ntc термисторы принцип действия основные характеристики и параметры

Термистор – характеристика и принцип действия

Главная страница » Термистор – характеристика и принцип действия

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Термистор (терморезистор) – твердотельный электронный элемент, внешне напоминающий постоянный резистор, но обладающий выраженной температурной характеристикой. Этот вид электронных приборов, как правило, используются для изменения аналогового выходного напряжения с учётом изменения окружающей температуры. Другими словами – электрические свойства термистора и принцип действия напрямую связаны с физическим явлением — температурой.

Характеристика электронного элемента

Термистор — термочувствительный полупроводниковый элемент, изготовленный на основе полупроводниковых оксидов металлов. Обычно имеет форму диска или шара с металлизированными или соединительными выводами.

Такие формы позволяют изменять резистивное значение пропорционально малым изменениям температуры. Для стандартных резисторов изменение сопротивления от нагрева видится нежелательным явлением. Но этот же эффект видится удачным при построении многих электронных схем, требующих определения температуры.

Таким образом, будучи нелинейным электронным устройством с переменным сопротивлением, терморезистор успешно подходит для работы в качестве терморезистора-датчика. Такого рода датчики широко применяют для контроля температуры жидкостей и газов.

Выступая твердотельным устройством, изготовленным на основе высокочувствительных оксидов металлов, терморезистор работает на молекулярном уровне. Валентные электроны становятся активными и воспроизводят отрицательный ТКС либо пассивными и тогда воспроизводят положительный ТКС.

В результате электронные приборы – термисторы, демонстрируют очень хорошую воспроизводимую резистивность, сохраняя эксплуатационные характеристики, позволяющие продуктивно работать в диапазоне температур до 200ºC.

Применение терморезисторов на практике

Базовым направлением применения, в данном случае, являются резистивные температурные датчики. Однако эти же электронные элементы, принадлежащие семейству резисторов, можно успешно использовать включенными последовательно с другими компонентами или устройствами.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметрыПростые схемы включения терморезисторов, показывающие работу приборов в качестве температурных датчиков — своеобразных преобразователей напряжения за счёт изменения сопротивления

Такая схема включения позволяет контролировать ток, протекающий через компонент. Таким образом, термисторы, по сути, выступают ещё и токоограничителями. Производятся термисторы разного типа, на основе различных материалов и отличаются по размерам в зависимости от времени отклика и рабочей температуры.

Существуют герметичные модификации приборов, защищённые от проникновения влаги. Есть конструкции под высокие рабочие температуры и компактные по размерам. Следует выделить три наиболее распространенных типа терморезисторов:

Работают приборы в зависимости от изменения температуры:

То есть существует два типа приборов:

Отрицательный коэффициент ТКС

NTC-термисторы с отрицательным ТКС уменьшают собственное резистивное значение по мере увеличения внешней температуры. Как правило, именно эти приборы чаще выступают датчиками температуры, поскольку идеально подходят практически к любому типу электроники, где требуется контроль температуры.

Относительно большой отрицательный отклик термистора NTC означает, что даже небольшие изменения температуры способны значительно изменить электрическое сопротивление прибора. Этот фактор делает модели NTC идеальными датчиками точного измерения температур.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметрыСхема калибровки (проверки) терморезистора: 1 — источник питания; 2 — направление тока; 3 — испытуемый электронный элемент термистор; 4 — калибровочный микроамперметр

Терморезисторы NTC, снижающие сопротивление с повышением температуры, по исполнению доступны с различными базовыми сопротивлениями. Как правило, характеристика привязывается к базовым сопротивлениям при комнатной температуре.

Например: 25ºC берётся за контрольную (базовую) температурную точку. Отсюда выстраиваются значения приборов, допустим, следующих номиналов:

Другой важной характеристикой является значение «В». Величина «В» представляет собой постоянную константу, которая определяется керамическим материалом, из которого изготовлен термистор.

Этой же константой определяется градиент кривой резистивного отношения (R/T) в определенном температурном диапазоне между двумя температурными точками. Каждый материал термистора имеет различную материальную константу и, следовательно, индивидуальную кривую отношения сопротивления и температуры.

Так, константа «B» определяет одно резистивное значение при базовой T1 (25ºС), и другое значение при Т2 (например, при 100ºC). Следовательно, значение B определит постоянную константу материала термистора, ограниченную диапазоном T1 и T2:

B * T1 / T2 (B* 25 / 100)

p.s. значения температуры в расчётах берутся в градуировке Кельвина.

Отсюда вытекает, что имея значение «В» (из характеристики производителя) конкретного прибора, электронщику останется только создать таблицу температур и сопротивлений, чтобы построить подходящий график при помощи следующего нормированного уравнения:

где: T1, T2 – температуры в градусах Кельвина; R1, R2 – сопротивления при соответствующих температурах в Омах.

Так, например, термистор NTK, обладающий сопротивлением 10 кОм, имеет значение «В» равным 3455 в рамках температурного диапазона 25 — 100ºC.

Очевидный момент: термисторы экспоненциально меняют сопротивление с изменениями температуры, поэтому характеристическая кривая приборов нелинейная. Чем больше контрольных точек устанавливаются, тем точнее получается кривая.

Применение термистора в роли активного датчика

Поскольку прибор является активным типом датчика, для работы требуется сигнал возбуждения. Любые изменения сопротивления в результате изменения температуры преобразуются в изменение напряжения.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметрыПромышленностью выпускаются термисторы разного исполнения, в том числе высокоточные, надёжно защищённые для применения в системах высокого уровня

Самый простой способ добиться подобного эффекта — использовать термистор как часть схемы делителя потенциала, как показано на рисунке ниже. Постоянное напряжение подаётся в цепь резистора и терморезистора.

К примеру, используется схема, где термистор 10 кОм включен последовательно с резистором 10 кОм. В этом случае выходное напряжение при базовой Т = 25ºC составит половину напряжения питания.

Таким образом, схема делителя потенциалов является примером простого преобразователя сопротивления в напряжение. Здесь сопротивление термистора регулируется температурой с последующим формирования величины выходного напряжения, пропорциональной температуре.

Простыми словами: чем теплее корпус термистора, тем ниже напряжение на выходе.

Между тем, если изменить положение последовательного резистора, RS и термистора RTH, в этом случае уровень выходного напряжения изменится на противоположный вектор. То есть теперь чем больше нагреется термистор, тем выше будет уровень выходного напряжения.

Использовать термисторы допускается и как часть базовой конфигурации с использованием мостовой схемы. Связью между резисторами R1 и R2 устанавливается опорное напряжение до требуемого значения. Например, если R1 и R2 имеют одинаковые значения сопротивления, опорное напряжение равно половине напряжения питания (V/2).

Схема усилителя, построенная с использованием этой мостовой схемы с термозондом, может выступать в качестве высокочувствительного дифференциального усилителя или в качестве простой схемы запуска Шмитта с функцией переключения.

Существует проблема, связанная с прохождением тока через термистор (эффект «самонагрева»). В таких случаях рассеиваемая мощность I 2 R достаточно высока и создаёт больше тепла, чем способен рассеять корпус прибора. Соответственно, это «лишнее» тепло влияет на резистивное значение, что приводит к ложным показаниям.

Одним из способов избавления от эффекта «самонагрева» и получения более точного изменения сопротивления от влияния температуры (R/T), видится питание термистора от постоянного источника тока.

Термистор как регулятор пускового тока

Приборы традиционно используются в качестве резистивных чувствительных к температуре преобразователей. Однако сопротивление термистора изменяется не только под влиянием окружающей среды, но также изменения наблюдаются от протекающего через прибор электротока. Эффект того самого «самонагрева».

Разное электрооборудование на индуктивной составляющей:

подвергается чрезмерным пусковым токам при первом включении. Но если в цепь последовательно включить термистор, можно эффективно ограничивать высокий начальный ток. Такое решение способствует увеличению срока службы электрооборудования.

Терморезисторы с низким ТКС (при 25°C) обычно используются для регулирования пускового тока. Так называемые ограничители тока (перенапряжения) меняют сопротивление до очень низкого значения при прохождении тока нагрузки.

В момент первоначального включения оборудования пусковой ток проходит через холодный термистор, резистивное значение которого достаточно велико. Под воздействием тока нагрузки термистор нагревается, сопротивление медленно уменьшается. Так осуществляется плавная регулировка тока в нагрузке.

Термисторы NTC достаточно эффективно обеспечивают защиту от нежелательно высоких пусковых токов. Преимущественной стороной здесь является то, что этот тип приборов способен эффективно обрабатывать более высокие пусковые токи по сравнению с резисторами стандартного образца.

Видео по теме: Диагностика неисправности термистора электродвигателя

Видеороликом ниже рассматривается практика обслуживания электрических двигателей, дополненных встроенными термисторами непосредственно в состав обмотки статора. В частности, неисправности так называемого термического выключателя:

КРАТКИЙ БРИФИНГ

Источник

Параметры термисторов

Основные параметры NTC-термисторов и позисторов

В настоящий момент промышленность выпускает огромный ассортимент терморезисторов, позисторов и NTC-термисторов. Каждая отдельная модель или серия изготавливается для эксплуатации в определённых условиях, на них накладываются определённые требования.

Поэтому от простого перечисления параметров позисторов и NTC-термисторов толку будет мало. Мы пойдём немного другим путём.

Каждый раз, когда в ваши руки попадает термистор с легко читаемой маркировкой, необходимо найти справочный листок, или даташит на данную модель термистора.

Кто не в курсе, что такое даташит, советую заглянуть на эту страницу. В двух словах, даташит содержит информацию по всем основным параметрам данного компонента. В этом документе перечислено всё, что нужно знать, чтобы применить конкретный электронный компонент.

У меня в наличии оказался вот такой термистор. Взгляните на фото. Поначалу о нём я не знал ничего. Информации было минимум. Судя по маркировке это PTC-термистор, то есть позистор. На нём так и написано – PTC. Далее указана маркировка C975.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Сперва может показаться, что найти хоть какие то сведения о данном позисторе вряд ли удастся. Но, не стоит вешать нос! Открываем браузер, вбиваем в гугле фразу типа этих: «позистор c975», «ptc c975», «ptc c975 datasheet», «ptc c975 даташит», «позистор c975 даташит». Далее остаётся лишь найти даташит на данный позистор. Как правило, даташиты оформляются как pdf-файл.

Из найденного даташита на PTC C975, я узнал следующее. Выпускает его фирма EPCOS. Полное название B59975C0160A070 (серия B599*5). Данный PTC-термистор применяется для ограничения тока при коротком замыкании и перегрузках. Т.е. это своеобразный предохранитель.

Приведу таблицу с основными техническими характеристиками для серии B599*5, а также краткую расшифровку всего того, что обозначают все эти циферки и буковки.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Max.operating voltage (TA = 60°C) – VMAX. Максимальное рабочее напряжение при температуре окружающей среды 60°С. Как видим, оно составляет 20 вольт постоянного (VDC) или переменного (VAC) тока. Это максимальное напряжение, которое может выдержать позистор.

170°C, а температура в 160°С является опорной (Tref). Я бы назвал эту температуру «температурой перехода».

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Tolerance of RR – ΔRR. Допустимое отклонение от номинального сопротивления. Выражается в процентах. Например, для позистора C975 номинальное сопротивление RR (Rated resistance) составляет 1,8 Ом. На деле же оно может быть от 1,35 до 2,25 Ом, так как допуск ΔRR составляет ±25%.

Теперь обратим своё внимание на электрические характеристики конкретного изделия, в нашем случае это позистор PTC C975 (полная маркировка B59975C0160A070). Взгляните на следующую таблицу.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Поэтому для максимального тока переключения указывается и напряжение. В данном случае оно равно 20 вольтам. Перемножив 3 ампера на 20 вольт, мы получим мощность в 60 Вт. Именно такую мощность может поглотить наш позистор при ограничении тока.

Что такое RR и Rmin нам поможет понять следующий график.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

RminMinimum resistance (Ом). Минимальное сопротивление. Наименьшее значение сопротивления позистора. Минимальное сопротивление, которое соответствует минимальной температуре, после которой начинается диапазон с положительным ТКС. Если детально изучить графики для позисторов, то можно заметить, что до значения TRmin сопротивление позистора наоборот уменьшается. То есть позистор при температурах ниже TRmin ведёт себя как «очень плохой» NTC-термистор и его сопротивление снижается (незначительно) с ростом температуры.

RRRated resistance (Ом). Номинальное сопротивление. Это сопротивление позистора при какой-то ранее оговоренной температуре. Обычно это 25°С (реже 20°С). Проще говоря, это сопротивление позистора при комнатной температуре, которое мы можем легко измерить любым мультиметром.

Approvals – в дословном переводе это одобрение. То есть одобрено такой-то организацией, которая занимается контролем качества и пр. Особо не интересует.

Ordering code – серийный номер. Тут, думаю, понятно. Полная маркировка изделия. В нашем случае это B59975C0160A070.

Из даташита на позистор PTC C975 я узнал, что применить его можно в качестве самовосстанавливающегося предохранителя. Например, в электронном устройстве, которое в рабочем режиме потребляет ток не более 0,5А при напряжении питания 12V.

Теперь поговорим о параметрах NTC-термисторов. Напомню, что NTC-термистор имеет отрицательный ТКС. В отличие от позисторов, при нагреве сопротивление NTC-термистора резко падает.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

На корпусе указана лишь такая маркировка: 16D-9 F1. После недолгих поисков в интернете удалось найти даташит на всю серию NTC-термисторов MF72. Конкретно наш экземпляр, это MF72-16D9. Данная серия термисторов используется для ограничения пускового тока. Далее на графике наглядно показано, как работает NTC-термистор.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

В начальный момент, когда включается устройство (например, импульсный блок питания ноутбука, адаптер, компьютерный БП, зарядное устройство), сопротивление NTC-термистора велико, и он поглощает импульс тока. Далее он разогревается, и его сопротивление уменьшается в несколько раз.

Пока устройство работает и потребляет ток, термистор находится в нагретом состоянии и его сопротивление мало.

В таком режиме термистор практически не оказывает сопротивление протекающему через него току. Как только электроприбор будет отключен от источника питания, термистор остынет и его сопротивление вновь увеличится.

Обратим свой взор на параметры и основные характеристики NTC-термистора MF72-16D9. Взглянем на таблицу.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Вот и все основные параметры термисторов. Конечно, есть и другие параметры, которые могут встретиться в даташитах, но они, как правило, легко высчитываются из основных параметров.

Надеюсь теперь, когда вы встретите незнакомый вам электронный компонент (не обязательно термистор), вам будет легко разузнать его основные характеристики, параметры и назначение.

Источник

Что такое NTC термисторы

Термисторы NTC- это особый тип резистора, который имеет отрицательный температурный коэффициент. Это его основная особенность, которая понятна из самого слова «термо». Его внутреннее сопротивление сокращается по мере роста температуры. Обычно, эти радиодетали используются в температурных датчиках из-за своих токоограничивающих свойств.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Характеристики термисторов NTC

Термистор NTC – термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Характеристическая кривая NTC

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Сравнение с другими датчиками температуры

По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами. Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты.

Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.

Эффект самонагрева

Эффект самонагрева — это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений. Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д. Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.

Теплоемкость

Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.

Выбор и расчет кривой

Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Приближение первого порядка

Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что:

формула приближения первого порядка: dR = k * dT

Где k — отрицательный температурный коэффициент, ΔT — разность температур, ΔR — изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур.

Другое уравнение дает удовлетворительные результаты с точностью ± 1 ° C в диапазоне от 0 ° C до + 100 ° C. Он зависит от единственной константы материала β, которая может быть получена путем измерений. Уравнение можно записать в виде:

Бета-уравнение: R (T) = R (T0) * exp (бета * (1 / T-1 / T0))

Где R (T) — сопротивление при температуре T в Кельвине, R (T0) является точкой отсчета при температуре T0. Бета-формула требует двухточечной калибровки и обычно не более чем ± 5 ° C по всему полезному диапазону термистора NTC.

Наилучшим приближением, известным на сегодняшний день, является формула Штейнхарта-Харта, опубликованная в 1968 году:

Уравнение Штейнхарта для точного приближения: 1 / T = A + B * (ln (R)) + C * (ln (R)) ^ 3.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Выбор правильного приближения

Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.

Конструкция и свойства термисторов NTC

Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.

Терморезисторы

Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус. Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие. Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

Термистор на схеме

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры. Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Терморезисторы NTC с инкапсулированным покрытием

Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.

Типичные области применения

Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.

Характеристика сопротивления-температуры

Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения

Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

ntc термисторы принцип действия основные характеристики и параметры. Смотреть фото ntc термисторы принцип действия основные характеристики и параметры. Смотреть картинку ntc термисторы принцип действия основные характеристики и параметры. Картинка про ntc термисторы принцип действия основные характеристики и параметры. Фото ntc термисторы принцип действия основные характеристики и параметры

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа. Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей.

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *