какие мышечные волокна вносят наибольший вклад в проявление максимальной силы

Быстрые мышечные волокна

Содержание

Быстрые мышечные волокна [ править | править код ]

какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть картинку какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Картинка про какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы

Данный тип волокон важен в видах спорта, где развивается максимальная сила, скорость и мощность мышц:

Скелетные мышцы состоят из двух типов миоцитов (мышечных симпластов):

Соотношение количества клеток скелетной мускулатуры определяется главным образом генетикой, и от этого во многом зависит атлетический потенциал каждого человека.

Каждая клетка мышцы состоит из множества миофибрилл — это тонкие нити белка (актина и миозина), которые способны сокращаться. За счет массового сокращения миофибрилл происходит сокращение всей мышцы.

Тип волоконСкорость сокращенияСпособность к (росту) гипертрофииСкорость утомленияИспользуется дляСилаКоличество митохондрийКровоснабжениеОкислительная способностьГликолитическая способностьИсточник энергии
Тип I
(медленные)
МедленнаяНебольшаяНизкаяАэробной активности (бег, велоспорт)НизкаяМногоБогатоеВысокаяНизкаяЖиры
Тип IIа
(переходные)
ВысокаяНебольшаяУмереннаяПродолжительной анаэробной нагрузкиВысокаяМногоУмеренноеВысокаяВысокаяКреатинфосфат, гликоген
Тип IIб
(быстрые)
Очень высокаяБольшаяВысокаяКоротких анаэробных нагрузок (силовой тренинг)Очень высокаяМалоСкудноеНизкаяВысокаяКреатинфосфат, гликоген

Быстрые, или белые, мышечные волокна используют анаэробный (бескислородный) метаболизм при производстве энергии для сокращения. Они выполняют высокоскоростные движения, которые характеризуются большой или взрывной силой, однако утомляются они значительно раньше, чем медленные. И те и другие типы клеток производят примерно одинаковое количество работы за одно сокращение, но белые клетки делают это значительно быстрее.

какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть картинку какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Картинка про какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы

Тип IIа: быстрые, устойчивые к утомлению, окислительно-гликолитические

Клетки подтипа IIа также известны как промежуточные или переходные. Они могут использовать как окислительный (аэробный, т.е. сопровождающийся потреблением кислорода), так и гликолитический (анаэробный, т.е. бескислородный) метаболизм для продукции энергии сокращения в равной степени. Эти волокна представляют собой нечто среднее между быстрыми и медленными.

Частота нервных импульсов составляет 25-50 имп/с.

У разных людей соотношение числа медленных и быстрых волокон в одной и той же мышце определено генетически и может отличаться весьма значительно. Так, например, в четырехглавой мышце бедра человека процент медленных волокон может варьировать от 40 до 98%. Чем больше в мышце процент медленных волокон, тем более она приспособлена к работе на выносливость. И наоборот, лица с высоким процентом быстрых сильных волокон в большей мере способны к работе, требующей большой силы и скорости сокращения мышц.

Тип IIб: быстрые, легко утомляемые, гликолитические

Это истинные быстрые мышечные волокна. Они используют только анаэробный метаболизм, обладают максимальной силой и скоростью сокращений. Именно эти клетки играют первостепенную роль при наборе массы в бодибилдинге, поэтому практически все тренировочные программы рассчитаны на развитие данного типа волокон.

Из всех типов волокон мотонейроны этого типа наиболее крупные, имеют толстый аксон, разветвляющийся на большое число концевых веточек и иннервирующий соответственно большую группу мышечных волокон. По сравнению с другими эти мотонейроны обладают наиболее высоким порогом возбуждения, а их аксоны — большей скоростью проведения нервных импульсов.

Частота импульсации мотонейронов возрастает с ростом силы сокращения, достигая при максимальных напряжениях мышцы 50-100 имп/с. Эти мотонейроны не способны в течение длительного времени поддерживать устойчивую частоту разрядов, то есть быстро утомляются.

Мышечные волокна быстрых волокон, в отличие от медленных, содержат большее число сократительных элементов — миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности миозиновой АТФ-азы у них выше скорость сокращения. Волокна этого типа содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, окружены меньшим, по срав­нению с медленными ДЕ, количеством капилляров. Эти волокна быстро утомляются. Более всего они приспособлены для выполнения кратковременной, но мощной работы.

Белые волокна IIб могут гипертрофироваться в гораздо большей степени, чем медленные.

В каких видах спорта важны быстрые волокна? [ править | править код ]

Именно этот тип клеток вносит основной вклад в достижение спортивных целей в тех видах спорта, где требуется взрывная сила:

Тренировки на быстрые мышечные волокна [ править | править код ]

Генетика и бодибилдинг [ править | править код ]

Учёные установили, что соотношение медленных и быстрых мышечных волокон генетически детерминировано. У среднестатистического человека их примерно поровну. В бодибилдинге лучших результатов добиваются те атлеты, мышцы которых содержат в большей степени белые волокна.

Белые мышечные волокна также важны для спринтеров. У выдающихся спортсменов-спринтеров быстрые мышечные волокна всегда преобладают: их около 80%.

Есть данные, что особенность тренировок может влиять на это соотношение. Силовой тренинг в бодибилдинге может увеличить количество клеток II(а/б) типа, а при аэробных тренировках увеличивается содержание медленных клеток I типа. Однако эти изменения довольно ограничены. В исследованиях переход одного типа в другой, как правило, не превышает 3%. По этой причине одни люди набирают мышечную массу с большим трудом, а другие, наоборот, очень быстро.

Источник

Быстрые мышечные волокна

Содержание

Быстрые мышечные волокна [ править | править код ]

какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть картинку какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Картинка про какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы

Данный тип волокон важен в видах спорта, где развивается максимальная сила, скорость и мощность мышц:

Скелетные мышцы состоят из двух типов миоцитов (мышечных симпластов):

Соотношение количества клеток скелетной мускулатуры определяется главным образом генетикой, и от этого во многом зависит атлетический потенциал каждого человека.

Каждая клетка мышцы состоит из множества миофибрилл — это тонкие нити белка (актина и миозина), которые способны сокращаться. За счет массового сокращения миофибрилл происходит сокращение всей мышцы.

Тип волоконСкорость сокращенияСпособность к (росту) гипертрофииСкорость утомленияИспользуется дляСилаКоличество митохондрийКровоснабжениеОкислительная способностьГликолитическая способностьИсточник энергии
Тип I
(медленные)
МедленнаяНебольшаяНизкаяАэробной активности (бег, велоспорт)НизкаяМногоБогатоеВысокаяНизкаяЖиры
Тип IIа
(переходные)
ВысокаяНебольшаяУмереннаяПродолжительной анаэробной нагрузкиВысокаяМногоУмеренноеВысокаяВысокаяКреатинфосфат, гликоген
Тип IIб
(быстрые)
Очень высокаяБольшаяВысокаяКоротких анаэробных нагрузок (силовой тренинг)Очень высокаяМалоСкудноеНизкаяВысокаяКреатинфосфат, гликоген

Быстрые, или белые, мышечные волокна используют анаэробный (бескислородный) метаболизм при производстве энергии для сокращения. Они выполняют высокоскоростные движения, которые характеризуются большой или взрывной силой, однако утомляются они значительно раньше, чем медленные. И те и другие типы клеток производят примерно одинаковое количество работы за одно сокращение, но белые клетки делают это значительно быстрее.

какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть картинку какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Картинка про какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы

Тип IIа: быстрые, устойчивые к утомлению, окислительно-гликолитические

Клетки подтипа IIа также известны как промежуточные или переходные. Они могут использовать как окислительный (аэробный, т.е. сопровождающийся потреблением кислорода), так и гликолитический (анаэробный, т.е. бескислородный) метаболизм для продукции энергии сокращения в равной степени. Эти волокна представляют собой нечто среднее между быстрыми и медленными.

Частота нервных импульсов составляет 25-50 имп/с.

У разных людей соотношение числа медленных и быстрых волокон в одной и той же мышце определено генетически и может отличаться весьма значительно. Так, например, в четырехглавой мышце бедра человека процент медленных волокон может варьировать от 40 до 98%. Чем больше в мышце процент медленных волокон, тем более она приспособлена к работе на выносливость. И наоборот, лица с высоким процентом быстрых сильных волокон в большей мере способны к работе, требующей большой силы и скорости сокращения мышц.

Тип IIб: быстрые, легко утомляемые, гликолитические

Это истинные быстрые мышечные волокна. Они используют только анаэробный метаболизм, обладают максимальной силой и скоростью сокращений. Именно эти клетки играют первостепенную роль при наборе массы в бодибилдинге, поэтому практически все тренировочные программы рассчитаны на развитие данного типа волокон.

Из всех типов волокон мотонейроны этого типа наиболее крупные, имеют толстый аксон, разветвляющийся на большое число концевых веточек и иннервирующий соответственно большую группу мышечных волокон. По сравнению с другими эти мотонейроны обладают наиболее высоким порогом возбуждения, а их аксоны — большей скоростью проведения нервных импульсов.

Частота импульсации мотонейронов возрастает с ростом силы сокращения, достигая при максимальных напряжениях мышцы 50-100 имп/с. Эти мотонейроны не способны в течение длительного времени поддерживать устойчивую частоту разрядов, то есть быстро утомляются.

Мышечные волокна быстрых волокон, в отличие от медленных, содержат большее число сократительных элементов — миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности миозиновой АТФ-азы у них выше скорость сокращения. Волокна этого типа содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, окружены меньшим, по срав­нению с медленными ДЕ, количеством капилляров. Эти волокна быстро утомляются. Более всего они приспособлены для выполнения кратковременной, но мощной работы.

Белые волокна IIб могут гипертрофироваться в гораздо большей степени, чем медленные.

В каких видах спорта важны быстрые волокна? [ править | править код ]

Именно этот тип клеток вносит основной вклад в достижение спортивных целей в тех видах спорта, где требуется взрывная сила:

Тренировки на быстрые мышечные волокна [ править | править код ]

Генетика и бодибилдинг [ править | править код ]

Учёные установили, что соотношение медленных и быстрых мышечных волокон генетически детерминировано. У среднестатистического человека их примерно поровну. В бодибилдинге лучших результатов добиваются те атлеты, мышцы которых содержат в большей степени белые волокна.

Белые мышечные волокна также важны для спринтеров. У выдающихся спортсменов-спринтеров быстрые мышечные волокна всегда преобладают: их около 80%.

Есть данные, что особенность тренировок может влиять на это соотношение. Силовой тренинг в бодибилдинге может увеличить количество клеток II(а/б) типа, а при аэробных тренировках увеличивается содержание медленных клеток I типа. Однако эти изменения довольно ограничены. В исследованиях переход одного типа в другой, как правило, не превышает 3%. По этой причине одни люди набирают мышечную массу с большим трудом, а другие, наоборот, очень быстро.

Источник

Типы мышечных волокон

Вы знаете, что мышечные волокна делятся на два основных типа(хоть и с вариациями)- быстрые и медленные. Быстрые или гликолитические мышечные волокна (ГМВ)- они силовые, их вклад в общую предельную силу мышц примерно равен 75%. Но они быстроутомляемы, анаэробны, то есть их работа проходит в безкислородном режиме. Медленные, также называемые красные или окислительные мышечные волокна (ОМВ), хоть и более медленные и вносят всего 25% от максимальной силы, но благодаря большому количеству митохондрий и лучшему кровоснабжению, могут сокращаться довольно долго, пока наступит утомление.

Медленные же волокна- это стаерский бег, от 1 км и выше, 200 отжиманий от пола, длительное плавание, и т.д. Короче говоря небыстрые, неинтенсивные, но длительные действия. Мощность действий небольшая, и потому подводимого к мышцам кислорода достаточно. И отработанный углекислый газ успевает отводится от мышц, и выдыхаться через легкие. У среднего человека соотношение медленных и быстрых- 50/50. Но силовые, как более мощные, вносят 75% максимальной силы мышц. Природное соотношение этих волокон в значительной степени определяет «талант» человека в спорте. Если медленных волокон больше- это потенциальный бегун на дальние дистанции, пловец с хорошей выносливостью, и т.д. Если быстрых больше, то это- спринтер, тяжелоатлет, прыгун, толкатель, метатель. Взрывной и мощный спортсмен. Об этом известно большинству, а вот более глубокими познаниями обладают, пожалуй, только специально изучающие этот вопрос люди.

Дело в том, что имеется еще некий Промежуточный тип волокон, который может видоизменяться, либо приближаясь к медленным, либо к быстрым волокнам. То есть, здесь можно кое-что изменить. Работая чисто на силу, с небольшим уклоном именно в гипертрофию миофибрилл(сократительных единиц), можно увеличить объем именно быстрых волокон, тем самым увеличив их вклад в общую силу мышц. Эти волокна, будучи более скоростными, смещают тип спортсмена к взрывному. Речь не о скоростно-силовой тренировке, а об увеличении толщины быстрых мышечных волокон.

Одной из особенностей «бьющих» бойцов является высокий процент «быстрых», силовых волокон. Такие бойцы, нередко, быстро устают, и во второй половине боя становятся гораздо более медленными и вялыми. Все оттого, что «быстрые» волокна являются быстроутомляемыми. Типичный пример- Дмитрий Кудряшов, панчер, у которого проблемы с выносливостью. Энтони Джошуа тоже недалеко от него ушел. Но мы сейчас не об этом.

Дело в том, что даже при максимальном напряжении, у человека не активируются все мышечные волокна. У нетренированного человека этот показатель равен примерно 50-60%, у атлета чисто силового плана- может достигать 85-90%. То есть, остается некая величина, про запас. Это отличие от 100% называется силовым дефицитом. Все волокна можно активировать только внешней электростимуляцией. Сравнивая величину силы мышц, показанную при стимуляции током, и силу, которую человек может проявить волевым усилием, и получают эту цифру, силовой дефицит.

И вот, теперь мы подходим к очень важному нюансу. То, какую силу, проявляет человек в любом движении, определяется силой и частотой импульсации током, который вырабатывает нервная система. Если требуется небольшое усилие, частота нервных импульсов, как и сила этого импульса, невысоки. При субмаксимальных напряжениях, сначала доходит до максимума сила импульса, а дальнейшее увеличение усилия происходит благодаря повышению частоты нервных импульсов.

И получается, что до определенной величины(скажем, до 60% от максимума) сила растет за счет увеличения силы импульса, а дальнейшее повышение силы(выше 60% от макс) происходит за счет повышения частоты импульсов. Но соль в том, что если усилие делается свободно, мышце сложно включиться выше этих условных 60%, пока мышца не упрется в более тяжелый вес, который заставит нервную систему повысить уже частоту импульсации. Другими словами, пока организм не поймет что требуется усилие более условных 60%, он не напряжется сильнее.

Если посмотреть график нарастания силы(взрывной режим),то можно увидеть, что вначале сила растет очень быстро, а далее этот всплеск уменьшается, кривая становится более пологой. Все потому, что первичное усилие более зависит от силы импульса, которая быстро нарастает, а частота нарастает уже позже, с задержкой. Короче говоря, у нокаутера эта величина силы, которую он может проявить сходу, без долгой раскачки, составляет, скажем, не 60, а 75-80%. Он в короткое время способен быстро напрячься уже до такого уровня, в отличие от человека, без такой особенности.

В важный момент, когда нужно проявить большую силу(при ударе, например), он проявит большую силу, при прочих равных условиях. Например, два разных боксера выжимают лежа, на максимум, 100 кг. Тот, у кого есть эта особенность (более высокий барьер срабатывания), проявит большую силу мышц при соударении, обеспечив и большую скорость, и (особенно) большую жесткость. Сила удара, таким образом, будет выше.

Источник

Строение мышц и типы мышечных волокон

какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Смотреть картинку какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Картинка про какие мышечные волокна вносят наибольший вклад в проявление максимальной силы. Фото какие мышечные волокна вносят наибольший вклад в проявление максимальной силыВ статье об анаэробном и аэробном энергообразовании мы рассмотрели разные способы извлечения энергии. Логично предположить, что и у мышечных волокон существует некая предрасположенность к получению энергии тем или иным способом. Прежде чем мы рассмотрим типы мышечных волокон, кратко восстановим в памяти необходимые для понимания вопроса знания анатомии.

Мышечная ткань бывает трех видов:

Мужчины обладают большей мышечной массой, чем женщины: мышечная масса женщин составляет примерно 30-35%, а у мужчин 42-47% от общей массы тела. У особо выдающихся спортсменов этот процент может доходить до 60 и более. Зато у женщин значительно больше процент жировой ткани и женский организм обладает бОльшей способностью использовать жирные кислоты в качестве источника энергии.

Распределение мышечной массы по телу у мужчин и женщин также не одинаково. Подавляющая часть мышечной массы у большинства женщин расположена в нижней части тела, а в верхней части тела мышечные объемы не велики, мышцы мелкие и часто совсем нетренированные.

Строение мышцы

Каждая скелетная мышца состоит из множества тонких мышечных волокон, толщиной 0,05-0,11 мм и длиной до 15 см. Мышечные волокна собраны в пучки по 10-50 штук, окруженные соединительной тканью. Сама мышца тоже окружена соединительной тканью (фасцией). Мышечные волокна составляют 85-90% массы мышцы, остальную часть составляют кровеносные сосуды и нервы, проходящие между ними. Мышечные волокна плавно переходят на концах в сухожилия, а сухожилия крепятся к костям.

В саркоплазме (цитоплазме) мышечных волокон содержится множество митохондрий, которые выполняют роль электростанций, где проходят процессы обмена веществ и скапливаются вещества богатые энергией, а также другие вещества, необходимые для обеспечения энергетические потребностей. Каждая мышечная клетка имеет тысячи митохондрий, которые составляют 30-35% ее массы. Митохондрии выстраиваются цепочкой вдоль миофибрилл, тонких мышечных нитей, благодаря которым и происходит сокращение-расслабление мышц. Одна клетка содержит обычно несколько десятков миофибрилл. Длина миофибриллы может достигать нескольких сантиметров, а масса всех миофибрилл мышечной клетки составляет около 50% ее общей массы. Таким образом, толщина мышечного волокна главным образом будет зависеть от количества находящихся в нем миофибрилл и от поперечного сечения миофибрилл. Миофибриллы в свою очередь состоят из множества крохотных саркомеров.

Целенаправленные занятия физкультурой и спортом приводят к:

Сила и мышечная масса увеличиваются не пропорционально: если мышечная масса увеличивается, например, вдвое, то мышечная сила при этом увеличится втрое.

Биопсии мышечной ткани показали более низкий процент миофибрилл в мышечных волокнах женщин, чем у мужчин (даже у спортсменок высокой квалификации). Вкупе со значительно более низким уровнем тестостерона (тестостерон заставляет «выжимать» из мужского организма максимум), традиционная у мужчин тренировка на увеличение мышечной массы с большими весами в малом числе повторений оказывается малоэффективной для большинства женщин. Поэтому женщины и не могут нарастить огромные мышцы, как бы не старались. Количество мышечных волокон в конкретной мышце задано генетически и в процессе тренировок не изменяется. Поэтому человек с бОльшим количеством мышечных волокон в конкретной мышце имеет бОльший потенциал для развития этой мышцы, нежели другой человек, имеющий меньшее количество мышечных клеток в этой мышце.

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна – это медленные волокна небольшого диаметра, которые используют для получения энергии окисление углеводов и жирных кислот (аэробная система энергообразования). Другие названия этих волокон: медленные или медленносокращающиеся мышечные волокна, волокна 1 типа, а также SТ-волокна (slow twitch fibres).

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

Быстрые волокна вносят основной вклад в достижение спортивных успехов в тех видах спорта, где требуется взрывная сила и развитие максимальной скорости в течении короткого времени: плавание на спринтерские дистанции, бег на короткие дистанции, бодибилдинг и пауэрлифтинг, тяжелая атлетика, бокс и боевые искусства.

Последовательность включения в работу волокон разных типов

Разберем последовательность включения в работу разных типов мышечных волокон на примере бега. Первыми при начале движения в работу всегда включаются медленные красные волокна. Если требуется легкое усилие, не превышающее 25% от максимума, как, например, при беге трусцой, то работа будет осуществляться за счет их сокращений. Такая работа может осуществляться долго, потому что красные волокна обладают большой выносливостью. По мере увеличения интенсивности нагрузки свыше 20-25% (например, мы решили бежать быстрее), в работу будут включаться быстрые окислительно-гликолитические волокна (FTO-волокна). Когда интенсивность нагрузки возрастет еще больше, к работе начнут подключаться и быстрые гликолитические волокна (FTG-волокна). При нагрузке более 40% от максимума (например во время финального рывка) работа будет выполняться именно за счет быстрых FTG-волокон. Белые гликолитические волокна – самые сильные и быстросокращающиеся, но из-за накопления молочной кислоты, появляющейся в процессе гликолиза, они быстро утомляются. Поэтому мышцы не могут долго работать в режиме нагрузки высокой интенсивности.

А что если мы не плавно набираем скорость, а, например, плывем спринт 50 метров или поднимаем штангу? В таком случае, при резких, взрывных движениях промежуток между началом сокращения медленных и быстрых мышечных волокон минимальный и составляет всего несколько миллисекунд. Получается, что оба типа мышечных волокон начинают сокращаться практически одновременно.

Что мы получаем: при длительной нагрузке в умеренном темпе, работают в основном красные волокна. Благодаря их аэробному способу получения энергии, при длительной аэробной нагрузке (более получаса), сжигаются не только углеводы, но и жиры. Поэтому можно похудеть на беговой дорожке или плавая на стайерские дистанции и сложно это сделать на занятиях с высокоинтенсивной нагрузкой, например на тренажерах. Зато на тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при аэробных тренировках на выносливость. Это происходит в основном за счет утолщения быстрых волокон (исследования показали, что красные мышечные волокна обладают слабой способностью к гипертрофии.

Соотношение медленных и быстрых волокон в организме

В процессе исследований было установлено, что соотношение медленных и быстрых мышечных волокон в организме обусловлено генетически. У среднестатистического человека примерно 40-50% медленных и 50-60% быстрых мышечных волокон. Но каждый человек индивидуален, поэтому именно в Вашем организме могут преобладать, как красные, так и белые волокна.

В разных мышцах тела пропорциональное соотношение белых и красных мышечных волокон не одинаково. Дело в том, что разные мышцы и мышечные группы выполняют в организме различные функции, поэтому они могут достаточно сильно отличатся по составу мышечных волокон. Например, в бицепсе и трицепсе около 70% белых волокон, в бедре 50%, а в икроножной мышце всего 16%. Таким образом, чем более динамичная работа входит в функциональную задачу мышцы, тем больше в ней будет содержаться быстрых волокон.

Может ли меняться пропорциональное содержание быстрых и медленных волокон в организме в результате тренировок? Здесь данные противоречивы. Одни утверждают, что это соотношение неизменно и никакие тренировки не могут изменить генетически заданной пропорции. Другие данные свидетельствуют о том, что при упорных тренировках часть волокон может поменять свой тип: так силовой тренинг в бодибилдинге может увеличить количество быстрых мышечных клеток, а при аэробных тренировках увеличивается содержание медленных клеток. Однако эти изменения довольно ограничены и переход одного типа в другой не превышает 10%.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *