Что будет если конденсатор включить в розетку
Подключение конденсатора в сеть 220v
Подключение 2 ПК в лок сеть
Люди добрые. Не могу подключить 2 ПК в сетку, всё прописываю как положено, а всё равно в сети его.
Подключение в сеть три ПК.
С новым годом всех. Есть три ПК. Один стационарный с подключением к интернету(dsl модем) и два.
WH, ради экспериментов. Знакомый электрик посоветовал вывести для таких дел отдельную розетку через автомат на 1 А. Это целесообразно? Взрыва конденсатора не будет если его напрямую от розетки заряжать?
Добавлено через 1 минуту
WH, я не ищу бесплатную энергию из воздуха. Просто интересно посмотреть как это работает
Вообще никакой конденсатор нельзя подключать напрямую к розетке. В зависимости от момента контакта (на какой фазе синуса) и качества проводки (сопротивление провода), бабахнуть имеет право любой.
Подключение ИИП в трехфазную сеть
Доброго времени суток, уважаемые форумчане! Мне необходимо собрать один девайс, который должен.
Сеть Wifi Високоскоросное Подключение
У меня есть подключение к интернету через кабель с сетью и високоскоросное подключение. мне.
Долгое подключение и неопознанная сеть
Доброго времени суток, господа! Пару дней назад случилась проблема. Не удаётся подключиться к.
сеть. network. локальное подключение
Всем привет! вот такой вот вопрос. Короче вот такая проблема с ноутом: 1. ноут не видит кабеля.
Wi Fi сеть дома подключение принтера
Добрый день.Можно ли через wi fi маршрутизатор подключить к сети принтер. Сеть организована таким.
Что будет если конденсатор включить в розетку
Оно теряется на нагрев проводов. Если бы провода были бы сверхпроводящие и кондер был бы идеальный (т.е. без оммического сопротивления обкладок и выводов), то счетчик бы не крутился. Именно эта дополнительная потеря энергии из-за тока, который не производит полезной работы и является причиной установки компенсирующих конденсаторных установок на предприятиях. В сети предприятий конечно ничего не измениться, как были потери так и будут, но на питающих линиях и трансформаторах потери снижаются.
Включите бумажный на 10-20 мкф в розетку в квартире и посмотрите будет ли счётчик крутиться. Конечно нет. (если конденсатор исправен)
Учет активной, реактивной энергии зависит от марки счетчика. В квартирах обычно активная энергия учитывается
Мастер Джу, cimon, парни, вам срочно нужно повторить теорию и вспомнить, что такое активная энергия, а что такое реактивная.
А я здесь причем? Это же курилка. Я честно написал,что счетчик энергомера,за 10 минут ни разу не мгнул при включеном напрямую конденсаторе 6.8 мкф.
Хотя при 60 Вт лампочке он мигает примерно раз в 2 секунды.
Вопрос кто оплачивает остается.
Это как всегда потребитель.
Вот специально сегодня провел эксперимент,
Посмотрите тут
http://www.garant.ru/products/ipo/prime/doc/55085866/
под 14 номером, если уж это не достоверно, тогда я не знаю чему и кому верить.
По поводу счетчика, у нас выбора нет, приобретать можно только у услугодателя (поставщика эл. энергии) в противном случае нужно нести на госповерку. Пару лет назад, установили всему частному сектору счетчики на столбы
так они вообще считают все и активку и реактивку, любую форму тока, и импульсное потребление. Разница показаний между моим счетчиком и на столбе довольно заметная, хотели заставить меня менять кабель, от столба до дома, с 10мм2 на 4мм2, но параграф, где такая глупость прописана показать не смогли, так 10мм2 и осталось.
Покупать можно где угодно. Если счетчик новый, то он уже поверен на заводе, а поверительное клеймо есть в паспорте. Дополнительная поверка не нужна.
У вас возможно и так, а как у нас обстоят дела, я написал выше.
Нет такого в ПУЭ7. Вы просто не внимательно читали, или трактуете не правильно. Наш услугодатель то же пытался трактовать ПУЭ так, как ему выгодно, даже такую табличку не поленились для меня распечатать
Глава 2.1 Общие требования Таблица 2.1.1.
Проводники Сечение жил, мм2
медных алюминиевых
Незащищенные изолированные провода в наружных электропроводках:
по стенам, конструкциям или опорам на изоляторах; вводы от воздушной линии 2,5 4
Пришлось указать им на пункт
2.1.14. Сечения токопроводящих жил проводов и кабелей в электропроводках должны быть не менее приведенных в табл. 2.1.1.
а найти пунк запрещающий применение большего сечения они найти не смогли. Я правда предлагал им, раз у них такие требования, то пусть безвоздмезно, за свой счет, подвесят мне на тросике 60м кобеля 4мм2. Они правда отказались почему то, решили оставить для меня 10мм2.
Что может произойти с вашей электроникой, если ее на нее не подавать питание длительное время
Вы никогда не сталкивались с такой ситуацией, что при подаче питания на электроприбор, то есть при его включении, после длительного перерыва в работе, например, более года, он внезапно выходит из строя? Хотя до последнего выключения он работал исправно. А это имеет место быть. И чем больше был перерыв в работе электроприбора, тем больше вероятность его выхода из строя при включении. Нет, я не утверждаю, что при включении электроприбора в данной ситуации он обязательно выйдет из строя. Но! Вероятность этого события при этом увеличится.
реклама
Давайте разберемся, почему это происходит. Почти все электроприборы, от компьютера, до стиральной машины содержат в своем составе электролитические конденсаторы. И в этой статье речь пойдет о них, как об основных виновниках выхода из строя электроприборов. Чтобы понять физические процессы происходящие при этом в электролитических конденсаторах, рассмотрим их устройство.
Электролитический конденсатор состоит из герметичной колбы, в которую запрессованы две обкладки свернутые в спираль. Положительная и отрицательная. Положительная обкладка выполнена из алюминиевой фольги, покрытой тонкой пленкой оксида алюминия, которая исполняет роль диэлектрика в конденсаторе между обкладками.
реклама
Отрицательной обкладкой является жидкий электролит, которым пропитана бумажная лента и которая имеет гальванический контакт с неоксидированной (непокрытой пленкой оксида алюминия) алюминиевой фольгой, обеспечивающей надежный контакт между отрицательным выводом конденсатора и электролитом, благодаря их большой площади соприкосновения.
При длительном перерыве в работе, то есть при отсутствии на конденсаторе напряжения в течении этого времени, происходит постепенное разрушение диэлектрика (оксида алюминия) при его взаимодействии с электролитом в отсутствии напряжения на обкладках конденсатора. Это приводит к утончению диэлектрического слоя, к увеличению тока утечки и как следствие, увеличению вероятности пробоя конденсатора при подаче на него номинального напряжения. Этот эффект начинает проявляться при перерыве в работе конденсатора длительностью более года.
Специалисты в таких случаях рекомендуют проводить тренировку (формовку) конденсаторов, суть которой заключается в подаче на конденсатор в течении длительного времени постепенно увеличивающегося напряжения, с контролем тока утечки. При этом, подача в начале тренировки малого значения напряжения, не приведет к пробою конденсатора, и начнется процесс восстановления диэлектрического слоя (оксида алюминия) благодаря процессу электролиза. И по мере восстановления диэлектрического слоя, напряжение на конденсаторе увеличивается до номинального. Скорость увеличения напряжения определяется по значению тока утечки.
реклама
Рекомендации одного из производителей электролитических конденсаторов по проведению тренировки (риформинга).
Еще выдержка из технической документации производителя конденсаторов EPCOS.
реклама
Проведем практическую проверку этого эффекта. В качестве подопытного возьму недавно купленный на радиорынке электролитический конденсатор на 3300 мкФ., с номинальным напряжением 25 В., дата изготовления сентябрь 2016 года.
Предполагаю, что с даты изготовления, и до сегодняшнего дня на него никто не подавал напряжение. И потому для эксперимента он подходит, как нельзя лучше. Подам на него с лабораторного источника питания 25 В., и после его заряда в разрыв включу амперметр (прибор Ц-43101) для измерения тока утечки.
Ссылка на видео: https://disk.yandex.ru/i/B1R4rwUrHpjyyQ
Отсюда видно, что ток утечки составил 35 мкА. (вся шкала прибора 250 мкА). Оставляю его под напряжением на 1 час, и повторю измерение.
Ссылка на видео: https://disk.yandex.ru/i/k8fSGwiW3YpzgQ
В этом случае, как мы видим, ток утечки составил 7 мкА. Итого ток утечки уменьшился в 5 раз. Отсюда вывод, вышеизложенное явление подтверждено на практике.
Но не будете, же вы выпаивать из своих компьютеров и телевизоров конденсаторы для их тренировки, после их длительного перерыва в работе. Поэтому включайте свою электронику (подавайте на нее питание) хотя бы раз в год. А иначе после включения, особенно если в вашей электронике применены дешевые конденсаторы из них может выйти белый дым.
Во время моей учебы, мой преподаватель по предмету «радиокомпоненты» как то спросил у нас: так на чем работает вся электроника? Многие начали отвечать, что работает на упорядоченном движении заряженных частиц, и так далее. На что преподаватель в шутку сказал, что вся электроника работает на белом дыме. Пока белый дым находится в электронике, она работает. Как только белый дым выходит из электроники, она перестает работать. Так и в данном случае с нашими электролитическими конденсаторами, подобное может произойти.
Кроме того, электролитические конденсаторы подвержены высыханию. И это их основная проблема, каждый второй ремонт электроники по моему опыту заканчивается заменой именно этой детали. Высыхание происходит из-за плохой герметизации корпуса. Вследствие чего электролит постепенно испаряется, а поскольку он является одной из обкладок конденсатора, то и получается, что испаряется одна обкладка конденсатора. И емкость уменьшается до нуля. Опять же это зависит от качества конденсаторов. С качественными конденсаторами вероятность подобного значительно меньше. Но, к сожалению, при покупке электроники возможности изучить применяемую в ней элементную базу, какие там стоят конденсаторы не всегда возможно.
Подобных недостатков лишены полимерные конденсаторы.
Поэтому, выбирая комплектующие компьютерной техники, старайтесь выбирать комплектующие, выполненные на полимерных конденсаторах. Тем более, что во многих комплектующих визуально открыт доступ к используемой элементной базе. И легко, например, увидеть на материнской плате, какие конденсаторы применяются.
Схема подключения через конденсатор
Основное применение конденсаторов
Слово «конденсатор» можно услышать от работников различных промышленных предприятий и проектных институтов. Разобравшись с принципом работы, характеристиками и физическими процессами, выясним, зачем нужны конденсаторы, например, в системах энергоснабжения? В этих системах батареи широко применяют при строительстве и реконструкции на промышленных предприятиях для компенсации реактивной мощности КРМ (разгрузки сети от нежелательных ее перетоков), что позволяет уменьшить расходы на электроэнергию, сэкономить на кабельной продукции и доставить потребителю электроэнергию лучшего качества. Оптимальный выбор мощности, способа и места подключения источников (Q) в сетях электроэнергетических систем (ЭЭС) оказывает существенное влияние на экономические и технические показатели эффективности работы ЭЭС. Существуют два типа КРМ: поперечная и продольная.
При поперечной компенсации батареи конденсаторов подключаются на шины подстанции параллельно нагрузке и называются шунтовыми (ШБК). При продольной компенсации батареи включают в рассечку ЛЭП и называют УПК (устройства продольной компенсации). Батареи состоят из отдельных приборов, которые могут соединяться различными способами: конденсаторы последовательного подключения или параллельного. При увеличении количества последовательно включенных устройств увеличивается напряжение. УПК также используются для выравнивания нагрузок по фазам, повышения производительности и эффективности дуговых и рудотермических печей (при включении УПК через специальные трансформаторы).
Следующая
КонденсаторыЧто такое танталовый конденсатор
Свойства и параметры конденсаторов
Главным параметром приборов этой категории является емкость (С). Она определяет накопительные свойства изделия. Принцип работы базируется на переходе электронов на соответствующую пластину при подключении источника питания. В зависимости от полярности на соответствующем электроде появляются положительные (отрицательные) заряды.
Величина емкости зависит от нескольких параметров:
Напряженность плоского конденсатора вычисляют по формуле:
Из этого выражения несложно сделать вывод о взаимном влиянии электрических и конструкционных параметров. Емкость определяют следующим образом:
Для удобства применяют удельный показатель:
где V – объем изделия.
По нему делают вывод о том, насколько эффективно выполняет основные функции конденсатор. При высокой удельной емкости разрядка занимает больше времени, если подключают аналогичную нагрузку.
Классом точности или процентным отклонением обозначают допуск от номинальной емкости (значения указаны ± в %):
Потребительские параметры диэлектрика характеризуют электрической прочностью. Как правило, на корпусе изделия указывают номинал напряжения в длительном рабочем режиме для определенных условий с учетом диапазонов:
В подробной документации указывают напряжение пробоя.
Индуктивность (собственная) изменяет напряженность поля конденсатора. Эта реактивная составляющая «помогает» изделию разрядиться быстрее или медленнее, по сравнению с расчетной скоростью процесса. Подобные паразитные воздействия искажают рабочие характеристики колебательного контура. Их надо учитывать при проектировании частотно зависимых цепей.
Потери оценивают по электрическому сопротивлению изоляционных слоев. Если соответствующим образом подключить мультиметр, можно уточнить действительный ток утечки. Этот параметр измеряют на протяжении определенного времени. Следует запомнить, что сопротивление зависит от температуры и влажности.
К сведению. Слюдяные конденсаторы будут разряжаться медленнее, по сравнению с бумажными в равных условиях, так как токи утечки отличаются на порядок.
Для комплексного сравнения разных деталей этой категории проверяют стабильность. Этот показатель характеризует постоянство рабочих параметров. Как правило, учитывают влияние температуры. Специализированный коэффициент (ТКЕ) показывает соответствующие изменения при увеличении (снижении) на 1°С.
Как разрядить конденсатор, чтобы минимизировать остаточное напряжение? Ответ на этот вопрос поможет получить изучение абсорбционных процессов в диэлектрическом слое. Соответствующие параметры характеризуют поправочным коэффициентом (Ка). Он увеличивается вместе с повышением температуры.
Рабочий цикл измерения абсорбции
Как определить оптимальную величину емкости
Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.
Схемы движков с пусковым и рабочим конденсаторами
При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются — пусковые конденсаторы.
Расчет рабочей емкости
Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.
Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.
Подбор пусковой емкости
Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно конденсаторы для запуска электродвигателя.
После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.
Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.
Расчет емкости
Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.
В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:
Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.
Специфика схем с конденсаторами
Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:
К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.
Схемы включения в однофазную сеть
При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:
Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.
Тип сборки «Треугольник»
Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.
Тип сборки «Звезда»
Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.
Последовательное соединение конденсаторов.
Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последовательным (рисунок 3).
Рисунок 2. Последовательное соединение конденсаторов.
При последовательном соединении все конденсаторы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заряжаются через влияние. При этом заряд пластины 2 будет равен по величине и противоположен по знаку заряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пластины 2 и т. д.
Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.
Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.
Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.
Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряжения, существующего на всей группе конденсаторов. Напряжение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединенных последовательно, меньше емкости самого малого конденсатора в группе.
Для вычисления общей емкости при последовательном соединении конденсаторов удобнее всего пользоваться следующей формулой:
Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:
Устройство и предназначение конденсаторов
Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.
Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки
Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).
Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.
Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.
Простые способы присоединения электромотора
Простейшее включение моторов – присоединение к трёхфазной сети. Электрообмотки мотора соединяются двумя способами:
Порядок соединения указаны на крышке клеммника с обратной стороны.
Внимание! Соединение обмоток «треугольником» быстро выводит двигатель на максимальную мощность, но тогда величина пускового тока возрастает семикратно. Плавный пуск, при отсутствии пускового реостата, затруднён
Соединение обмоток «звездой» позволяет устойчиво и длительно работать мотору при плавном запуске. Машина выдерживает кратковременные перегрузки и не перегревается. Мощность её несколько ниже, чем при альтернативном подключении.
Соединить в одну точку начала обмоток могут уже при изготовлении. На клеммник выводят только три их конца. Поэтому выводы просто подключают к фазам сети. Направление вращения выбирают, изменяя местами подключение выводов к двум соседним фазам.
Замена конденсатора без выпаивания с платы
Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.
Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.
А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.
Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.
Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.
Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.
На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).
Выбор пускового конденсатора для электродвигателя
Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.
Для проведения расчета следует знать и ввести нижеприведенные показатели:
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.
Провести подобный расчет можно самостоятельно.
Для этого можно воспользоваться следующими формулами:
При выборе, стоит также учесть нижеприведенные нюансы:
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.
Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.
Как рассчитать емкость рабочего конденсатора
Для двух соединений обмоток берутся несколько разные соотношения.
В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.
Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.
Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах
Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.
Расчет емкости
Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.
В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:
Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Соединение конденсаторов
Часто самого по себе конденсатора недостаточно. Поэтому такие электронные компоненты приходится объединять в группы, так называемые батареи. При таком подключении множество ёмкостей соединяются друг с другом для получения новой, обладающей другими характеристиками.
Выделяют 2 основных способа соединения деталей:
Последовательное соединение ёмкостей
При этом виде соединения множество деталей выстраивается в длинную цепь (от двух штук и более). Чаще всего на практике применяются комбинации из 2-5 деталей. Каждая предшествующая соединяется с последующей. В результате получается длинная цепочка, напоминающая вагоны в железнодорожном составе.
Последовательное соединение конденсаторов снижает их общую ёмкость. Вызвано это тем, что увеличивается толщина диэлектрика между обкладками прибора, а площадь их пересечения при этом остаётся неизменной (см. формулу выше). Как рассчитать суммарную ёмкость конденсатора при последовательном подключении, можно узнать из формулы ниже.
Ёмкость последовательно включенных конденсаторов
На деле такое подключение используется для получения нового значения ёмкости, но такой конденсатор просто не выпускается промышленностью. Например, имея два элемента номиналом 10 uF каждый и соединив их последовательно, можно получить общую ёмкость в 5 uF.
Пример последовательного расчёта
Другая особенность последовательного соединения – это увеличение общего напряжения. Если взять 2 ёмкости на 200 В каждую и подключить их описываемым способом, то итоговое напряжение батареи составит 200 + 200 = 400 вольт.
Параллельное соединение
При параллельном соединении деталей все левые (условно) выводы ёмкостей объединяются в один. С правыми – так же. Если конденсаторы электролитические, то все плюсы подключаются вместе, так же, как и все минусы. В итоге получается большая сборка деталей, имеющая всего два вывода.
Параллельное включение конденсаторов
Данное соединение подразумевает уже сложение ёмкостей, так как увеличивается общая площадь взаимодействующих обкладок. При этом максимальное напряжение, которое можно приложить к этой батареи, не превышает значения самого низковольтного элемента. Расчёт конденсатора, а именно его ёмкости, в таком случае производится по следующему выражению.
Ёмкость параллельно подключенных конденсаторов
Метод применяется, когда из множества элементов с низкой ёмкостью нужно получить один, но с большой. Пример использования такого подключения можно найти во фрагменте схемы одного из популярных сварочных инверторов. Она приведена ниже. Из изображения видно, что параллельно применяются 6 электролитических конденсаторов, которые стоят сразу после диодного выпрямителя. Каждый из них на 400 В 470 uF. В результате суммарная ёмкость полученной батареи составляет 470 * 6 = 2820 микрофарад. Приведённое вычисление всегда можно выполнить в специализированном интернет калькуляторе. Пиковое напряжение, которое приложено к этой сборке, не должно превышать 400 вольт. Это значение взято с запасом примерно в 30 %, ведь на деле в данном узле сварочного аппарата действующий вольтаж составляет 300 В.
Фрагмент схемы сварочного аппарата
Дополнительная информация. Конденсаторы на входе мощных устройств часто используются в роли фильтров от помех и узлов для компенсации реактивной мощности. Подобные меры позволяют повысить качество напряжения сети и защитить оборудование от кратковременных скачков напряжения.
Как подобрать конденсатор
Для лучшего понимания алгоритма правильных действий можно изучить процесс выбора конденсатора при подключении электродвигателя к разным источникам питания. Если применяется трехфазная сеть, подойдет формула емкости:
В упрощенном варианте специалисты берут 6-7мкФ на каждые 0,1 кВт потребляемой мощности. При значительных механических нагрузках обмотка может сгореть. Мягкий запуск электрического двигателя обеспечивает дополнительный конденсатор. Он выполняет свои функции в течении 2-5 секунд. Емкость выбирают в 2,5-3,5 больше результата предыдущего расчета. Номинальное напряжение – на 50-70% выше рабочих параметров сети питания.
Подключение электродвигателя через конденсатор
Асинхронный двигатель подключают к однофазному источнику. В этом варианте необходимо создать сдвиг фазы для начала вращения ротора. Пуск обеспечивает отдельная обмотка. В эту цепь устанавливают специальный конденсатор. Для упрощенной схемы выбора берут 8-12 мкФ на каждые 0,1 кВт потребляемой мощности.
К сведению. Чтобы исключить перегрев и повреждение деталей, рекомендуется подключение индуктивных нагрузок такого типа через конденсаторы, рассчитанные на рабочее напряжение не менее 450 V.
Расчет гасящего конденсатора для подключения светодиодной ленты можно сделать по формуле: