какие на сегодняшний день энергетические установки наиболее востребованы
Альтернативная энергетика: за чем будущее?
Сегодня весь мир обеспечен электроэнергией благодаря сжиганию угля и газа (ископаемое топливо), эксплуатации водного потока и управлению ядерной реакцией. Эти подходы достаточно эффективны, но в будущем нам придётся от них отказаться, обратившись к такому направлению, как альтернативная энергетика.
Во многом эта необходимость обусловлена тем, что ископаемое топливо ограничено. Кроме того традиционные способы добычи электроэнергии являются одним из факторов загрязнения окружающей среды. Поэтому мир нуждается в «здоровой» альтернативе.
Предлагаем свою версию ТОПа нетрадиционных способов получения энергии, которые в будущем могут стать заменой привычным электростанциям.
7 место. Распределённая энергетика
Перед тем как рассматривать альтернативные источники энергетики, разберём одну интересную концепцию, которая в перспективе способна изменить структуру энергетической системы.
Сегодня электроэнергия производится на больших станциях, передаётся на распределительные сети и поступает в наши дома. Распределённый подход подразумевает постепенный отказ от централизованного производства электричества. Добиться этого можно посредством строительства небольших источников энергии в непосредственной близости к потребителю или группе потребителей.
В качестве источников энергии могут использоваться:
Такие миниэлектростанции для дома будут подключены к общей сети. Туда будут поступать излишки энергии, а при необходимости электросеть сможет компенсировать недостаток питания, например, когда солнечные панели работают хуже из-за облачной погоды.
Однако реализация этой концепции сегодня и в ближайшем будущем маловероятна, если говорить о глобальных масштабах. Связанно это в первую очередь с большой дороговизной перехода от централизованной энергетики к распределённой.
6 место. Грозовая энергетика
Зачем генерировать электричество, когда его можно просто «ловить» из воздуха? В среднем один разряд молнии – это 5 млрд Дж энергии, что эквивалентно сжиганию 145 л бензина. Теоретически грозовые электростанции позволят снизить стоимость электроэнергии в разы.
Выглядеть всё будет так: станции размещаются в регионах с повышенной грозовой активностью, «собирают» разряды и накапливают энергию. После этого энергия подаётся в сеть. Ловить молнии можно с помощью гигантских громоотводов, но остается главная проблема – за доли секунды накопить как можно больше энергии молнии. На современном этапе не обойтись без суперконденсаторов и преобразователей напряжения, но в будущем возможно появление более деликатного подхода.
Если говорить об электричестве «из воздуха», нельзя ни вспомнить о приверженцах образования свободной энергии. Например, Никола Тесла в своё время якобы продемонстрировал устройство для получения электрического тока из эфира для работы автомобиля.
5 место. Сжигание возобновляемого топлива
Вместо угля на электростанциях можно сжигать так называемое «биотопливо». Таковым является переработанное растительное и животное сырьё, продукты жизнедеятельности организмов и некоторые промышленные отходы органического происхождения. В качестве примера можно привести обычные дрова, щепу и биодизель, который встречается на заправках.
В энергетической сфере чаще всего применяется древесная щепа. Она собирается при лесозаготовке или на деревообрабатывающем производстве. После измельчения она прессуется в топливные гранулы и в таком виде отправляется на ТЭС.
К 2019 году в Бельгии должно завершиться строительство крупнейшей электростанции, которая будет работать на биотопливе. Согласно прогнозам, она должна будет производить 215 МВт электроэнергии. Этого хватит на 450 000 домов.
Интересный факт! Многие страны практикуют выращивание так называемого «энергетического леса» – деревья и кустарники, наилучшим образом подходящие для энергетических нужд.
Будет ли альтернативная энергетика развиваться в направлении биотоплива пока маловероятно, ведь есть более перспективные решения.
4 место. Приливные и волновые электростанции
Традиционные гидроэлектростанции работают по следующему принципу:
Строительство ГЭС обходится дороже ТЭС и возможно только в местах с большими запасами энергии воды. Но самая главная проблема – это нанесение вреда экосистемам из-за необходимости строительства плотин.
Приливные электростанции работают по схожему принципу, но используют для выработки энергии силу приливов и отливов.
«Водные» виды альтернативной энергетики включают такое интересное направление, как волновая энергетика. Её суть сводится к генерации электричества посредством использования энергии волн океана, которая гораздо выше приливной. Самой мощной волновой электростанцией на сегодня является Pelamis P-750, которая вырабатывает 2,25 МВт электрической энергии.
Раскачиваясь на волнах, эти огромные конвекторы («змеи») изгибаются, вследствие чего внутри приходят в движение гидравлические поршни. Они прокачивают масло через гидравлические двигатели, которые в свою очередь вращают электрогенераторы. Полученное электричество доставляется на берег через кабель, который проложен по дну. В перспективе количество конвекторов будет многократно увеличено и станция сможет вырабатывать до 21 МВт.
3 место. Геотермальные станции
Альтернативная энергетика неплохо развита и в геотермальном направлении. Геотермальные станции вырабатывают электричество, фактически преобразуя энергию земли, а точнее — тепловую энергию подземных источников.
Существует несколько типов таких электростанций, но во всех случаях они основываются на одинаковом принципе работы: пар из подземного источника поднимается по скважине и вращает турбину, подключенную к электрогенератору. Сегодня распространена практика, когда в подземный резервуар на большую глубину закачивается вода, там она под воздействием высоких температур испаряется и в виде пара под давлением поступает на турбины.
Лучше всего для целей геотермальной энергетики подходят районы с большим количеством гейзеров и открытых термальных источников, которые разогреваются вследствие вулканической активности.
Так, в Калифорнии работает целый геотермальный комплекс под названием «Гейзеры». Он объединяет 22 станции, вырабатывающие 955 МВт. Источник энергии в данном случае – очаг магмы диаметром 13 км на глубине 6,4 км.
2 место. Ветряные электростанции
Энергия ветра – один из самых популярных и перспективных источников для получения электричества.
Принцип работы ветрогенератора прост:
Мощность ветрогенератора зависит от размаха лопастей и его высоты. Поэтому их устанавливают на открытых территориях, полях, возвышенностях и в прибрежной зоне. Эффективнее всего работают установки с 3 лопастями и вертикальной осью вращения.
Интересный факт! На самом деле энергия ветра является разновидностью солнечной энергии. Объясняется это тем, что ветры возникают из-за неравномерного прогрева солнечными лучами земной атмосферы и поверхности.
Чтобы сделать ветряк, не нужны глубокие познания в инженерии. Так, многие умельцы смогли себе позволить отключиться от общей электросети и перейти на альтернативную энергетику.
Для производства электричества в промышленных масштабах используются ветровые электростанции, состоящие из множества ветряков. Крупнейшей является электростанция «Альта», расположенная в Калифорнии. Её мощность – 1550 МВт.
1 место. Солнечные электростанции (СЭС)
Наибольшие перспективы имеет солнечная энергетика. Технология преобразования солнечного излучения с помощью фотоэлементов развивается из года в год, становясь всё эффективнее.
Гелиотермальные электростанции также зарекомендовали себя неплохо. Их работа основана на использовании солнечного тепла для нагрева воды и получения пара, который раскручивает электротурбину.
В России солнечная энергетика развита относительно слабо. Однако некоторые регионы показывают отличные результаты в этой отрасли. Взять хотя бы Крым, где функционирует несколько мощных солнечных электростанций.
В будущем возможно может развиваться космическая энергетика. В этом случае СЭС будут строиться не на поверхности земли, а на орбите нашей планеты. Самое главное преимущество такого подхода – фотоэлектрические панели смогут получать гораздо больше солнечного света, т.к. этому не будет препятствовать атмосфера, погода и времена года.
Заключение
Альтернативная энергетика имеет несколько перспективных направлений. Её постепенное развитие рано или поздно приведёт к замещению традиционных способов получения электричества. И совершенно необязательно, что во всём мире будет использоваться только одна из перечисленных технологий. Подробнее об этом смотрите в ролике ниже.
«Зеленый» курс: какое будущее ждет альтернативные источники энергии
Что такое альтернативные источники энергии
Возобновляемую энергию получают из устойчивых источников, таких как гидроэнергия, энергия ветра, солнечная энергия, геотермальная энергия, биомасса и энергия приливов и отливов. В отличие от ископаемых видов топлива — например, нефти, природного газа, угля и урановой руды, эти источники энергии не истощаются, поэтому их называют возобновляемыми. Только за 2019 год по всему миру установлено объектов возобновляемых источников энергии (ВИЭ) общей мощностью 200 ГВт.
Виды альтернативных источников энергии
1. Солнечная энергия
Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.
Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.
2. Энергия ветра
Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.
Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.
3. Энергия воды
Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.
4. Геотермальная энергия
Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.
5. Биоэнергетика
Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.
6. Энергия приливов и отливов
Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.
Как разные страны мира выполняют планы по энергопереходу
Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.
Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.
В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.
Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.
Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.
Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и Великобритания. Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.
Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.
В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.
Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.
Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина
Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.
В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.
Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.
100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.
Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.
«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.
Как бизнес формирует положительный имидж, инвестируя в ВИЭ
Компании по всему миру также создают стратегии и определяют «зеленые» цели, которых они хотят достичь в течение определенного периода времени. Появилось осознание: нужно действовать ответственно и подавать экологичный пример потребителям. Конечно, использование ВИЭ может не только помочь в формировании положительного имиджа для компаний, но и снизить затраты на электроэнергию.
Так, новые серверы Facebook, а также компания General Motors будут получать энергию от солнечной электростанции. Ее строят в штате Кентукки в рамках масштабной программы Green Invest.
Химический концерн BASF будет постепенно переходить на возобновляемые источники энергии, а также планирует инвестировать в ветропарки.
Apple также ставит перед собой цель стать углеродно нейтральной. Она приобрела несколько солнечных ферм, обеспечивая устойчивую энергию для своих центров обработки данных. С 2018 года все розничные магазины, офисы и центры обработки данных Apple работают на 100% возобновляемой энергии.
Microsoft ежегодно использует более 1,3 млрд. кВт·ч «зеленой» энергии при разработке ПО, работы центров обработки данных и производства. Компания обязалась сократить выбросы углекислого газа на 75% к 2030 году.
Развитие малой энергетики
Малая энергетика — направление энергетики, связанное с получением независимых от централизованных сетей тепла и электричества. Характерной чертой установок в малой энергетике являются компактные размеры генераторных блоков и, как правило, мобильность конструкций.
Ежегодный Ярославский энергетический форум. Он по традиции будет посвящен региональной энергетике, но в этом году затронет проблемы отрасли в аспекте экономической нестабильности и импортозамещения. В рамках форума пройдет Координационный совет ассоциации регионов ЦФО, и впервые начнут работу презентационные площадки, на которых участники представят свой опыт в сфере энергосбережения и энергоэффективности.
Распределённая энергетика
Малая распределённая энергетика – концепция развития энергетики, обеспечивающая возможности перехода от традиционной организации энергетических систем к новым методикам и практикам. Данный переход осуществляется в условиях децентрализации, цифровизации энергетических систем, с использованием различных видов энергетических ресурсов, с целью повышения энергетической эффективности, снижения экологического влияния на окружающую среду.
Наиболее развитой составляющей распределённой энергетики в России является распределенная генерация, которая представляет собой комплектные энергообъекты мощностью до 25 МВт, расположенные рядом с потребителем.
Следует отметить, что в связи с появлением новых технологий изменился и подход в развитии энергетических систем. Объединение большого количества объектов распределённой генерации в «умную сеть» обеспечивает высокую надежность и гибкость работы системы.
В настоящее время малая распределенная энергетика является единственным действенным инструментом снижения стоимости электроэнергии для предприятий малого и среднего бизнеса. Возможность работы оборудования малой распределённой энергетики на разных видах топлива (в том числе на сжиженном газе) позволяет устанавливать такие объекты на территориях с обширной географией.
Доля малой распределённой энергетики в мире
Малая распределенная энергетика вот уже несколько десятилетий является ведущим трендом развития мировой энергетики и, по оценкам экспертов, данная тенденция сохранится в ближайшее десятилетие. Navigant Research прогнозирует к 2026-му году в мире трехкратный разрыв новых вводов распределённой генерирующей мощности над централизованной. По оценкам компании SCC Research, размер глобального рынка технологий распределённой генерации в 2015-м году составил 65,8 млрд. долл. Ожидается, что в период до 2021 гг. он вырастет с 69,7 до 109,5 млрд. долл. при среднегодовом темпе роста в 9,5%.
Прогноз ввода новых мощностей централизованной и распределённой генерации в мире (МВт):
Доля малой распределённой энергетики в России
При формировании оценки доли малой распределённой энергетики в России и проведении анализа изменения показателей данной отрасли возникают определенные сложности, т. к. основные регуляторы данной сферы — Минэнерго России, Системный оператор Единой энергетической системы — не выделяют данные показатели при подготовке официальной публичной отчетности.
На объекты распределённой генерации на текущий момент в России приходится около 7% от общего объема выработки электроэнергии. Данный показатель ниже показателей мирового масштаба в два раза. Однако распределенная генерация как явление уже состоялась в России, и данная отрасль активно развивается.
Развернутые показатели развития данной отрасли приведены в исследовании Энергетического центра Бизнес-школы Сколково «Распределенная энергетика в России – перспективы развития», выпущенном в январе 2018 года. По данным Росстата, в России в 2016 г. работало 36 тысяч электростанций мощностью не более 25 МВт, а их суммарная мощность составила 13 ГВт. Примерно 8,5 ГВт данной мощности эксплуатируется в зоне децентрализованного энергоснабжения. По сравнению с 2006 г. увеличение мощности составило около 3 ГВт. Основная часть упомянутых объектов – это ТЭС, на которые приходится 92% общей мощности (оставшиеся 8% приходятся на солнечные, ветряные и другие станции).
Также по данным Росстата по состоянию на 2017 г. совокупную мощность объектов распределённой генерации в России можно оценить величиной около 23-24 ГВт и доля мощности распределённой генерации в общем объеме выработки электроэнергии страны составляет 9-9,5%.
Данные за 2006 и 2016 гг. представлены на основании расчетов ИНЭИ РАН по данным Росстата; данные за 2017 г. – на основании расчетов McKinsey&Company.
Большая часть проектов отрасли распределённой генерации реализуется с использованием когенерации.
Факторы увеличения темпов роста и емкости рынка малой генерации
К основным факторам увеличения темпов роста и емкости рынка малой генерации в ближайшие 3 года можно отнести:
Внешние энергосбытовые и ресурсоснабжающие организации, как правило, повышают тарифы на ресурсы и услуги два раза в год. Система ценообразования электроэнергии — полностью рыночная.
Сетевые компании устанавливают постоянно растущий тариф на передачу электроэнергии по магистральным и распределительным сетям.
Система тарифообразования ресурсоснабжения и услуг является непрозрачной и недоступной по централизованным системам энергоснабжения, наблюдается путаница в цепочке собственников сетей и их вклада в общую стоимость, сложный процесс ценообразования в централизованной розничной электроэнергетике.
Сегодня в энергетическом комплексе РФ повсеместно наблюдаются значительные сроки технологического присоединения энергопринимающих устройств к централизованным сетям энергоснабжения, высокая стоимость технологического присоединения, сложный механизм согласования и утверждения между субъектами электроэнергетики, отсутствие технической возможности подключения.
С экономическим развитием РФ с каждым годом увеличивается число новых промышленных объектов, расположенных в арктических и отдаленных территориях (Камчатский край, республика Саха (Якутия), Ямало-Ненецкий АО, Сахалинская область и др.) вдали от централизованной энергосистемы.
Одна из глобальных проблем энергетической отрасли России — высокий износ основных средств в энергетическом комплексе, высокая аварийность, плановые и неплановые отключения.
Потенциал развития распределённой генерации в России
По данным исследования Энергетического центра Бизнес-школы «Сколково» потенциал развития распределённой когенерации может быть обусловлен следующими факторами:
По данным исследования Энергетического центра Бизнес-школы Сколково в случае, если эти мощности будут выводиться из эксплуатации без обновления, отпуск тепловой энергии от действующих ТЭЦ снизится относительно 2016 г. на 26% к 2025 г. и на 30% к 2035 г. При замещении старых мощностей ТЭЦ новыми объектами с полной загрузкой в тепловом графике их мощность может составить около 20 ГВт на горизонте уже 2025-2030 гг. В случае, если из эксплуатации будут выводиться меньшие мощности ТЭЦ, то потенциал распределённой когенерации в этом секторе пропорционально снизится.
В целом по стране данный показатель относительно 2016 г. оценивается ИНЭИ РАН величиной всего 6% к 2035 г. При этом ожидается, что при поддержке теплофикации, как наиболее эффективного способа энергоснабжения, отпуск тепловой энергии от ТЭЦ будет расти быстрее, и увеличится на 7% к 2025 г. и 26% к 2035 г. В случае, если весь прирост спроса новых потребителей на тепловую энергию от ТЭЦ будет обеспечиваться только объектами распределённой когенерации, то их электрическая мощность может составить около 18 ГВт к 2035 г.
По оценке ИНЭИ РАН данные объекты могут, как минимум, полностью закрыть оставшуюся прогнозную потребность в дополнительных генерирующих мощностях. При этом годовая выработка тепловой энергии на котельных сократится, а электрическая мощность новых объектов распределённой когенерации может составить при этом около 30 ГВт к 2035 г.
Анализ факторов, обуславливающих потенциал распределённой когенерации, представлен на основании данных ИНЭИ РАН:
Объекты распределённой генерации малой мощности (до 25 МВт) относятся к объектам собственной генерации, строительство которых осуществляется также сторонними инвесторами для получения прибыли на рынках электрической и тепловой энергии.
В исследовании Энергетического центра Бизнес-школы Сколково на основании данных Росстата, СО ЕЭС и McKinsey&Company представлена динамика мощности собственной генерации в 2015-2035 гг.
Экстраполяция сложившихся за последние 10 лет в этом сегменте трендов позволяет сделать предположение о вводе дополнительно как минимум 12 ГВт к 2035 г. (малая и средняя генерация), а высоком сценарии – до 32 ГВт (малая, средняя и крупная генерация).
Технологии распределённой генерации
Множество технологий распределённой генерации энергии охватывает установки мощностью до 25 МВт, включая нетрадиционные и возобновляемые источники энергии (ВИЭ). Наиболее известными и изученными среди них являются следующие технологии:
Кроме перечисленных технологий и установок перспективными представляются также микротурбины, двигатели стирлинга, роторно-лопастные двигатели, накопители энергии (химические, инерционные, гравитационные и др.), чиллеры (аппарат для охлаждения воздуха) и т.п.
Другим перспективным направлением распределённой генерации является использование попутного нефтяного газа (ПНГ) на предприятиях нефтегазовой отрасли.
Возобновляемая энергетика
Возобновляемая энергетика — направление альтернативной энергетики, основанное на использовании практически неисчерпаемых ресурсов для получения электрической энергии (солнечная, ветряная, речная, морская, геотермальная и др.).
У возобновляемой энергетики есть как свои преимущества, так и недостатки.
Газовая распределенная генераия – наиболее эффективная технология малой энергетики
На сегодняшний день отрасль малой генерации, основанная на использовании мобильных и высокоэффективных газопоршневых установок, является современным, эффективным и высокорентабельным видом энергетического бизнеса, стремительно набирающим популярность в последние годы.
Мировыми предпосылками развития газовой генерации являются:
Природный газ является самым доступным и эффективным видом топлива в перспективе на ближайшие 30-40 лет.
Уголь является дорогим и неэкологическим видом топлива. В частности, это подтверждается в последнее время переводом крупных электростанций на газовое топливоснабжение.
Атомная энергетика является дорогим видом выработки электроэнергии с высокой долей технологического риска. Данный факт подтверждается сворачивание или уменьшением доли ядерной выработки в энергетических проектах в России и мире.
Тепловая малая генерация на базе ГПУ является высокоэффективным способом выработки электроэнергии, позволяющим получать попутные виды энергии (тепловая энергия и холод).
Оборудование малой распределённой генерации. ГПУ
Газопоршневые установки (ГПУ) представляют собой двигатель внутреннего сгорания с внешним смесеобразованием и искровым зажигание горючей смеси в камере сгорания. ГПУ использует в качестве топлива газ. Утилизация тепла происходит посредством теплообменника, что обеспечивает повышение общего КПД установки.
Что дает малая энергетика потребителю
На вопрос, что дает малая энергетика потребителю и какие мотивы движут теми, кто строит объекты распределённой генерации, можно ответить коротко – снижение тарифа на энергоресурсы. Но, конечно, не только это. Самое главное – размещение объекта генерации возле потребителя, за счет чего потребитель экономит на транспорте энергии, электрической и тепловой, снижая стоимость конечного продукта. Есть и другие важные моменты, например, повышение надежности электроснабжения.
Еще один весомый аргумент — скорость ввода мощностей. Если брать сетевые компании, то техприсоединение с учетом строительства линий может растянуться на годы. В среднем это около двух лет и то при условии, что в соответствующем центре питания есть свободные мощности. Если их нет, дольше. Потому что процедура подключения новых объектов в России конкурсная, связанная с оформлением земельных участков, линейных объектов строительства и пр. Для сравнения: минимальный срок запуска мощностей малой энергетики – около 8 месяцев. Достаточно быстро.
Безусловно, для строительства собственной мини-ТЭС, нужны инвестиции. Однако объем вложений разнится в зависимости от мощности электростанции и вариантов ее реализации. Стоимость одного киловатта можно оценить в диапазоне от 500 до 650 евро. Это значительно ниже, чем стоимость больших объектов энергетики (ГРЭС, ТЭЦ). А значит, и срок окупаемости более интересный – 3-4 года. Попутно также продается тепло – весомая составляющая в экономике. С учетом снижения его стоимости срок окупаемости будет еще меньше.
При этом важно понимать: малая энергетика – не против большой. Они практически не конкурируют. Все зависит от задачи. Это как в авиации: есть самолеты большие – боинги, двухэтажные лайнеры А380. Есть самолеты маленькие, буквально на 12-15 человек. Если у нас задача доставить быстро пассажиров из Москвы в Санкт-Петербург, конечно, нет смысла отправлять огромный самолет, он не окупится, не будет загружен полностью. А малая авиация с этим успешно справится. С другой стороны, перелеты через океан ей уже не под силу. Также и в энергетической отрасли: большая энергетика решает задачу энергоснабжения экономики всей страны, малая распределенная – отдельных объектов.
Ярославский энергетический форум за шесть лет проведения закрепил за собой статус главного отраслевого события, основной диалоговой и дискуссионной площадки. Форум, организаторами которого являются правительство Ярославской области, департаменты энергетики и регулирования тарифов, строительства и ЖКХ, а также НКО Фонд «Энергоэффективность», призван укрепить партнерские отношения представителей власти и бизнеса в энергосфере, способствовать диалогу с инвесторами для развития и внедрения энерго- и ресурсосберегающих технологий. Именно в Ярославле происходит обсуждение и выработка новых подходов к вопросам развития энергетической и коммунальной инфраструктуры, энергосбережения и энергоэффективности. Найденные в ходе совместной работы ответы успешно внедряют на всероссийском уровне.
– Ярославская область является одной из передовых в сфере энергоэффективности и энергосбережения в ЦФО. Наши разработки в этом направлении могут быть интересны и полезны в масштабах всей страны, и мы готовы делиться реальным опытом внедрения действенных профильных проектов. Ярославский энергетический форум отличают внимание к региональной повестке, практическая направленность и ориентир на результат. Благодаря такому комплексному подходу наш форум получил широкую известность не только в России, но и за рубежом, — отмечает особенности мероприятия губернатор Ярославской области Сергей Ястребов.
Ярославский энергетический форум традиционно собирает сильнейшее экспертное сообщество. В работе форума примут участие первый заместитель председателя комитета по энергетике Государственной Думы Юрий Липатов, заместитель председателя думского Экспертного совета по жилищной политике и ЖКХ Валерий Казейкин, советник министра строительства и жилищно-коммунального хозяйства РФ Михаил Сандалов, сенатор Виктор Рогоцкий. С докладами выступят представители органов власти, руководители и топ-менеджеры энергетических компаний, инвесторы и регуляторы рынка, эксперты и научные деятели.
Главными темами Ярославского энергетического форума–2015 будут региональная энергетика, энергоэффективность и энергосбережение в период нестабильной экономики, импортозамещение как толчок к росту внутреннего производства, энергосфера в ЖКХ и строительстве и другие актуальные вопросы.
Ключевым событием первого дня форума станет заседание Координационного совета по развитию энергетики, энергосбережению и энергоэффективности ассоциации межрегионального социально-экономического взаимодействия «Центральный Федеральный Округ». В его состав входят члены правительства РФ, Минэнерго, ФАС, представители регионов ЦФО, ресурсоснабжающих и сетевых компаний, научные и общественные деятели. Возглавляет совет губернатор Ярославской области Сергей Ястребов. В рамках форума эксперты обсудят план работы Координационного совета, комитетов и групп в 2016 году и рассмотрят опыт Ярославской области в развитии региональной энергетики.
— Мы внедрили и опробовали свой механизм работы с некоммерческими товариществами, который имеет большое социальное значение, повышает надежность энергоснабжения конечных потребителей и способствует снижению потерь в электросетевом комплексе. Наш опыт и уровень компетенций позволяют региону стать пилотной площадкой для формирования и реализации массовых типовых проектов, — пояснила достижения региона зампред правительства Ярославской области Наталья Шапошникова.
Еще одним важным пунктом насыщенной программы станет подписание соглашения о сотрудничестве между правительством региона и НП «Российское теплоснабжение». Стороны намерены развивать партнерские отношения в сфере строительства, реконструкции и модернизации объектов систем теплоснабжения муниципальных образований Ярославской области.
Также во время работы форума состоится выездное заседание рабочей группы Совета Федерации по мониторингу реализации законодательства в области энергетики, энергосбережения и повышения энергетической эффективности, пройдут круглые столы и конференции. Форматная новинка этого года – презентационная площадка, на которой предприятия и компании региона смогут продемонстрировать свой опыт и достижения в сфере применения энергосберегающих технологий.
Ярославский энергетический форум — это еще и витрина энергоэффективных инноваций и стартовая площадка для свежих идей. Так, в рамках мероприятия пройдет молодежная конференция «Вклад молодежи в решение практических задач в сфере энергосбережения, модернизации энергетики и развития энергетической инфраструктуры». Речь пойдет об инновациях в энергетике, возобновляемых источниках энергии, экологической эффективности региональной энергетики. Участники поделятся новым взглядом на энергоэффективность зданий и сооружений, а также представят свои конкурсные работы. После защиты проектов победителей ждет церемония награждения.
В 2014 году Ярославский энергетический форум посетили более 700 участников из 23 регионов страны, представители Болгарии и Латвии. В этом году география приглашенных участников так же охватывает все округа и субъекты России. Ожидаются делегаты из Швейцарии, Австрии, Германии, Латвии, Литвы, Чехии и других государств.