Система метрологических параметров которая характеризует отклик человеческого глаза

Средства измерений

Метрологические свойства СИ – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.

Метрологические характеристики, устанавливаемые НД, называют нормируемыми метрологическими характеристиками.

Все метрологические свойства СИ можно разделить на две группы:

К основным метрологическим характеристикам, определяющим область применения СИ, относятся диапазон измерений и порог чувствительности.

Диапазон измерений – область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.

Порог чувствительности – наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.

К метрологическим свойствам второй группы относятся два главных свойства точности: правильность и прецизионность результатов.

Точность измерений СИ определяется их погрешностью.

Погрешность средства измерений – это разность между показаниями СИ и истинным (действительным) значением измеряемой величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением. Для рабочего СИ за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, – значение величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значение СИ, которое является в поверочной схеме вышестоящим по отношению к подчиненному СИ, подлежащему поверке.

Погрешности СИ могут быть классифицированы по ряду признаков, в частности:

Наибольшее распространение получили метрологические свойства, связанные с абсолютными и относительными погрешностями.

Систематическая погрешность – cоставляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность градуировки, в частности погрешность показаний прибора с круговой шкалой и стрелкой, если ось последней смещена на некоторую величину относительно центра шкалы. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок. При химическом анализе систематическая погрешность проявляется в случаях, когда метод измерений не позволяет полностью выделить элемент или когда наличие одного элемента мешает определению другого.
Величина систематической погрешности определяет такое метрологическое свойство, как правильность измерений СИ.

Случайная погрешность – составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономерности. Они неизбежны и неустранимы, всегда присутствуют в результатах измерения. При многократном и достаточно точном измерении они порождают рассеяние результатов.

Характеристиками рассеяния являются средняя арифметическая погрешность, средняя квадратическая погрешность, размах результатов измерений. Поскольку рассеяние носит вероятностный характер, то при указании на значения случайной погрешности задают вероятность.

Оценка погрешности измерений СИ, используемых для определения показателей качества товаров, определяется спецификой применения последних. Например, погрешность измерения цветового тона керамических плиток для внутренней отделки жилища должна быть по крайней мере на порядок ниже, чем погрешность измерения аналогичного показателя серийно выпускаемых картин, сделанных цветной фотопечатью. Дело в том, что разнотонность двух наклеенных рядом на стену кафельных плиток будет бросаться в глаза, тогда как разнотонность отдельных экземпляров одной картины заметно не проявится, так как они используются разрозненно.

Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводятся в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.

Класс точности СИ – обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса.

Классы точности присваиваются средствам измерений при их разработке (по результатам приемочных испытаний). В связи с тем, что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки (калибровки). Таким образом, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Источник

Метрологические характеристики средств измерений

Качество измерений зависит от многих факторов. В некоторых случаях, однако, требуется знать, какое влияние на результаты измерений и их точность оказывают именно средства измерений. К таким случаям относятся:

априорная оценка точности измерений. При ее выполнении наряду с другими факторами должна учитываться точность средств измерений;

выбор средств измерений, применение которых в известных условиях обеспечит требуемую точность измерений. Эта задача является обратной по отношению к предыдущей;

сравнение различных типов средств измерений по их метрологическим свойствам как на этапе проектирования, так и в процессе эксплуатации;

использование средств измерений в качестве комплектующих при разработке сложных измерительных систем. Одни и те же требования к измерительной системе могут удовлетворяться при различных сочетаниях средств измерений, используемых в качестве комплектующих. Оптимальное сочетание должно быть результатом технико-экономического обоснования;

определение точности информационных систем расчетным путем, когда экспериментальное решение этой задачи связано с большими трудностями или вообще невозможно из-за специфики условий работы. Эта же задача возникает при проектировании информационных систем.

Характеристики свойств средств измерений, оказывающие влияние на результаты измерений и их точность, называются метрологическими характеристиками средств измерений.

Они бывают двух видов:

1. Метрологические характеристики, в которых используется информация о размере единицы измерения. К этому виду относятся следующие группы метрологических характеристик:

1.1. Характеристики, предназначенные для определения результатов измерений (до внесения поправок): функция преобразования измерительного преобразователя, а также измерительного прибора с неименованной шкалой или со шкалой, отградуированной в единицах, отличных от единиц входной величины; значение однозначной или значения многозначной меры; цена деления шкалы измерительного прибора или многозначной меры; цена единицы наименьшего разряда кода средств измерений, предназначенных для выдачи результатов в цифровом коде.

1.2. Характеристики качества показаний — точности и правильности. Точность показания определяется его средним квадратическим отклонением или его аналогом. Правильность обеспечивается внесением поправки, устанавливаемой при испытаниях средства измерений в целях утверждения типа. Эта поправка является одной из составляющих суммарной поправки, которая вносится в показание средства измерений.

1.3. Динамические характеристики средств измерений (полные и частные), учитывающие их инерционные свойства в особых условиях, когда измеряемая величина меняется во времени.

2. Метрологические характеристики, в которых не используется информация о размере единицы измерения. К этому виду относятся следующие группы метрологических характеристик:

2.1. Характеристики, предназначенные для определения результатов измерений (до внесения поправок). К ним относятся: вид выходного кода, число разрядов кода, если средство измерений предназначено для выдачи результатов в цифровом коде.

2.2. Характеристики чувствительности средств измерений к влияющим величинам. К ним относятся функции плияния и учета изменений метрологических характеристик средств измерений, вызванных изменениями влияющих величин в установленных пределах.

2.3. Характеристики взаимодействия с объектами или устройствами на входе и выходе средств измерений. Примерами характеристик этой группы являются входной и выходной импедансы линейного измерительного преобразователя.

2.4. Неинформативные параметры выходного сигнала, обеспечивающие нормальную работу устройств, подключенных к средству измерений. Например, выходным сигналом преобразователя напряжения в среднюю частоту следования импулыов является последовательность импульсов. Для определения значения измеряемого напряжения к выходу преобразователя подключается частотомер. Он будет нормально работать только в случае, если амплитуда и форма импульсов прео6разователя, хотя они и не несут информации о значении измеряемого напряжения, удовлетворяют определенным требованиям. В противном случае частотомер будет измерять частоту следования этих импульсов неточно либо вообще не будет работать.

Метрологические характеристики являются показателями качества и технического уровня всех без исключения средств измерений. Они относятся к априорной информации, используемой:

— для определения результатов измерений и расчетной оценки характеристик инструментальной составляющей погрешности или неопределенности измерений;

— для расчета метрологических характеристик каналов измерительных систем, состоящих из средств измерений с нормированными метрологическими характеристиками;

— для оптимального выбора средств измерений.

Сведения о них, полученные при испытаниях средств измерений в целях утверждения типа, содержатся в нормативно-технических документах на средства измерений. В этих же документах приводятся требования (нормы), которым должны удовлетворять металогические характеристики всех серийно выпускаемых средств измерений данного типа. Соответствие этим требованиям метрологических характеристик каждого отдельного экземпляра средств измерений должно проверяться.

Проверка соответствия метрологических характеристик нормам и установление на этой основе пригодности средств измерений к применению производится при их поверке.

Источник

ЧИТАТЬ КНИГУ ОНЛАЙН: Метрология, стандартизация и сертификация: конспект лекций

НАСТРОЙКИ.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза

СОДЕРЖАНИЕ.

СОДЕРЖАНИЕ

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза

А. С. Якорева, В. А. Бисерова, Н. В. Демидова

Метрология, стандартизация и сертификация: конспект лекций

ЛЕКЦИЯ № 1. Метрология

1. Предмет и задачи метрологии

С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления объема, веса, длины, времени и т. п. Данные подобных измерений помогают освоить количественную характеристику окружающего мира. Крайне важна роль подобных измерений при развитии цивилизации. Сегодня никакая отрасль народного хозяйства не могла бы правильно и продуктивно функционировать без применения своей системы измерений. Ведь именно с помощью этих измерений происходит формирование и управление различными технологическими процессами, а также контролирование качества выпускаемой продукции. Подобные измерения нужны для самых различных потребностей в процессе развития научно—технического прогресса: и для учета материальных ресурсов и планирования, и для нужд внутренней и внешней торговли, и для проверки качества выпускаемой продукции, и для повышения уровня защиты труда любого работающего человека. Несмотря на многообразие природных явлений и продуктов материального мира, для их измерения существует такая же многообразная система измерений, основанных на очень существенном моменте – сравнении полученной величины с другой, ей подобной, которая однажды была принята за единицу. При таком подходе физическая величина расценивается как некоторое число принятых для нее единиц, или, говоря иначе, таким образом получается ее значение. Существует наука, систематизирующая и изучающая подобные единицы измерения, – метрология. Как правило, под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

Происхождение самого термина «метрология» возводя! к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец XX в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Следует отметить и особое участие в создании этой дисциплины Д. И. Менделеева, которому подевалось вплотную заниматься метрологией с 1892 по 1907 гг… когда он руководил этой отраслью российской науки. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения. Важным понятием в науке метрологии является единство измерений, под которым подразумевают такие измерения при которых итоговые данные получаются в узаконенных единицах, в то время как погрешности данных измерений получены с заданной вероятностью. Необходимость существования единства измерений вызвана возможностью сопоставления результатов различных измерений, которые были проведены в различных районах, в различные временные отрезки, а также с применением разнообразных методов и средств измерения.

Следует различать также объекты метрологии:

1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во—первых, общие правила, нормы и требования, во—вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Надо сказать, что, их правильная формулировка и толкование имеют первостепенное значение, так как восприятие каждого человека индивидуально и многие, даже общепринятые термины, понятия и определения он трактует по—своему, используя свой жизненный опыт и следуя своим инстинктам, своему жизненному кредо. А для метрологии очень важно толковать термины однозначно для всех, поскольку такой подход дает возможность оптимально и целиком понимать какое— либо жизненное явление. Для этого был создан специальный стандарт на терминологию, утвержденный на государственном уровне. Поскольку Россия на сегодняшний момент воспринимает себя частью мировой экономической системы, постоянно идет работа над унификацией терминов и понятий, создается международный стандарт. Это, безусловно, помогает облегчить процесс взаимовыгодного сотрудничества с высокоразвитыми зарубежными странами и партнерами. Итак, в метро логии используются следующие величины и их определения:

1) физическая величина, представляющая собой общее свойство в отношении качества большого количества физических объектов, но индивидуальное для каждого в смысле количественного выражения;

2) единица физической величины, что подразумевает под собой физическую величину, которой по условию присвоено числовое значение, равное единице;

3) измерение физических величин, под которым имеется в виду количественная и качественная оценка физического объекта с помощью средств измерения;

4) средство измерения, представляющее собой техническое средство, имеющее нормированные метрологические характеристики. К ним относятся измерительный прибор, мера, измерительная система, измерительный преобразователь, совокупность измерительных систем;

5) измерительный прибор представляет собой средство измерений, вырабатывающее информационный сигнал в такой форме, которая была бы понятна для непосредственного восприятия наблюдателем;

6) мера – также средство измерений, воспроизводящее физическую величину заданного размера. Например, если прибор аттестован как средство измерений, его шкала с оцифрованными отметками является мерой;

7) измерительная система, воспринимаемая как совокупность средств измерений, которые соединяются друг с другом посредством каналов передачи информации для выполнения одной или нескольких функций;

8) измерительный преобразователь – также средство измерений, которое производит информационный измерительный сигнал в форме, удобной для хранения, просмотра и трансляции по каналам связи, но не доступной для непосредственного восприятия;

9) принцип измерений как совокупность физических явлений, на которых базируются

Источник

Система световых величин

Нечеткое представление о тех или иных световых величинах часто является причиной серьезных ошибок, которые допускают специалисты при проектировании и эксплуатации светотехнических комплексов, техники и оборудования.

Знание световых величин необходимо студентам и профессионалам, работающим на теле-, видео- или киностудиях, и даже любителям, снимающим домашнее видео. Это поможет правильно ориентироваться в изобилии источников света, светофильтров, осветительных приборов, разобраться с функциями видеокамер, связанными со светочувствительностью, контрастностью и цветовоспроизведением.

Схема формирования системы световых величин представлена ниже.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза

Поскольку световые величины являются производными от энергетических фотометрических величин, то их целесообразно рассматривать в совокупности, основываясь на первичности последних. Фотометрическими называют такие величины и единицы, которые характеризуют оптическое излучение. Термин «фотометрия» образован из двух греческих слов: «фос» — свет и «метрео» — измеряю и означает световые измерения. Различают энергетические фотометрические и редуцированные фотометрические системы величин.

Энергетические величины — характеризуют излучение безотносительно к его воздействию на какой-либо приемник излучения. Они выражаются в единицах, образованных на основе единицы энергии (джоуль), a в их обозначениях используется дополнительный индекс «е» (We, Fe, Ie).

Редуцированные, или эффективные, фотометрические величины характеризуют излучение, падающее на заданный селективный приемник излучения. Если в качестве такого приемника служит глаз человека, то такие величины называют «световыми», а их совокупность — «системой световых величин».

Оптическое излучение соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и состоит из трех областей: ультрафиолетовой (УФ), видимой и инфракрасной (ИК).

Видимое излучение (свет), попадая на сетчатую оболочку глаза, в результате осознанного превращения энергии внешнего раздражителя вызывает зрительное ощущение. Диапазон длин волн монохроматичеких составляющих данного излучения соответствует 380…780 нм.

Длины волн монохроматических составляющих инфракрасного излучения больше длин волн видимого излучения (но не более 1 мм). МКО предложила следующее деление области ИК-излучений: ИК-А — 780…1400 нм; ИК-В — 1400…3000 нм; ИК-С — 3000 нм (3 Мкм)…106 нм (1 мм).

Мощное ультрафиолетовое и инфракрасное излучение оказывают на человека вредное воздействие: ультрафиолетовое вызывает ожоги кожи и глаз, а инфракрасное затрудняет работу из-за большого количества выделяемого тепла.

Спектральный состав излучения источников света и спектральная чувствительность глаза

Спектры источников света получаются при разложении их излучения по длинам волн (l) спектральными приборами и характеризуются функцией распределения энергии испускаемого света в зависимости от длины волны.

Монохроматическое излучение — это излучение одной частоты или длины волны. Излучение в интервале длин волн до 10 нм называется однородным. Совокупность монохроматических или однородных излучений образует спектр. С изменением длины волны монохроматического излучения меняется и его цветовое восприятие глазом.

При разложении призмой видимого (белого) света в непрерывный спектр в последнем цвета плавно переходят один в другой так, что точно определить границы каждого цвета и связать их с определенной длиной волны трудно. Но приблизительно они выглядят так:

Монохроматические излучения с длиной волны более 700 нм и менее 400 нм практически уже не воспринимаются глазом.

Различают сплошные (непрерывные), полосатые, линейчатые и смешанные спектры. Сплошными (непрерывными) спектрами называются такие, в которых монохроматические составляющие заполняют без разрывов интервал длин волн, в пределах которого происходит излучение. Такой спектр характерен для ламп накаливания и других тепловых излучателей. В полосатых спектрах монохроматические составляющие образуют дискретные группы (полосы) в виде множества близко расположенных линий. Линейчатые спектры состоят из отдельных, не примыкающих друг к другу монохроматических излучений, а смешанные содержат комбинацию спектров. Полосатые, линейчатые и смешанные спектры характерны для дуговых и газоразрядных источников света.

Из всего спектра излучений источников света только видимый свет, воздействуя на светочувствительные элементы глаза, вызывает зрительное ощущение. Однородные видимые излучения, попадая в глаз, вызывают ощущение света определенного цвета.

Чувствительность глаза к излучениям различных длин волн неодинакова. Свойство глаза по-разному оценивать одинаковую лучистую энергию или мощность различных длин волн видимого спектра называется спектральной чувствительностью.

Особенность нашего зрения такова, что при равной мощности излучения всех длин волн видимого спектра мы лучше всего воспринимаем желто-зеленый цвет, т. е. излучение с длиной волны, равной 555 нм. Поэтому чувствительность глаза на этой длине волны принимается за единицу, а для остальных длин волн светового излучения она будет меньше единицы (при одинаковой мощности излучения).

Способы измерения спектральной чувствительности глаза достаточно сложны. Начиная с середины ХIX века исследованиям спектральной чувствительности глаза было посвящено большое число работ. В результате проведенных работ установлено, что у разных наблюдателей спектральная чувствительность глаз заметно различается, поэтому необходимо ввести усредненную оценку восприятия видимого спектра глазом человека. Такая усредненная кривая спектральной чувствительности светоадаптированного глаза (рис.1, кривая 1) была определена при поле зрения, равном 2O, что соответствует угловому размеру центрального углубления желтого пятна сетчатки. Усредненная кривая спектральной чувствительности глаза, принятая Международным соглашением еще в 1924 г., используется и сейчас при всех расчетах светового воздействия сложного по составу излучения.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза
Рис. 1. Относительная спектральная чувствительность глаза

Спектральная чувствительность палочкового зрения (рис.1, кривая 2 — глаз адаптирован к ночным яркостям) характеризует работу глаза при столь малом количестве света, что его не хватает даже для частичного возбуждения колбочек. Кривая относительной спектральной чувствительности глаза имеет максимум на длине волны в 507 нм.

Следует отметить, что относительная спектральная чувствительность глаза тождественна таким понятиям, как спектральная эффективность глаза и кривая видности глаза.

Для глаза, адаптированного к дневным яркостям (кривая 1), на длинах волн 510 нм и 610 нм характерно двукратное снижение чувствительности. Если же глаз адаптирован к ночным яркостям (кривая 2), то снижение чувствительности в два раза наблюдается на длинах волн 455 нм и 550 нм. В табл. 1 приведены усредненные значения спектральной чувствительности глаза в условиях дневной V(λ) и ночной V’(λ) адаптации (кривые 1 и 2 соответственно).

Таблица 1. Относительная спектральная чувствительность глаза
Длина волны λ, нмV(λ)V'(λ)Длина волны λ, нмV(λ)V'(λ)
3800,000040,00005895800,8700,1212
3900,000120,0022095900,7570,0685
4000,00040,009296000,6310,03315
4100,00120,34896100,5030,01593
4200,00400,09666200,3810,00737
4300,01160,19986300,2650,003335
4400,0230,32816400,1750,001497
4500,0380,4556500,1070,000677
4600,0600,5676600,0610,0003129
4700,0910,6766700,0320,0001480
4800,1390,7936800,0170,0000715
4900,2080,9046900,00820,0000353
5000,3230,9827000,00410,0000178
5100,5030,9977100,00210,00000914
5200,7100.9357200,001050,000005092
5300,8620,8117300,000520,000002546
5400,9540,6507400,000250,000001379
5500,9950,4817500,000120,000000760
5551,0000,40157600,000060,000000428
5600,9950,32887700,000030,000000241
5700,9520,20767800,0000150,000000139

Максимумы на кривых 1 и 2, равные единице, относительны. Дело в том, что палочковый аппарат ночного зрения человека намного чувствительнее, и для восприятия предельно малого светового сигнала (например, едва видимой точки на темном фоне) палочкам необходима примерно в пятьсот раз меньшая мощность, чем колбочкам. При этом палочки, действующие при периферическом (боковом) зрении, не позволяют определить цвета точки, в то время как колбочки, фиксирующие точку при прямом зрении, дают возможность увидеть и ее цвет.

На спектральную чувствительность глаза оказывает влияние резкое изменение уровня освещенности, которое в естественных условиях можно наблюдать после захода и перед восходом Солнца. Например, во время захода Солнца происходит постепенное изменение аппарата зрения от колбочкового, которое описывается кривой 1, до палочкового, характеризующегося кривой 2, кривая спектральной чувствительности смещается в сторону коротких длин волн, а ее максимум — с 555 нм до 507 нм.

Кривая относительной спектральной чувствительности глаза является одной из основных характеристик светотехники, ее используют во всех определениях, световых и цветовых расчетах и определениях.

Лучистая энергия и лучистый поток

Энергию оптического излучения We принято называть лучистой. Если энергия переносится всей совокупностью длин волн, входящих в состав излучения, то она называется интегральной и измеряется в тех же единицах, что и другие виды энергии (джоуль, электрон-вольт).

Общая мощность, переносимая электромагнитным излучением независимо от его спектрального состава, в светотехнике получила название поток излучения или лучистый поток, обозначается Fe и измеряется в ваттах:

Световой поток

Световой поток F является одной из основных световых величин и представляет собой тот же лучистый поток, но оценивается по световому ощущению, которое он производит на глаз человека. Т. е. световой поток — это величина, образуемая от лучистого потока путем умножения на коэффициенты спектральной чувствительности глаза по каждой из длин волн видимого спектра.

Если энeргия излучается только на одной из длин волн λ, то световой поток этого монохроматического излучения будет равен:

При таком представлении световой поток измеряется в ваттах, как и лучистый. Чтобы различать эти потоки, для обозначения светового потока добавляется слово «световой», т. е. получается световой ватт. Правда, такая размерность светового потока практически не используется, поскольку система СИ рекомендует в качестве единиц светового потока люмены (от лат. lumen — свет).

Международным комитетом мер и весов в 1977 г. было принято, что в фотометрии лучистый поток 1 Вт на длине волны в λ =555 нм (частота излучения — 540.1012 Гц), обладающего наибольшей световой эффективностью, эквивалентен световому потоку 683 лм. Почему коэффициент для пересчета световых ватт в люмены равняется 683, будет рассказано ниже при рассмотрении понятия силы света. С учетом этого коэффициента формула для расчета светового потока (в люменах) для монохроматического излучения примет вид:

Для определения светового потока во всем диапазоне видимых излучений (380…780 нм) необходимо просуммировать все световые потоки монохроматических составляющих:

Таким образом, чтобы получить световой поток, излучаемый на любой длине волны видимого спектра, необходимо умножить 683 лм/Вт на соответствующий коэффициент относительной спектральной чувствительности (см. рис.1 и табл.1) и на значение лучистого потока на этой длине волны.

Например, световой поток натриевой лампы состоит из излучений на 589 нм и 589,6 нм. Из данных, приведенных в табл. 1, следует, что при лучистом потоке (мощности лампы), равном 10 Вт, V(589 нм) = 0,77, V(589,6 нм) = 0,765, световой поток составит:

F = 683·5·0,77 + 683·5·0,765 = 5242,025 лм.

Значения световых потоков для некоторых источников света приведены в табл. 2.

Таблица 2. Световые потоки некоторых источников света
Источник светаСветовой поток, лм
Лампа накаливания 220 В, 100 Вт1000
Лампа накаливания 220 В, 1000 Вт17000
Лампа накаливания 110 В, 10000 Вт295000
Лампа накаливания 220 В, 100 Вт400000
Поток, падающий на один квадратный метр
поверхности Земли в ясный солнечный день
100000

В качестве эталона одного люмена принят световой поток, излучаемый с поверхности абсолютно черного тела площадью 0,5305 мм² при температуре затвердевания платины, равной 2046°К. Государственный эталон, соответствующий международным соглашениям, был разработан профессором П. М. Тиходеевым. Он представляет собой двойной сосуд из оксида тория, заполненный платиной. Выходное отверстие сосуда формирует трубка из оксида тория, погруженная в платину. При расплавлении платины (под воздействием индукционных токов) отверстие трубки светится, как абсолютно черное тело.

Сила света

Сила света источника характеризует пространственную плотность светового потока, т. е. сила света в данном направлении равна отношению светового потока F к телесному углу ω. Для изотропного источника, создающего равномерное излучение, сила света составит:

a для точечного излучателя:

где 12,56 — телесный (пространственный) угол точечного излучателя.

В светотехнике источник света принято считать точечным, если расстояние от излучателя до приемника превышает линейные размеры излучателя не менее чем в 10 раз. Во многих случаях так и происходит — размеры источника света намного меньше расстояния от него до освещаемого объекта. Тогда правомерно будет считать точечным источником излучения такой, размеры которого настолько малы по сравнению с расстоянием до приемника, что ими можно пренебречь при расчетах. Если за точечный источник излучения принять равномерно излучающий диск диаметром d, то погрешность при расчетах в зависимости от расстояния r от диска до приемника составит 9% при r / d = 3 и 4% при r / d = 5.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза
Рис. 2. Телесный угол

Телесным углом называется часть пространства, ограниченная конической поверхностью, которую образуют множество линий, проходящих через одну общую вершину — точку O (рис.2).

Если вокруг вершины телесного угла описать сферу произвольного радиуса r, то коническая поверхность, ограничивающая телeсный угол, вырежет на поверхности сферы участок, площадь S которого будет пропорциональна квадрату радиуса, т. е.:

За единицу телесного угла — стерадиан (ср) — принят телесный угол, вырезающий участок сферы, площадь которого равна квадрату ее радиуса. Для точечного источника телесный угол равен:

ω = Sсферы / r² = 4·π·r² / r² = 4·π = 12,56 ср.

Для перехода от плоского угла Ω при вершине конуса к телесному ω можно использовать формулу:

Конус с телесным углом 1 ср имеет плоский угол при вершине 65,5°.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза
Рис. 3.Ориентация в пространстве вектора силы света

Сила излучения изотропного точечного источника света одинакова во всех направлениях. Сила излучения неизотропных источников зависит от направления и является функцией двух полярных углов α и β. За направление силы света I принимают ось телесного угла, ориентированного углами α и β в продольной и поперечной плоскостях (рис. 3). Например, если источник света имеет форму цилиндра, как газосветная лампа, то наибольшая сила света направлена перпендикулярно к оси цилиндра, а наименьшая — вдоль оси.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза
Рис. 4. Кривая силы света в полярной системе координат

Нередко можно встретить графическое изображение распределения силы света источника. Распределение в пространстве силы света источника излучения однозначно определяется его фотометрическим телом — частью пространства, которое ограничивается поверхностью, проведенной через концы радиус-векторов силы света. Если выполнить сечение фотометрического тела плоскостью, проходящей через начало координат, то получим кривую силы света (КСС) источника для данной плоскости сечения в виде плоской векторной диаграммы (рис. 4). КСС может быть представлена в полярной и прямоугольной системах координат. Она наглядно характеризует распределение света, излучаемого источником или светильником (источником света, помещенным в некоторую арматуру).

Первыми эталонами силы света служили свечи. Сохранились сведения об английской спермацетовой свече и немецких парафиновых и стеариновых свечах, которые изготавливались особо тщательно. Во Франции около 1800 г. свеча была заменена лампой Карселя, к фитилю которой подводилось сурепное масло. В Англии в 1887 г. была предложена пентановая лампа, в бесфитильной горелке которой сгорала смесь паров пентана и подогретого воздуха. В 1908 г. метрологические учреждения Англии, Франции и СШA ввели новый эталон силы света, для которого использовались тщательно изготовленные и постоянно контролируемые лампы накаливания (сначала угольные, а затем вольфрамовые), он был близок к пентанoвой свече. Этой единице было присвоено название «международная свеча». В настоящее время основной фотометрической единицей силы света является кандела (кд, от лат. candele — свет). С 1 января 1948 г. эта единица была повсеместно принята за основу измерения всех фотометрических величин. Во всех этих измерениях использовали свечение нескольких абсолютно черных тел, входивших в состав основных метрологических установок, которые были созданы национальными фотометрическими лабораториями ряда передовых индустриальных стран. Эталон канделы аналогичен эталону люмена, описанному выше. Таким образом, развитие фотометрии, как теоретической, так и экспериментальной, позволило установить коэффициент для пересчета световых ватт в люмены (683 лм/Вт) и сохранить преемственность в эталонах световых величин. Единица силы света является одной из семи основных единиц Международной системы СИ. В 1979 г. на 16-й Генеральной конференции по мерам и весам была принята такая формулировка: «Кандела есть сила света в заданном направлении от источника, испускающего монохроматическое излучение частоты 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср».

Из определения силы света как пространственной плотности светового потока следует, что одна кандела — это сила света точечного источника в тех направлениях, в которых он испускает световой поток в один люмен, одинаково распределенный внутри телесного угла в один стерадиан: 1 кд = 1 лм / 1 ср.

Основываясь на таком представлении силы света, световой поток можно выразить как:

В этом уравнении световой поток представляет ту часть общего светового потока, испускаемого источником света, которая приходится на телесный угол ω, а один люмен — световой поток, распространяющийся в пределах телесного угла один стерадиан, при силе света источника, помещенного в его вершину, равной одна кандела.

Если сила света меняется от одного направления к другому, то общий световой поток, испускаемый источником света в окружающее пространство, будет равен:

Освещенность

Освещенность представляет собой поверхностную плотность светового потока, падающего на освещаемую поверхность. При равномерном распределении светового потока F в пределах освещаемой поверхности S значение освещенности можно определить как:

Освещенность и сила света точечного источника света при нормальном падении лучей (поверхность перпендикулярна лучам) связаны следующим соотношением:

где r — расстояние от источника света до освещаемой поверхности.

Это выражение называется законом квадратов расстояний. Его сформулировал еще в 1604 г. немецкий астроном Иоганн Кеплер. Следует помнить, что освещенность будет оставаться постоянной вдоль пучка лучей только тогда, когда они параллельны.

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза
Рис. 5. К определению освещенности поверхности

Если лучи от источника падают на поверхность под углом φ к нормали (рис. 5), то тот же световой поток F распределяется по площади, в 1 / cosφ раз большей, чем S (по площади S / cosφ), и формула примет вид:

Закон квадратов расстояний приемлем для расчета освещенности, создаваемой осветительными приборами, но минимальное значение r определяется таким параметром осветительного прибора как рабочее расстояние.

Следует добавить, что освещенность поверхности может создаваться не одним источником, как показано на рис. 5, а любым числом произвольно расположенных источников, посылающих свет на освещаемую поверхность (или ее элемент) с различных направлений и под разными углами к ее нормали. Тогда общая освещенность будет равна сумме освещенностей поверхности в данной точке от различных источников света:

Эта формула представляет собой закон аддитивности, из которого следует, что общая освещенность равна сумме освещенностей поверхности в данной точке от различных источников света.

Единицей освещенности является люкс (лк, от лат. lux — свет). То есть, 1 лк = 1 лм / 1 м². Внесистемная единица освещенности: 1 фот = 1 лм / 1 см². В США, Англии и других странах в качестве единицы освещенности часто используется фут-кандела: 1 фут-кандела = 1 лм / 1 фут² = 10,764 лк.

Яркость

Яркость поверхности изотропных излучателей для заданного направления — это отношение силы света, излучаемого в данном направлении, к площади проекции светящейся поверхности на плоскость, перпендикулярную к этому направлению (рис. 6):

При равномерном освещении диффузно отражающей поверхности уравнение, связывающее яркость этой поверхности с ее освещенностью, будет иметь вид:

где ρ — коэффициент отражения поверхности.

Яркость — единственная из световых величин, которую глаз воспринимает непосредственно, и при отсутствии поглощения света в среде распространения она не зависит от расстояния. Уравнение, связывающее яркость объекта L, освещенность Eзр, создаваемую этим объектом на зрачке глаза, и телесный угол ω, в пределах которого глаз видит данный объект, можно представить как:

Таким образом, при удалении глаза от объекта, освещенность Eзр на его зрачке снижается, при этом одновременно уменьшается телесный угол ω, но значение яркости L остается неизменным (рис. 7).

Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть фото Система метрологических параметров которая характеризует отклик человеческого глаза. Смотреть картинку Система метрологических параметров которая характеризует отклик человеческого глаза. Картинка про Система метрологических параметров которая характеризует отклик человеческого глаза. Фото Система метрологических параметров которая характеризует отклик человеческого глаза
Рис. 7. Восприятие глазом яркости

Единицей яркости является кандела на квадратный метр (кд / м²). 1 кд / м² — это яркость такой плоской поверхности, которая в перпендикулярном направлении излучает силу света в 1 кд с 1 м² поверхности.

До момента принятия системы СИ в качестве основной единицы яркости использовали нит (нт, от лат. niteo — блестеть), численно эта единица эквивалентна кд / м².

Другой применяемой несистемной единицей является стильб (сб, от греческого stilbio — блестящий): 1 сб = 10000 нт = 10000 кд / м².

Часто в качестве несистемной единицы для измерения и расчета яркости отражающих свет поверхностей используется апостильб: 1 асб = 1 / π кд / м². Один апостильб — это яркость абсолютно белой, диффузно отражающей поверхности, имеющей освещенность, равную 1 люкс. При расчетах яркости диффузно отражающей поверхности в апостильбах яркость рассчитывается по формуле:

В США в качестве несистемной единицы яркости широко используется ламберт (лб), получившая свое название в честь немецкого ученого И. Ламберта. Коэффициенты для пересчета различных единиц яркости приведены в табл.3.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *