Сигнал параметр которого может принимать конечное число значений в пределах некоторого интервала
INFOблог
Поиск по этому блогу
воскресенье, 8 сентября 2013 г.
Непрерывные и дискретные сигналы
Тогда материальный объект (или среда), с помощью которого представляется та или иная информация будет являться носителем информации , а изменение какой-либо характеристики носителя мы будем называть сигналом .
Например, представим равномерно горящую лампочку, она не передает никакой информации. Но, если мы будем включать и выключать лампочку (т.е. изменять ее яркость), тогда с помощью чередований вспышек и пауз мы сможем передать какое-нибудь сообщение (например, посредством азбуки Морзе). Аналогично, равномерный гул не дает возможности передать какую-либо информацию, однако, если мы будем изменять высоту и громкость звука, то сможем сформировать некоторое сообщение (что мы и делаем с помощью устной речи).
При этом сигналы могут быть двух видов: непрерывный (или аналоговый ) и дискретный .
В учебнике даны следующие определения.
Непрерывный сигнал принимает множество значений из некоторого диапазона. Между значениями, которые он принимает, нет разрывов.
Дискретный сигнал принимает конечное число значений. Все значения дискретного сигнала можно пронумеровать целыми числами.
Немного уточним эти определения.
Сигнал называется непрерывным (или аналоговым), если его параметр может принимать любое значение в пределах некоторого интервала.
Сигнал параметр которого может принимать конечное число значений в пределах некоторого интервала
В предыдущем шаге было сказано, что передача информация производится с помощью сигналов, а самим сигналом является изменение некоторой характеристики носителя с течением времени. При этом в зависимости от особенностей изменения этой характеристики (т.е. параметра сигнала) с течением времени выделяют два типа сигналов: непрерывные и дискретные.
Если обозначить Z – значение параметра сигнала, а t – время, то зависимость Z(t) будет непрерывной функцией (рис.1(а)).
Рис.1. Непрерывные и дискретные сигналы
Примерами непрерывных сигналов являются речь и музыка, изображение, показание термометра (параметр сигнала – высота столба спирта или ртути – имеет непрерывный ряд значений) и пр.
Пример дискретных сигналов представлен на рис. 1(б). Как следует из определения, дискретные сигналы могут быть описаны дискретным и конечным множеством значений параметров
Принципиальным и важнейшим различием непрерывных и дискретных сигналов является то, что дискретные сигналы можно обозначить, т.е. приписать каждому из конечного числа возможных значений сигнала знак, который будет отличать данный сигнал от другого.
Природа знака может любой – жест, рисунок, буква, сигнал светофора, определенный звук и т.д. Природа знака определяется носителем сообщения и формой представления информации в сообщении.
Сами по себе знак или буква не несут никакого смыслового содержания. Однако такое содержание им может быть приписано – в этом случае знак будет называться символом. Например, силу в физике принято обозначать буквой F – следовательно, F является символом физической величины сила в формулах. Другим примером символов могут служить пиктограммы, обозначающие в компьютерных программах объекты или действия.
Таким образом, понятия «знак», «буква» и «символ» нельзя считать тождественными, хотя весьма часто различия между ними не проводят, поэтому в информатике существуют понятия «символьная переменная», «кодировка символов алфавита», «символьная информация» – во всех приведенных примерах вместо термина «символьный» корректнее было бы использовать «знаковый» или «буквенный».
Представляется важным еще раз подчеркнуть, что понятия знака и алфавита можно отнести только к дискретным сообщениям.
MT1402: Теоретические основы информатики. Имитационное моделирование
В предыдущем пункте было сказано, что передача информации производится с помощью сигналов, а самим сигналом является изменение некоторой характеристики носителя с течением времени. При этом в зависимости от особенностей изменения этой характеристики (т.е. параметра сигнала) с течением времени выделяют два типа сигналов: непрерывные и дискретные.
Сигнал называется непрерывным (или аналоговым), если его параметр может принимать любое значение в пределах некоторого интервала.
Сигнал называется дискретным, если его параметр может принимать конечное число значений в пределах некоторого интервала.
Пример дискретных сигналов представлен на рис. 1.1,б. Как следует из определения, дискретные сигналы могут быть описаны дискретным и конечным множеством значений параметров
Принципиальным и важнейшим различием непрерывных и дискретных сигналов является то, что дискретные сигналы можно обозначить, т.е. приписать каждому из конечного чисел возможные значения сигнала знак, который будет отличать данный сигнал от другого
Набор знаков, в котором установлен порядок их следования, называется алфавитом.
Представляется важным еще раз подчеркнуть, что понятия знака и алфавита можно отнести только к дискретным сообщениям.
Информатика. 7 класс
Конспект урока
Информация, её свойства и классификация
Перечень рассматриваемых вопросов:
Полезность информации определяется субъектом, получившим информацию в зависимости от объёма возможностей её использования.
Ценность информации – свойство, определяемое её пригодностью к практическому использованию в различных областях целенаправленной деятельности.
Специальная информация – сведения, которые могут быть непонятны основной массе людей, но необходимы и понятны узкой социальной группе специалистов, которые эту информацию используют.
Массовая информация – сведения, понятные большей части населения.
Личная информация – сведения о каком-либо человеке, определяющие социальное положение и типы социальных взаимодействий.
Секретная информация – сведения для узкого круга, передаваемые по закрытым (защищённым) каналам и не предназначенные для посторонних.
1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
1. Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
2. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
4. Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.
Теоретический материал для самостоятельного изучения.
На прошлом уроке мы выяснили, что информатика – это наука, изучающая законы и методы работы с информацией. А что же такое информация? Это и предстоит выяснить сегодня на уроке.
Источниками информации для нас являются: радио, телевидение, другие люди, книги.
Информация для человека – это содержание получаемых им сообщений, расширяющее знания человека об окружающем мире и протекающих в нём процессах.
Каждый материальный объект, с которым происходят изменения, становится источником информации или об окружающей среде, либо о происходящих в этом объекте процессах.
Информация доставляется к нам с помощью сигналов различного типа. Они могут быть: световые, тепловые, звуковые, механические, электрические и другие.
Например, пылающий костёр одновременно может нести как световой, так и тепловой сигнал.
Непрерывный сигнал принимает бесконечное множество значений из некоторого диапазона. Между значениями, которые он принимает, нет разрывов.
Например: игра на скрипке.
Схематично непрерывный сигнал можно представить в виде непрерывной кривой линии:
Сигнал называется дискретным, если его параметр может принимать конечное число значений в пределах некоторого интервала.
Например: текст книги, время на часах.
Информация поступает к человеку в виде сигналов внешнего мира. Но, прежде, чем попасть в мозг для анализа и осмысления, эти сигналы воспринимаются нашими органами чувств. В соответствии со способом восприятия различают следующие виды информации:
По форме представления:
Чтобы комфортно жить в современном, быстро меняющемся мире и принимать правильные решения, человеку нужна информация, которой присущи определённые свойства:
например, заявление: «Гора низкая» необъективно;
например, достоверно известно, что Земля вращается вокруг Солнца;
например: Сумма углов треугольника равна 180 градусов, но только для прямоугольной системы координат на плоскости;
например, оповещение на мобильный телефон: «Деньги на вашем счету заканчиваются» – актуальна, если прочитана вовремя;
например, голосовое объявление на вокзале: «Отправление поезда через 5 минут».
Рассмотрим задание, в котором требуется из двух выражений выбрать то, которое соответствует выделенному свойству:
Необъективная: вода горячая; температура воды +70 0 С
Пояснение: необъективным является выражение «вода горячая», т.к. зависит от мнения человека: одному человеку вода покажется горячей, другому эта же вода покажется просто тёплой.
Неполная: концерт состоится вечером; концерт состоится в 18.00 на стадионе нашего города.
Пояснение: информация «концерт состоится вечером» является неполной, во избежание ошибки, требуется пояснение, где и в какое время состоится концерт.
Актуальная: завтра у вас состоится контрольная работа; в 1840 году на счёте прадедушки моего знакомого было 64 лиры.
Пояснение: информация «завтра у вас состоится контрольная работа» актуальна, а информация «в 1840 году на счёте прадедушки моего знакомого было 64 лиры» неактуальна и содержит устаревшие сведения.
Достоверность: люди бессмертны; день сменяет ночь.
Пояснение: информация «день сменяет ночь» соответствует современным научным представлениям и является достоверной, а вот научных доказательств бессмертия людей нет.
Понятность: курс доллара 67 рублей 56 копеек; ドル67.56ルーブル
Пояснение: первая информация «Курс доллара 67 рублей 56 копеек» записана на понятном для нас русском языке, в отличие от иероглифов второго предложения.
На уроке мы изучили основные свойства информации и виды информации по способу восприятия.
Разбор заданий тренировочного модуля.
Определите, о каком виде информации идёт речь в следующих отрывках.
Ёжик любил рисовать цветы. Он показал ей свои рисунки, это было нечто! Цветы Ёжика были настолько диковинные и фантастические, иногда даже совсем нереальные, но всё же это были цветы.
Пояснение: информация получена в результате просмотра рисунков, с помощью органов зрения – визуальная.
И вот однажды вечером, когда Анюта играла во дворе со своей подругой Ритой, они услышали чей-то тоненький голосок:
– Наверное, это котёнок! – сразу догадались девочки.
Пояснение: информация получена с помощью органов слуха и называется аудиальной.
Помню… тонкий аромат опавшей листвы и – запах антоновских яблок, запах мёда и осенней свежести.
Пояснение: информация о запахах получена с помощью органов обоняния и называется обонятельной.
3. Формы представления информации
Сигнал называется непрерывным (или аналоговым), если его параметр может принимать любое значение в пределах некоторого интервала
Если обозначить Z- значение параметра сигнала, at- время, то зависимость Z(t) будет непрерывной функцией (рис.1.2,а).
Рис. 1.2. Непрерывные (а) и дискретные (б) сигналы
Сигнал называется дискретным, если его параметр может принимать конечное число значений в пределах некоторого интервала.
Пример дискретных сигналов представлен на рис. 1.2,б. Как следует из определения, дискретные сигналы могут быть описаны дискретным и конечным множеством значений параметров
Принципиальным и важнейшим различием непрерывных и дискретных сигналов является то, что дискретные сигналы можно обозначить, т.е. приписать каждому из конечного чисел возможные значения сигнала знак, который будет отличать данный сигнал от другого.
Вся совокупность знаков, используемых для представления дискретной информации, называется набором знаков.
Таким образом, набор есть дискретное множество знаков.
Набор знаков, в котором установлен порядок их следования, называется алфавитом.
Понятия знака и алфавита можно отнести только к дискретным сообщениям.
Так как имеются два типа сообщений, между ними, возможны четыре варианта преобразований (см. рис. 1.3):
Рис. 1.3. Варианты преобразований
Осуществимы и применяются на практике все четыре вида преобразований. Примерами устройств, в которых осуществляется преобразование типа N1 → N2 являются микрофон (звук преобразуется в электрические сигналы); магнитофон и видеомагнитофон (чередование областей намагничения ленты превращается в электрические сигналы, которые затем преобразуются в звук и изображение); телекамера (изображение и звук превращаются в электрические сигналы); радио- и телевизионный приемник (радиоволны преобразуются в электрические сигналы, а затем в звук и изображение); аналоговая вычислительная машина (одни электрические сигналы преобразуются в другие). Особенностью данного варианта преобразования является то, что оно всегда сопровождается частичной потерей информации. Потери связаны с помехами (шумами), которые порождает само информационное техническое устройство и которые воздействуют извне. Эти помехи примешиваются к основному сигналу и искажают его. Поскольку параметр сигнала может иметь любые значения (из некоторого интервала), то невозможно отделить ситуации: был ли сигнал искажен или он изначально имел такую величину. (В ряде устройств искажение происходит в силу особенностей преобразования в них сообщения, например в черно-белом телевидении теряется цвет изображения; телефон пропускает звук в более узком частотном интервале, чем интервал человеческого голоса; кино- и видеоизображение оказываются плоскими, они утратили объемность.)
Развертка по времени состоит в том, что наблюдение за значением величины Z производится не непрерывно, а лишь в определенные моменты времени с интервалом Δt:
Совместное выполнение обеих операций эквивалентно нанесению масштабной сетки на график Z(t), как показано на рис.1.4. Далее, в качестве пар значений
Рис. 1.4. Дискретизация аналогового сигнала за счет операций развертки по времени и квантования по величине
Ответом на эти сомнения служит так называемая теорема отсчетов, доказанная в 1933г. В. А. Котельниковым (по этой причине ее иногда называют его именем), значение которой для решения проблем передачи информации было осознано лишь в 1948г. после работ К. Шеннона. Теорема, которую примем без доказательства, но результаты будем в дальнейшем использовать, гласит:
Непрерывный сигнал можно полностью отобразить и точно воссоздать по последовательности измерений или отсчетов величины этого сигнала через одинаковые интервалы времени, меньшие или равные половине периода максимальной частоты, имеющейся в сигнале.
Комментарии к теореме:
Теорема касается только тех линий связи, в которых для передачи используются колебательные или волновые процессы.
Смысл теоремы в том, что дискретизация не приведет к потере информации и по дискретным сигналам можно будет полностью восстановить исходный аналоговый сигнал, если развертка по времени выполнена в соответствии со следующим соотношением:
Можно перефразировать теорему отсчетов:
Развертка по времени может быть осуществлена без потери информации, связанной с особенностями непрерывного (аналогового) сигнала, если шаг развертки не будет превышать Δt, определяемый в соответствии с (1.2).
Например, для точной передачи речевого сигнала с частотой до Vm = 4000 Гц при дискретной записи должно производиться не менее 8000 отсчетов в секунду; в телевизионном сигнале Vm ≈ 4 МГц, следовательно, для его точной передачи потребуется около 8000000 отсчетов в секунду.
Выбор шага развертки по времени и квантования по величине сигнала лежат в основе оцифровки звука и изображения. Примерами устройств, в которых происходят такие преобразования, являются сканер, модем, устройства для цифровой записи звука и изображения, лазерный проигрыватель, графопостроитель. Термины «цифровая запись», «цифровой сигнал» следует понимать как дискретное представление с применением двоичного цифрового алфавита.
Таким образом, преобразование сигналов типа N → D, как и обратное D → N, может осуществляться без потери, содержащейся в них информации.
Таким образом, за исключением N1 → N2 в остальных случаях оказывается возможным преобразование сообщений без потерь содержащейся в них информации. При этом на первый взгляд непрерывные и дискретные сообщения оказываются равноправными. Однако на самом деле это не так. Сохранение информации в преобразованиях N → D и D → N обеспечивается именно благодаря участию в них дискретного представления. Другими словами, преобразование сообщений без потерь информации возможно только в том случае, если хотя бы одно из них является дискретным. В этом проявляется несимметричность видов сообщений и преимущество дискретной формы. К другим ее достоинствам следует отнести:
• простоту и, как следствие, надежность и относительную дешевизну устройств по обработке информации;
• точность обработки информации, которая определяется количеством обрабатывающих элементов и не зависит от точности их изготовления;