Значки на вольтметре что означают
Стрелочный вольтметр
Параметры и особенности стрелочных вольтметров
И хоть мы уже давно привыкли к цифровым вольтметрам, в природе всё ещё встречаются и стрелочные.
В некоторых случаях их применение может быть более удобным и практичным, чем использование современных цифровых.
Если в ваши руки попал стрелочный вольтметр, то желательно узнать его основные характеристики. Их легко определить по шкале и надписях на ней. В мои руки попал встраиваемый вольтметр М42300.
Внизу, под шкалой, как правило, есть несколько значков и указана модель прибора. Так, значок в виде подковы (или изогнутого магнита) означает, что это прибор магнитоэлектрической системы с подвижной рамкой.
На следующем снимке можно разглядеть такую подковку.
Горизонтальная чёрточка указывает на то, что данный измерительный прибор рассчитан на работу с постоянным током (напряжением).
Тут же стоит уточнить, почему речь идёт о постоянном токе. Не секрет, что стрелочными бывают не только вольтметры, но и огромное количество других измерительных приборов, например, тот же аналоговый амперметр или омметр.
Действие любого стрелочного прибора основано на отклонении катушки в поле магнита при прохождении постоянного тока по этой самой катушке. Чтобы отобразить с помощью стрелки показания на шкале прибора, ток должен быть постоянным.
Если он будет переменным, то стрелка будет отклоняться вправо-влево с частотой переменного тока, который протекает через обмотку катушки. Чтобы измерить величину переменного тока или напряжения в измерительный прибор встраивают выпрямитель.
Именно поэтому, под шкалой прибора указывается тип тока, с которым он способен работать: постоянным или переменным.
Далее на шкале прибора можно обнаружить целое или дробное число, вроде 1,5; 1,0 и подобное. Это класс точности прибора, выраженный в процентах %. Понятно, чем меньше число, тем лучше – показания будут точнее.
Также можно увидеть такой знак – две пересекающиеся черты под прямым углом. Этот знак указывает на то, что рабочее положение прибора вертикальное.
При горизонтальном положении показания могут быть менее точные. Иными словами прибор может «врать». Стрелочный вольтметр с таким значком лучше устанавливать в прибор вертикально и исключить существенный наклон.
Ещё один интересный знак – пятиконечная звезда с цифрой внутри.
Данный знак предупреждает о том, что между корпусом прибора и его магнитоэлектрической системой напряжение не должно превышать 2кВ (2000 вольт). На это стоит обращать внимание при эксплуатации вольтметра в высоковольтных установках. Если вы планируете использовать его в блоке питания на 12 – 50 вольт, то беспокоиться не стоит.
Как считывать показания со шкалы стрелочного вольтметра?
Для тех, кто впервые видит шкалу прибора, возникает вполне резонный вопрос: «А как же считывать показания?» На первый взгляд ничего непонятно .
На самом деле всё просто. Чтобы определить минимальное деление шкалы нужно определить ближайшее число (цифру) на шкале. Как видим на шкале нашего М42300 – это 2.
Вот мы и нашли минимальное деление шкалы. Таким образом, если стрелка прибора отклонится на 2 маленьких деления, то это будет означать, что напряжение равно 0,4V (2 * 0,2V = 0,4V).
Прикручиваем к клеммам вольтметра два провода ( соблюдаем полярность!), и подключаем севшую батарейку на 1,5 вольта или любую попавшуюся.
Оказалось, ток, потребляемый стрелочным вольтметром, составил всего 1 миллиампер (1 мА). Его достаточно, чтобы стрелка отклонилась на всю шкалу. Это очень мало. Поясню свой намёк.
Получается, что стрелочный вольтметр экономичнее цифрового. Посудите сами, любой цифровой измерительный прибор имеет дисплей (ЖК или светодиодный), контроллер, а также буферные элементы для управления дисплеем. И это только часть его схемы. Всё это потребляет ток, садит батарею или аккумулятор. И если в случае вольтметра с жидкокристаллическим дисплеем потребляемый ток невелик, то при наличии активного светодиодного индикатора, потребляемый ток будет уже существенный.
Вот и получается, что для портативных приборов с автономным питанием иногда разумнее использовать классический стрелочный вольтметр.
При подключении вольтметра к цепи следует помнить о нескольких простых правилах.
Во-первых, вольтметр (любой, хоть цифровой, хоть стрелочный) необходимо подключать параллельно той цепи или элементу, напряжение на котором планируется измерять или контролировать.
Во-вторых, следует учитывать рабочий диапазон измерений. Узнать его легко – достаточно взглянуть на шкалу и определить последнее число на шкале. Это и будет граничное напряжение для измерения данным вольтметром. Естественно, есть и универсальные вольтметры, с выбором предела измерения, но сейчас речь идёт о встраиваемом стрелочном вольтметре с одним пределом измерения.
Если подключить вольтметр, например, со шкалой измерения до 100 вольт, в цепь, где напряжение превышает эти 100 вольт, то стрелка прибора будет уходить за пределы шкалы, «зашкаливать». Такое положение дел рано или поздно приведёт к порче магнитоэлектрической системы.
Надеюсь, теперь вам будет проще определить основные характеристики стрелочного вольтметра, а самое главное, применить его в своих самоделках, например, встроив его в блок питания с регулируемым выходным напряжением . А если сделать светодиодную подсветку его шкалы, то он будет выглядеть вообще шикарно! Согласитесь, такой стрелочный вольтметр будет смотреться стильно и эффектно.
Расшифровка обозначений на мультиметре, что означают кнопки и значки?
Всем привет! Сегодня мы снова поговорим о таком приборе, как мультиметр. Этот прибор, который еще называют тестером предназначен для измерения основных характеристик электрической цепи, электроприборов, в автомобилях – в общем везде, где есть электричество.
Мы уже немножко разбирали в этой статье про мультиметры, сегодня более подробно коснемся того, что и как им можно мерить. Когда-то мультиметр был уделом лишь электриков. Однако сейчас им пользуются многие.
Существует много различных моделей мультиметров. Есть класс приборов для измерений только определенных характеристик, есть универсальные тестеры для проверки деталей и их харакеристик. Мультиметры условно сводятся к двум типам:
Поскольку цифровые приборы являются сейчас самыми распространенными, то описание этого прибора мы и рассмотрим на его примере. Ниже приведены основные обозначения, которые встречаются, практически на любой модели мультиметра.
Если осмотреть переднюю панель мультиметра, то на ней можно выделить восемь блоков с различными обозначениями:
Что показывает мультиметр при выборе различных режимов работы?
Они располагаются вокруг круглого переключателя, с помощью которого можно устанавливать необходимый режим. На переключателе место контакта обозначено точкой или рельефным треугольничком. Обозначения разделены на сектора. Практически все современные мультиметры имеют подобную разбивку и круглый переключатель.
сектор OFF. Если установить переключатель в это положение – прибор выключен. Есть и модели, которые автоматически выключаются через некоторое время. Это очень удобно, потому что я например во время работы его забываю выключать, да и не удобно когда меряешь, потом паяешь все время выключать его. Батареи хватает надолго.
2 и 8 – два сектора с обозначением V, этим символом обозначается напряжение в вольтах. Если просто символ V – то измеряется постоянное напряжение, если V
, измеряется переменное напряжение. Стоящие рядом цифры показывают диапазон измеряемого напряжения. Причем постоянное измеряется от 200m (милливольт) до 1000 вольт, а переменное от 100 до 750 вольт.
3 и 4 – два сектора для измерения постоянного тока. Красным выделен всего один диапазон для измерения тока до 10 ампер. Остальные диапазоны составляют: от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер.
В обычной жизни десяти ампер вполне хватает, при измерении силы тока мультиметр включается в цепь путем подключения щупов в нужное гнездо, специально предназначенное для измерения силы тока. Как-то раз я впервые попробовал измерить силу тока в розетке своим первой простенькой моделью тестера. Пришлось менять щупы на новые — штатные выгорели.
5 (пятый) сектор. Значок похож на Wi-Fi. 🙂 Установка переключателя в этом положении позволяет проводить звуковую прозвонку цепи например нагревательного элемента. Например, на свой мотоцикл я поставил ручки с подогревом на руль. Пришлось наращивать провода при помощи пайки.
После пайки проверил нет ли обрыва и проходит ли ток. И так каждый провод, зато все работает.
6 (шестой) сектор – установка переключателя в данное положение проверяет исправность диодов. Проверка диодов — очень востребованная тема среди автомобилистов. Можно самому проверить исправность например диодного моста автомобильного генератора:
7 – символ Ω. Здесь измеряется сопротивление 0 до 200, 2000 Ом, от 0 до 20, 200 или 2000 кОм. Так же очень востребованный режим. В любой электрической схеме больше всего элементов сопротивления. Бывает, что измерением сопротивления быстро находишь неисправность:
Что такое режим HFE на мультиметре?
Переходим к более продвинутым функциям Есть на мультиметре такой тип измерений, как HFE. Это проверка транзисторов, или коэффициента передачи тока транзистора. Для такого измерения имеется специальный разъем.
Транзисторы — важный элемент, их нет пожалуй только в лампочке, но и там они наверное уже скоро появятся. Транзистор — один из самых уязвимых элементов. Они выгорают чаще всего из- за скачков напряжения и т.д. Я недавно заменил два транзистора в зарядном устройстве для автомобильного аккумулятора. Для проверки использовал тестер, транзисторы выпаивал.
Выводы разъема обозначены такими буквами, как «E, B и C». Это означает следующее: «Е» — эмиттер, «В» — база, и «С» — коллектор. Обычно у всех моделей есть возможность измерять оба типа транзисторов. У недорогих моделей мультиметров бывает весьма неудобно проверять выпаянные транзисторы из-за их коротких, обрезанных ножек. А новые — самое то :):). Смотрим видео, как проверить исправность транзистора с помощью тестера:
Транзистор в зависимости от его типа (PNP или NPN) вставляется в соответствующие разъемы и по показаниям на дисплее определяется исправен он или нет. При неисправности на дисплее появляется 0. Если Вы знаете коэффицент передачи тока проверяемого транзистора, Вы сможете проверить его в режиме HFE сверив показания тестера и паспотных данных транзистора
Как обозначают сопротивление на мультиметрах?
Одно из основных измерений, которые снимаются мультиметром – это сопротивление. Обозначается он символом в виде подковы: Ω, греческая омега. При наличии на корпусе мультиметра только такого значка, прибор измеряет сопротивление автоматически. Но чаще рядом стоит диапазон из цифр: 200, 2000, 20k, 200k, 2000k. Буква «k» после цифры обозначает префикс «кило», что в системе измерений СИ соответствует цифре 1000.
Зачем кнопка hold в мультиметре и для чего она нужна?
Кнопка Data hold, которая имеется у мультиметра одними считается бесполезной, другие, наоборот, пользуются ей часто. Означает она удержание данных. Если нажать на кнопку hold, то данные, отображаемые на дисплее зафиксируются и будут отображаться постоянно. При повторном нажатии мультиметр вновь вернется в рабочий режим.
Функция эта бывает полезна, когда у Вас к примеру ситуация когда вы пользуйтесь поочередно двумя приборами. Вы провели какое-то эталонное измерение, вывели его на экран, а другим прибором продолжаете измерять, постоянно сверяясь с эталоном. Эта кнопка есть не на всех моделях, предназначена она для удобства.
Обозначения постоянного (DC) и переменного тока (АС)
Измерение постоянного и переменного тока мультиметром так же является его основной функцией, как и измерение сопротивления. Часто на приборе можно встретить такие обозначения: V и V
— постоянное и переменное напряжение соответственно. На некоторых приборах постоянное напряжение обозначается DCV, а переменное АСV.
Опять же измерять ток удобнее в автоматическом режиме, когда прибор сам определяет сколько вольт, но эта функция есть в моделях подороже. В простых моделях постоянное и переменное напряжение при измерениях нужно измерять переключателем в зависимости от измеряемого диапазона. Об этом читайте подробно ниже.
Расшифровка обозначений 20к и 20м на мультиметре
Рядом с цифрами, обозначающими диапазон измерений, можно увидеть такие буквы, как µ, m, k, M. Это, так называемые, префиксы, которые обозначают кратность и дробность единиц измерения.
Например, для проверки тех же ТЭНов лучше брать тестер с функцией мегометра. У меня был случай, когда неисправность ТЭНа в посудомойке удалось выявить только этой функцией. Для радиолюбителей конечно подойдут более сложные приборы — с функцией измерения частот, емкости конденсаторов и так далее. Сейчас очень большой выбор этих приборов, китайцы чего только не делают.
Условные обозначения на шкалах электроизмерительных приборов
Рейтинг: 4 / 5 21 0 Условные обозначения на шкалах электроизмерительных приборов
Задумайтесь: что вам прежде всего хотелось бы понять, когда вы смотрите на измерительный прибор? Скорее всего, это будет его назначение. «Если оно похоже на утку, двигается как утка и крякает как утка, то это, должно быть, и есть утка». Но с техническими приборами задача резко усложняется. Легко по внешнему виду узнать весы, какими бы они ни были: рычажными, пружинными, или электронными. Можно прикинуть, что если измерительный прибор круглый и расположен вертикально, то, наверное, он измеряет какие-то параметры жидкости или газа, из которых первыми приходят в голову расход и давление. Конечно, мы так или иначе представляем счетчики электрической энергии. Но что, если мы зайдем в электротехническую лабораторию или трансформаторную будку?
Электричество – вещь необыкновенная. Оно невидимо, но может совершать колоссальную работу и обладает рядом параметров со своими единицами измерения:
Электричество передается по проводникам и преобразовывается различными электроустановками, у которых есть свои характеристики:
Соответственно, каждый параметр требует своего измерительного прибора. Например, прибор для измерения постоянного тока может не подходить для измерения переменного. Или прибор может не выдержать прикладываемого напряжения, хотя может выдержать измеряемый ток. Для этого рядом со шкалой наносят условные обозначения, которые зафиксированы в ГОСТ 23217-78. Приведем некоторые из них. Начнем с тока:
Перейдем к классам испытательного напряжения: это напряжение, которое может выдержать изоляция данного прибора. Если измеряется в кВ – киловольтах, т.е. тысячах вольт, то значение указывается внутри звездочки.
Далее посмотрим на условные обозначения принципа действия аналоговых измерительных приборов, то есть приборов, в которых значение измерения может принять любое значение в пределах шкалы, грубо говоря, это «стрелочные» приборы. О том, каким образом происходит преобразование электрической величины в показания прибора, говорилось в этой статье.
Надо обращать внимание на приведенные ниже символы, когда дело касается рода тока или напряжения: постоянные они или переменные. Например, магнитоэлектрическим прибором измеряют постоянные величины. Если этими приборами измерять переменный ток, стрелка начнет дрожать около нулевого показания шкалы. Электромагнитными приборами могут измеряться как постоянные, так и переменные величины. Ферродинамические приборы менее точны, но зато просты и могут использоваться в щитах, расположенных в местах с повышенной тряской и вибрациями. Индукционные приборы применялись во времена СССР как счетчики электрической энергии. Электростатические приборы имеют высочайшие классы точности (0.005) и выпускаются на напряжения в милливольты и киловольты.
Класс точности прибора помещают в круг на циферблате, записывают перед ГОСТом или через дробную черту вроде 0,02/0,01. Для определения погрешности с помощью значений класса точности используют определенные формулы, которые находятся в справочниках или ГОСТ 8.401-80. И, конечно, надо отметить знаки и ⊥, что означает соответственно положение (шкалы) прибора горизонтально и вертикально.
Огромное количество производителей и колоссальное разнообразие моделей цифровых электроизмерительных приборов не позволяет в этой статье охватить весь спектр их обозначений, но общие принципы просты: главное – правильно выбрать род тока или напряжения и предел измерения, и, разумеется, соблюдать технику безопасности. О цифровых приборах, которыми мы пользуемся в «ТМРсила-М», читайте здесь.
Как видно, электрические измерения – ответственная работа, требующая понимания метрологии, электротехники, а также электроники и магнитных систем. Если вы хотите провести качественные электрофизические измерения, обращайтесь к специалистам в «ТМРсила-М».
Классификация электроизмерительных приборов, условные обозначения на шкалах приборов
Для контроля за правильностью работы электротехнических установок, испытания их, определения параметров электрических цепей, учета расходуемой электрической энергии и т. д. производят различные электрические измерения. В технике связи, как и в технике сильных токов, электрические измерения имеют важное значение. Приборы, с помощью которых измеряются различные электрические величины: ток, напряжение, сопротивление, мощность и т. д., — называются электрическими измерительными приборами.
Существуют большое количество различных электроизмерительных приборов. Наиболее часто при производстве электрических измерений используются: амперметры, вольтметры, гальванометры, ваттметры, электросчетчики, фазометры, фазоуказатели, синхроноскопы, частотомеры, омметры, мегомметры, измерители сопротивления заземления, измерители емкости и индуктивности, осциллографы, измерительные мосты, комбинированные приборы и измерительные комплекты.
Классификация электроизмерительных приборов по принципу действия
По принципу действия электроизмерительные приборы подразделяются на следующие основные типы:
По типу отсчетного устройства различают аналоговые и цифровые приборы. В аналоговых приборах измеряемая или пропорциональная ей величина непосредственно воздействует на положение подвижной части, на которой расположено отсчетное устройство. В цифровых приборах подвижная часть отсутствует, а измеряемая или пропорциональная ей величина преобразуется в числовой эквивалент, регистрируемый цифровым индикатором.
Индукционный счетчик электроэнергии:
Отклонение подвижной части у большинства электроизмерительных механизмов зависит от значений токов в их катушках. Но в тех случаях, когда механизм должен служить для измерения величины, не являющейся прямой функцией тока (сопротивления, индуктивности, емкости, сдвига фаз, частоты и т. д.), необходимо сделать результирующий вращающий момент зависящим от измеряемой величины и не зависящим от напряжения источника питания.
Условные обозначения на вольтметре:
На рисунках ниже приведены условные обозначения электроизмерительных приборов по принципу их действия.
Обозначение принципа действия прибора
Обозначения рода тока
Обозначения класса точности, положения прибора, прочности изоляции, влияющих величин
Классификация электроизмерительных приборов по роду измеримой величины
Электроизмерительные приборы классифицируются и по роду измеряемой ими величины, так как приборы одного и того же принципа действия, но предназначенные для измерения разных величин могут значительно отличаться друг от друга по своей конструкции, не говоря уже о шкале прибора.
В таблице 1 приведен перечень условных обозначений наиболее употребительных электроизмерительных приборов.
Таблица 1. Примеры обозначения единиц измерения, их кратных и дольных значений
Наименование | Обозначение | Наименование | Обозначение |
Килоампер | kA | Коэффициент мощности | cos φ |
Ампер | A | Коэффициент реактивной мощности | sin φ |
Миллиампер | mA | Тераом | TΩ |
Микроампер | μA | Мегаом | MΩ |
Киловольт | kV | Килоом | kΩ |
Вольт | V | Ом | Ω |
Милливольт | mV | Миллиом | mΩ |
Мегаватт | MW | Микром | μΩ |
Киловатт | kW | Милливебер | mWb |
Ватт | W | Микрофарада | mF |
Мегавар | MVAR | Пикофарада | pF |
Киловар | kVAR | Генри | H |
Вар | VAR | Миллигенри | mH |
Мегагерц | MHz | Микрогенри | μ H |
Килогерц | kHz | Градус стоградусной температурной шкалы | o C |
Герц | Hz | ||
Градусы угла сдвига фаз | φ o |
Классификация электроизмерительных приборов по степени точности
Абсолютной погрешностью прибора называют разность между показанием прибора и истинным значением измеряемой величины.
Например, абсолютная погрешность амперметра равна
Если I > I э, то абсолютная погрешность прибора положительна, а при I э, она отрицательна.
Поправкой прибора называют величину, которую надо прибавить к показаниям прибора, чтобы получить истинное значение измеряемой величины.
Приведенной погрешностью прибора называется отношение абсолютной погрешности к наибольшему возможному отклонению показателя прибора (номинальному показанию прибора).
Например, для амперметра
Точность прибора характеризуется величиной его максимальной приведенной погрешности. Согласно ГОСТ 8.401-80 приборы по степени их точности разделяются на 9 классов: 0,02, 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. Если, например, данный прибор имеет класс точности 1,5, то это значит, что его максимальная приведенная погрешность равна 1,5%.
Электроизмерительные приборы, имеющие классы точности 0,02, 0,05, 0,1 и 0,2, как наиболее точные, применяются там, где требуется весьма большая точность измерения. Если прибор имеет приведенную погрешность выше 4%, то он считается внеклассным.
Прибор для измерения угла сдвига фаз с классом точности 2,5:
Чувствительность и постоянная измерительного прибора
Чувствительностью прибора называют отношение углового или линейного перемещения указателя прибора, приходящееся на единицу измеряемой величины. Если шкала прибора равномерна, то чувствительность его по всей шкале одинакова.
Например, чувствительность амперметра, имеющего равномерную шкалу, определяется формулой
Если шкала прибора неравномерна, то чувствительность прибора в различных областях шкалы различна, так как одному и тому же приращению (например, тока) будут соответствовать разные приращения углового или линейного перемещения показателя прибора.
Величина, обратная чувствительности прибора, называется постоянной прибора. Следовательно, постоянная прибора — это цена деления прибора, или, иначе, величина, на которую должен быть помножен отсчет по шкале в делениях, чтобы получить измеряемую величину.
Например, если постоянная прибора равна 10 мА/дел (десять миллиампер на деление), то при отклонении его указателя на α = 10 делений измеряемая величина тока равна I = 10 · 10 = 100 мА.
Калибровка измерительных приборов — определение погрешностей или поправок для совокупности значений шкалы прибора путем сравнения в различных сочетаниях отдельных значений шкалы друг с другом. За основу сравнения берется одно из значений шкалы. Калибровка широко применяется в практике точной метрологической работы.
Простейший способ калибровкой — сравнение каждого размера с номинально равным ему (принимаемым за достаточно верный) размером. Это понятие не следует смешивать (как это часто делают) с градуированием (градуировкой) измерительных приборов, представляющим собой метрологическую операцию, при помощи которой делениям шкалы измерительного прибора придаются значения, выраженные в установленных единицах измерения.
Мощность потерь энергии в приборах
Электроизмерительные приборы потребляют при работе энергию, которая в них преобразуется обычно в тепловую энергию. Мощность потерь зависит от режима в цепи, а также от системы и конструкции прибора.
Если измеряемая мощность относительно мала, а следовательно, относительно малы ток или напряжение в цепи, то мощность потерь энергии в самих приборах может заметно влиять на режим исследуемой цепи и показания приборов могут иметь довольно большую погрешность. При точных измерениях в цепях, где развиваемые мощности сравнительно малы, необходимо знать мощность потерь энергии в приборах.
В табл. 2 приведены средние величины мощности потерь энергии в различных системах электроизмерительных приборов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: