между звездами по крайней мере не пусто. Наглядный признак существования межзвездного вещества — так называемые темные облака, бесформенные черные пятна, особенно хорошо различимые на светлой полосе Млечного Пути. В XVIII–XIX веках полагали, что это реальные «дырки» в распределении звезд, однако к 1920-м годам сложилось мнение: пятна выдают присутствие колоссальных облаков межзвездной пыли, которые мешают нам видеть свет расположенных за ними звезд (фото 1).

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Фото 1. Темная туманность B69, часть обширного облака межзвездной пыли в созвездии Змееносца. Фото с сайта www.eso.org

В середине XIX века началась новая эпоха в астрономии: благодаря работам Густава Кирхгофа и Роберта Бунзена появился спектральный анализ, позволивший определять химический состав и физические параметры газа в астрономических объектах. Астрономы быстро оценили новую возможность, и 1860-е годы стали временем бурного расцвета звездной спектроскопии. Одновременно, во многом благодаря усилиям замечательного наблюдателя Уильяма Хеггинса, накапливались и доказательства наличия газа не только в звездах, но и в пространстве между ними.

Хеггинс был пионером научных исследований незвездной материи. С 1863 года он публиковал результаты спектроскопического исследования некоторых туманностей, включая Большую Туманность Ориона, и продемонстрировал, что спектры туманностей в видимом диапазоне сильно отличаются от спектров звезд. Излучение типичной звезды — непрерывный спектр, на который накладываются линии поглощения, рождающиеся в звездной атмосфере. А спектры туманностей, полученные Хеггинсом, состояли из нескольких эмиссионных линий, практически без непрерывного спектра. Это был спектр горячего разреженного газа, параметры которого совершенно не похожи на параметры газа в звездах. Основной вывод Хеггинса: получено наблюдательное подтверждение предположения Гершеля о том, что в космосе помимо звезд есть диффузное вещество, распределенное по значительным объемам пространства.

Чтобы собственное свечение межзвездного газа можно было наблюдать в оптическом диапазоне, он должен быть не только горячим, но и довольно плотным, а этим условиям отвечает далеко не все межзвездное вещество. В 1904 году Йоханнес Хартманн заметил, что более холодный и/или разреженный межзвездный газ выдает свое присутствие, оставляя в звездных спектрах собственные линии поглощения, которые рождаются не в атмосфере звезды, а вне ее, на пути от звезды к наблюдателю.

Исследование линий излучения и поглощения межзвездного газа позволило к 1930-м годам довольно хорошо изучить его химический состав и установить, что он состоит из тех же элементов, которые встречаются и на Земле. Несколько линий в спектрах долго не поддавались отождествлению, и Хеггинс предположил, что это новый химический элемент — небулий (от лат. nebula — облако), но он оказался всего лишь дважды ионизованным кислородом.

К началу 1930-х годов полагали, что все линии в спектре межзвездного газа выявлены и приписаны определенным атомам и ионам. Однако в 1934 году Пол Мерилл сообщил о четырех неидентифицированных линиях в желтой и красной областях спектра. Ранее наблюдавшиеся межзвездные линии имели очень малую ширину, как и положено атомарным линиям, образующимся в газе низкой плотности, а эти были шире и размытее. Практически сразу было высказано предположение, что это линии поглощения не атомов или ионов, а молекул. Но каких? Предлагались и экзотические молекулы, например натрия (Na2), и привычные двухатомные соединения, еще в XIX веке обнаруженные в кометных хвостах тем же Хеггинсом, например молекула CN. Окончательно существование межзвездных молекул было установлено в конце 1930-х годов, когда несколько неидентифицированных линий в синей области спектра удалось однозначно связать с соединениями CH, CH + и CN.

Особенность химических реакций в межзвездной среде — доминирование двухчастичных процессов: стехиометрические коэффициенты всегда равны единице. Поначалу единственным путем к формированию молекул казались реакции «радиативной ассоциации»: чтобы два атома, столкнувшись, объединились в молекулу, необходимо отвести избыточную энергию. Если молекула, сформировавшись в возбужденном состоянии, успевает до распада излучить фотон и перейти в невозбужденное состояние, она сохраняет устойчивость. Расчеты, проведенные до 1950-х годов, показывали, что наблюдаемое содержание трех этих простых молекул вроде бы удается объяснить в предположении, что они формируются в реакциях радиативной ассоциации и разрушаются межзвездным полем излучения — совокупным полем излучения звезд Галактики.

Позже космической пыли стали приписывать и более активную химическую роль, нежели роль простого переносчика молекул. Например, если для эффективного протекания химических реакций в межзвездной среде не хватает третьего тела, которое отводило бы избыток энергии, почему не предположить, что это пылинка? Атомы и молекулы могли бы вступать в реакции друг с другом на ее поверхности, а потом испаряться, пополняя собой межзвездный газ.

Свойства межзвездной среды

Когда в межзвездной среде были обнаружены первые молекулы, ни ее физические свойства, ни даже химический состав не были хорошо известны. Само обнаружение молекул CH и CH + считалось в конце 1930-х годов важным доказательством наличия там углерода и водорода. Все изменилось в 1951 году, когда было обнаружено излучение межзвездного атомарного водорода, знаменитое излучение на длине волны около 21 см. Стало ясно, что именно водорода в межзвездной среде больше всего. По современным представлениям, межзвездное вещество — это водород, гелий и лишь 2% по массе более тяжелых элементов. Значительная часть этих тяжелых элементов, особенно металлов, находится в пылинках. Полная масса межзвездного вещества в диске нашей Галактики — несколько миллиардов масс Солнца, или 1–2% от полной массы диска. А масса пыли примерно в сто раз меньше массы газа.

Плотный холодный нейтральный газ имеет клочковатую облачную структуру, ту самую, что прослеживается по облакам межзвездной пыли. Логично предположить, что облака пыли и облака газа — это одни и те же облака, в которых пыль и газ перемешаны друг с другом. Однако наблюдения показали, что области пространства, в которых поглощающее действие пыли максимально, не совпадают с областями максимальной интенсивности излучения атомарного водорода. В 1955 году Барт Бок с соавторами предположили, что в наиболее плотных участках межзвездных облаков, тех самых, которые делаются непрозрачными в оптическом диапазоне из-за высокой концентрации пыли, водород находится не в атомарном, а в молекулярном состоянии.

Поскольку водород — основной компонент межзвездной среды, названия различных фаз отражают состояние именно водорода. Ионизованная среда — это среда, в которой ионизован водород, другие атомы могут сохранять нейтральность. Нейтральная среда — это среда, в которой водород нейтрален, хотя другие атомы могут быть ионизованы. Плотные компактные облака, предположительно состоящие в основном из молекулярного водорода, называются молекулярными облаками. Именно в них и начинается подлинная история межзвездной астрохимии.

Невидимые и видимые молекулы

Первые межзвездные молекулы были обнаружены благодаря своим линиям поглощения в оптическом диапазоне. Поначалу их набор был не слишком велик, и для их описания хватало простых моделей на основе реакций радиативной ассоциации и/или реакций на поверхностях пылинок. Однако еще в 1949 году И.С. Шкловский предсказал, что более удобен для наблюдения межзвездных молекул радиодиапазон, в нем можно наблюдать не только поглощение, но и излучение молекул. Чтобы увидеть линии поглощения, необходима фоновая звезда, излучение которой будут поглощать межзвездные молекулы. Но если вы смотрите на молекулярное облако, то фоновых звезд вы не увидите, потому что их излучение будет полностью поглощено пылью, входящей в состав того же самого облака! Если же молекулы излучают сами, вы увидите их везде, где они есть, а не только там, где их заботливо подсвечивают сзади.

Излучение молекул связано с наличием у них дополнительных степеней свободы. Молекула может вращаться, вибрировать, совершать более сложные движения, с каждым из которых связан набор энергетических уровней. Переходя с одного уровня на другой, молекула, так же, как и атом, поглощает и излучает фотоны. Энергетика этих движений невысока, поэтому они с легкостью возбуждаются даже при низких температурах в молекулярных облаках. Фотоны, соответствующие переходам между молекулярными энергетическими уровнями, попадают не в видимый диапазон, а в инфракрасный, субмиллиметровый, миллиметровый, сантиметровый. Поэтому исследования излучения молекул начались, когда у астрономов появились инструменты для наблюдений в длинноволновых диапазонах.

Правда, первая межзвездная молекула, обнаруженная по наблюдениям в радиодиапазоне, наблюдалась все-таки в поглощении: в 1963 году в радиоизлучении остатка сверхновой Кассиопея A. Это была линия поглощения гидроксила (OH) — длина волны 18 см, а вскорости гидроксил был обнаружен и в излучении. В 1968 году наблюдалась эмиссионная линия аммиака 1,25 см, через несколько месяцев нашли воду — линия 1,35 см. Очень важным открытием в исследованиях молекулярной межзвездной среды стало открытие в 1970 году излучения молекулы оксида углерода (CO) на длине волны 2,6 мм.

До этого времени молекулярные облака были в известной степени гипотетическими объектами. У самого распространенного химического соединения во Вселенной — молекулы водорода (H2) — нет переходов в длинноволновой области спектра. При низких температурах в молекулярной среде она просто не светится, то есть остается невидимой, несмотря на все свое высокое содержание. У молекулы H2 есть, правда, линии поглощения, но они попадают в ультрафиолетовый диапазон, в котором нельзя наблюдать с поверхности Земли; нужны телескопы, установленные либо на высотных ракетах, либо на космических аппаратах, что значительно усложняет наблюдения и еще значительнее удорожает их. Но даже при наличии заатмосферного инструмента линии поглощения молекулярного водорода можно наблюдать только при наличии фоновых звезд. Если учесть, что звезд или иных астрономических объектов, излучающих в ультрафиолетовом диапазоне, в принципе не так много и, кроме того, в этом диапазоне поглощение пыли достигает максимума, становится понятно, что возможности изучения молекулярного водорода по линиям поглощения весьма ограниченны.

какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе какие молекулы есть в космосе. Смотреть фото какие молекулы есть в космосе. Смотреть картинку какие молекулы есть в космосе. Картинка про какие молекулы есть в космосе. Фото какие молекулы есть в космосе

Молекула CO стала спасением — в отличие, например, от аммиака, она начинает светиться при невысоких плотностях. Две ее линии, соответствующие переходам из основного вращательного состояния в первое возбужденное и из первого во второе возбужденное, попадают в миллиметровый диапазон (2,6 мм и 1,3 мм), все еще доступный для наблюдений с поверхности Земли. Более коротковолновое излучение поглощается земной атмосферой, более длинноволновое излучение дает изображения меньшей четкости (при заданном диаметре объектива угловое разрешение телескопа тем хуже, чем больше наблюдаемая длина волны). И молекул CO много, причем настолько много, что в этом виде находится, по-видимому, большая часть всего углерода в молекулярных облаках. Это означает, что содержание CO определяется не столько особенностями химической эволюции среды (в отличие от молекул CH и CH + ), сколько попросту количеством доступных атомов C. И поэтому содержание CO в молекулярном газе можно считать, по крайней мере в первом приближении, постоянным.

Поэтому именно молекулу CO используют как индикатор наличия молекулярного газа. И если вам где-то встречается, например, карта распределения молекулярного газа в Галактике, это будет карта распределения именно оксида углерода, а не молекулярного водорода. Допустимость столь широкого применения CO в последнее время все чаще ставится под сомнение, но заменить его особенно нечем. Так что приходится компенсировать возможную неопределенность в интерпретации наблюдений CO осмотрительностью в ее проведении.

Новые подходы к астрохимии

В начале 1970-х годов количество известных межзвездных молекул стало измеряться десятками. И чем больше их открывалось, тем яснее становилось, что прежние химические модели, которые и содержание первой тройки CH, CH + и CN объясняли не очень уверенно, с возросшим количеством молекул вовсе не работают. Новый взгляд (он принят и сейчас) на химическую эволюцию молекулярных облаков был предложен в 1973 году Вильямом Ватсоном и независимо Эриком Хербстом и Вильямом Клемперером.

Итак, мы имеем дело с очень холодной средой и очень богатым молекулярным составом: сегодня известно около полутора сотен молекул. Реакции радиативной ассоциации слишком медленны, чтобы обеспечить наблюдаемое содержание даже двухатомных молекул, не говоря уже о более сложных соединениях. Реакции на поверхностях пылинок более эффективны, но при 10 К молекула, синтезированная на поверхности пылинки, в большинстве случаев останется примороженной к ней.

Ватсон, Хербст и Клемперер предположили, что в формировании молекулярного состава холодных межзвездных облаков определяющую роль играют не реакции радиативной ассоциации, а ион-молекулярные реакции, то есть реакции между нейтральными и ионизованными компонентами. Их скорости не зависят от температуры, а в некоторых случаях при низких температурах даже возрастают.

Дело за малым: вещество облака нужно немного ионизовать. Излучение (свет близких к облаку звезд или совокупное излучение всех звезд Галактики) не столько ионизует, сколько диссоциирует. Кроме того, из-за пыли излучение не проникает внутрь молекулярных облаков, засвечивая лишь их периферию.

Но в Галактике есть другой ионизующий фактор — космические лучи: атомные ядра, разогнанные каким-то процессом до очень высокой скорости. Природа этого процесса до сих пор окончательно не раскрыта, хотя ускорение космических лучей (тех, что интересны с точки зрения астрохимии) происходит, скорее всего, в ударных волнах, сопровождающих вспышки сверхновых звезд. Космические лучи (как и все вещество Галактики) состоят главным образом из полностью ионизованных водорода и гелия, то есть из протонов и альфа-частиц.

Однако есть и более важный пример: в газовой фазе не образуется молекулярный водород! Схема с ион-молекулярными реакциями работает только при условии, что в среде уже есть молекулы H2. Но откуда они берутся? Существует три способа сформировать молекулярный водород в газовой фазе, но все они чрезвычайно медленны и в галактических молекулярных облаках работать не могут. Решение проблемы найдено в возвращении к одному из прежних механизмов, а именно к реакциям на поверхностях космических пылинок.

Как и прежде, пылинка в этом механизме играет роль третьего тела, предоставляя на своей поверхности условия для объединения атомов, которые не могут объединиться в газовой фазе. В холодной среде свободные атомы водорода примерзают к пылинкам, но из-за тепловых колебаний не сидят на одном месте, а диффундируют по их поверхности. Два атома водорода, встретившись в процессе этих блужданий, могут объединиться в молекулу H2, а энергия, выделяющаяся при реакции, отрывает молекулу от пылинки и переносит ее в газ.

Естественно, если атом водорода встретит на поверхности не своего собрата, а какой-то другой атом или молекулу, итог реакции также будет иным. Но есть ли на пыли другие компоненты? Есть, и на это указывают современные наблюдения наиболее плотных частей молекулярных облаков, так называемых ядер, которые (не исключено) в будущем превратятся в звезды, окруженные планетными системами. В ядрах происходит химическая дифференциация: из наиболее плотной части ядра исходит в основном излучение соединений азота (аммиака, иона N2H + ), а соединения углерода (CO, CS, C2S) светятся в окружающей ядро оболочке, поэтому на картах радиоизлучения такие ядра выглядят как компактные пятна эмиссии соединений азота, окруженные колечками эмиссии оксида углерода.

В ледяных мантиях пылинок тоже идут химические реакции, главным образом связанные с добавлением атомов водорода к примерзшим молекулам. Например, последовательное присоединение атомов H к молекулам CO в ледяных оболочках пылинок приводит к синтезу метанола. Чуть более сложные реакции, в которых помимо водорода участвуют и другие компоненты, ведут к появлению и других многоатомных молекул. Когда в недрах ядра загорается молодая звезда, ее излучение испаряет мантии пылевых частиц, и продукты химического синтеза появляются в газовой фазе, где их также удается наблюдать.

Успехи и проблемы

Все современные данные о химических реакциях в межзвездной и околозвездной среде собраны в специализированных базах данных, из которых наиболее популярны две: UDFA (UMIST Database for Astrochemistry) и KIDA (Kinetic Database for Astrochemistry).

Эти базы данных, по сути, представляют собой списки реакций с двумя реагентами, несколькими продуктами и численными параметрами (от одного до трех), позволяющими рассчитать скорость реакции в зависимости от температуры, поля излучения и потока космических лучей. Наборы реакций на поверхностях пылинок менее стандартизованы, однако и здесь есть два-три варианта, которые применяются в большинстве астрохимических исследований. Реакции, включенные в эти наборы, позволяют количественно объяснить результаты наблюдений молекулярного состава объектов разного возраста и при разных физических условиях.

Сегодня астрохимия развивается в четырех направлениях.

Во-вторых, одним из основных астрохимических направлений остаются реакции на поверхностях пылинок. Здесь большая работа проводится, например, по изучению особенностей реакций в зависимости от свойств поверхности пылинки и от ее температуры. До сих пор неясны детали испарения с пылинки синтезировавшихся на ней органических молекул.

В-третьих, химические модели постепенно проникают все глубже в исследования динамики межзвездной среды, в том числе в исследования процессов рождения звезд и планет. Это проникновение очень важно, поскольку оно позволяет напрямую соотносить численное описание движений вещества в межзвездной среде с наблюдениями молекулярных спектральных линий. Кроме того, эта задача имеет и астробиологическое приложение, связанное с возможностью попадания межзвездной органики на формирующиеся планеты.

В-четвертых, все больше становится наблюдательных данных о содержании различных молекул в других галактиках, в том числе и в галактиках на больших красных смещениях. Это означает, что мы уже не можем замыкаться в рамках Млечного Пути и должны разбираться с тем, как происходит химическая эволюция при ином элементном составе среды, при других характеристиках поля излучения, при других свойствах пылинок или какие химические реакции происходили в догалактической среде, когда весь набор элементов ограничивался водородом, гелием и литием.

При этом и рядом с нами остается немало загадок. Например, линии, найденные в 1934 году Мериллом, так до сих пор и не отождествлены. Да и происхождение первой найденной межзвездной молекулы — CH + — остается пока неясным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *