дискретная математика это простыми словами что такое
Что такое дискретность (дискретная математика, сигнал, величины, видеокарты, а так же дискретность в биологии)
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Знать все обо всем попросту невозможно. Человек на протяжении всей жизни стремится познать себя и окружающую его действительность.
Вот и сегодня мы продолжим свой познавательный процесс, поговорим о новом (для многих) термине – « дискретность», и о сферах, где он применяется.
Дискретность – это …
Наш мир непрерывен, мы живем в постоянно меняющемся времени и пространстве. Наша жизнь тоже непрерывна до своего конечного момента. Согласитесь, невозможно сейчас жить, через час не жить, а потом вновь возродиться.
В противопоставлении непрерывности существует дискретность. В переводе с «вечно живого» латинского языка «дискретность» (discretus) обозначает прерывность, разделенность.
Дискре́тность (от лат. discretus — разделённый, прерывистый) — свойство, противопоставляемое непрерывности, прерывистость. Синонимы к слову дискретный: корпускулярный, отдельный, прерывистый, раздельный и т. п.
Например, линия непрерывна (на определенном промежутке), пунктир – прерывистая линия. Поэтому пунктир можно назвать дискретной линией. Проиллюстрирую понятие дискретности:
Дискретность можно толковать следующим образом:
Далее проанализируем особенности применения термина в различных областях.
Дискретная математика
Если коротко и простыми словами, то дискретная математика (ДМ)– это наука, которые изучает математические объекты, принимающие отдельные (дискретные) значения.
ДМ условно подразделяется на пять направлений:
Дискретная величина
Дискретность какой-либо величины подразумевает, что ее значения можно пронумеровать, измерить и посчитать.
Такими величинами оперирует, например, экономика. Различные экономические показатели фиксируют и рассчитывают с определенной периодичностью (например, раз в месяц, квартал, полугодие и т.д.). Таким образом, изменение показателей происходит не непрерывно во времени, а как бы «скачками» через установленные интервалы времени.
Дискретность в информатике
Программирование – это создание программ с использованием различных алгоритмов и языков программирования. Алгоритмы являются дискретными объектами, потому как представляют собой четкое последовательное выполнение ранее разработанных упрощенных шагов-действий (подпрограмм).
Только исполнение шага № 1 дает возможность выполнить шаг № 2 и т.д. Таким образом, этот процесс дискретен.
Как пример – алгоритм умывания (компьютерные программы создаются по тому же принципу):
Дискретная видеокарта
Видеокарта – один из важнейших элементов компьютера, отвечающий за визуализацию информации. Конструкция компа может быть оснащена либо интегрированной (встроенной) видеокартой, либо дискретной. Встроенная размещается в процессоре или на материнской плате, т.е. она неотделима от конкретного компьютера.
Дискретная видеокарта выполнена на отдельной плате, снабжена индивидуальным графическим процессором и памятью. Поэтому она более производительна, чем интегрированная.
Часто в компьютерах применяются видеокарты обоих видов, что позволяет пользователю при необходимости переключаться с одной на другую.
Дискретность в биологии
Все биологические объекты состоят из отдельных (дискретных) «кирпичиков», которые в совокупности образуют единый организм. Например, скелет человека состоит из костей, кости –из костной ткани, она, в свою очередь – из клеток.
Автор статьи: Елена Копейкина
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Благодарю за дискретное изложение материала
Дискретная математика
Дискре́тная матема́тика — область математики, занимающаяся изучением дискретных структур, которые возникают как в пределах самой математики, так и в её приложениях.
К числу таких структур могут быть отнесены конечные группы, конечные графы, а также некоторые математические модели преобразователей информации, конечные автоматы, машины Тьюринга и так далее. Это примеры структур конечного (финитного) характера. Раздел дискретной математики, изучающий их, называется конечной математикой. Иногда само это понятие расширяют до дискретной математики. Помимо указанных конечных структур, дискретная математика изучает некоторые алгебраические системы, бесконечные графы, вычислительные схемы определённого вида, клеточные автоматы и т. д. В качестве синонима иногда употребляется термин «дискретный анализ».
Содержание
Разделы дискретной математики
Примечания
Литература
См. также
Ссылки
Полезное
Смотреть что такое «Дискретная математика» в других словарях:
ДИСКРЕТНАЯ МАТЕМАТИКА — то же, что конечная математика … Большой Энциклопедический словарь
дискретная математика — то же, что конечная математика. * * * ДИСКРЕТНАЯ МАТЕМАТИКА ДИСКРЕТНАЯ МАТЕМАТИКА, то же, что конечная математика (см. КОНЕЧНАЯ МАТЕМАТИКА) … Энциклопедический словарь
ДИСКРЕТНАЯ МАТЕМАТИКА — конечная математика, раздел математики, занимающийся изучением св в объектов конечного характера. К их числу могут быть отнесены, напр., конечные группы, конечные графы, нек рые матем. модели преобразователей информации. Д. м. теоретич. основа… … Большой энциклопедический политехнический словарь
ДИСКРЕТНАЯ МАТЕМАТИКА — то же, что конец ноя математика … Естествознание. Энциклопедический словарь
«Дискретная математика» — научный журнал РАН, с 1989, Москва. Учредитель (1998) Отделение математики РАН. 4 номера в год … Энциклопедический словарь
Теория функциональных систем (дискретная математика) — У этого термина существуют и другие значения, см. Теория функциональных систем (значения). Теория функциональных систем раздел дискретной математики, занимающийся изучением функций, описывающих работу дискретных преобразователей. В теории… … Википедия
МАТЕМАТИКА — (греч. mathematike от mathema наука), наука, в которой изучаются пространственные формы и количественные отношения. До нач. 17 в. математика преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах;… … Большой Энциклопедический словарь
Математика — Евклид. Деталь «Афинской школы» Рафаэля Математика (от др. греч … Википедия
математика — и; ж. [греч. mathēmatikē] 1. Наука о количественных отношениях и пространственных формах действительного мира. Высшая м. Элементарная м. Прикладная м. Законы математики. // Учебный предмет, изучающий эту науку. Экзамен по математике. Преподавать… … Энциклопедический словарь
Математика гармонии — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия
Дискретные структуры: матан для айтишников
Посмотришь на любую программу обучения по IT-специальности, и тут же увидишь дисциплину «Дискретная математика» (возможно, под другим названием), обычно для перво- или второкурсников. И её наличие вполне разумно, поскольку дискретная математика и непрерывная математика (представленная на первом курсе институтов с незапамятных времён математическим анализом) — две грани единой Математики, — красивой, могучей науки.
Хотя раньше такого понятия, как «дискретная математика» вовсе не было, это не значит, что не возникало дискретных задач: Абель, Дирихле, Фибоначчи, Эйлер, чьи имена возникают по ходу изучения дискретной математики, — отнюдь не наши современники! Но просто в те времена для выделения самостоятельной ветви математики ещё не сложилось критической массы задач и приёмов, не было видно взаимосвязей между ними. А большое количество плодотворных взаимосвязей между, на первый взгляд, различными понятиями, — то, что математики в своей науке очень ценят.
Ну хорошо, математикам всё математическое интересно. А зачем дискретная математика программисту?
Зачем это айтишнику
Во-первых, многие идеи, которые особенно ярко иллюстрируются на дискретных задачах, неотъемлемы и для информатики. Взять, хотя бы, фундаментальные понятия рекурсии и индукции.
Рекурсия — это, дословно, возврат, обращение к самому себе. Хорошо известные вездесущие числа Фибоначчи проще всего определяются рекурсивно: первые два числа Фибоначчи равны единице, а каждое следующее число равно сумме двух своих предшественников: 1,1,2,3,5,8,… Таким образом, для вычисления очередного числа мы обращаемся к уже рассчитанным числам такого же вида. Трудно представить, как можно изучить функциональное программирование, да и многое из других областей информатики, не освоившись хорошо с рекурсией. Очень близкий процесс к рекурсии — это индукция, способ доказательства математических утверждений, при котором в доказательстве сложных случаев мы опираемся на более простые. Параллели с рекурсией очевидны, и действительно, обычное дело, когда индуктивное доказательство существования какого-то объекта можно переформулировать в описание рекурсивного способа построения этого объекта.
Раз речь зашла о таких фундаментальных вещах, как индукция и рекурсия, не могу не сказать, что многие приёмы, которые очень хорошо видны на примерах из дискретной математики, эффективны в математике в целом. Это не только индукция, но и принцип Дирихле, принцип выбора по среднему значению и другие.
Следующий элемент, без которого информатику нельзя представить — это графы. Простейшие алгоритмы на графах обязательно входят в любой, даже самый вводный, курс по алгоритмам. Скажем, с понятием гамильтонова цикла связана одна из классических задач информатики, задача коммивояжёра.
Ещё одно архиважное умение — считать точно и оценивать приблизительно количества. Например, как вычислить количество раз, которые выполняется операция сравнения в цикле:
Или вот ещё пример. Нужно из списка из 100 товаров выбрать 20, так, чтобы их суммарная стоимость была ровно 2000 рублей («без сдачи»). Это вариант классической задачи о рюкзаке. Допустим, ваш коллега, подумав ночь, предложил решать задачу перебором: перебрать всевозможные наборы из двадцати товаров, и, как только в ходе перебора возникнет нужный набор, выдать его в качестве ответа. Между прочим, характеристика «переборный» далеко не всегда ставит клеймо на алгоритме. Всё зависит от размера входных данных. Так вот, как прикинуть, удастся ли за разумное время решить перебором эту задачу выбора 20 объектов из 100?
Наконец, для современного «дизайнера алгоритмов» обязателен к пониманию и вероятностный метод. Это общий метод, позволяющей решать многие задачи в современной комбинаторике. Очень часто наилучшие решения задач, известные на сегодняшний день, получены именно этим методом. Для практика же овладение этим методом полезно постольку, поскольку вероятностные алгоритмы прочно заняли место в современной информатике. И при анализе работы таких алгоритмов очень помогает интуиция, развитая в ходе изучения вероятностного метода.
Онлайн-курс «Дискретные структуры»
С верой в то, что перечисленные понятия из дискретной математики действительно не помешают любому программисту, а, скорее, помешает их незнание, я читаю соответствующий курс на факультете ФИВТ МФТИ. А недавно у меня появилась возможность сделать онлайн-курс, чем я с радостью воспользовался. Записаться на него можно по ссылке. Главное, чего я пожелаю всем записавшимся: не побоявшись трудностей, пройти курс до самого конца, и получить заслуженное звание Дипломированного Дискретчика. В общем, чтобы MOOC прошёл без мук и обогатил знаниями! Да и собственная корысть у меня тут тоже есть: чем больше онлайн-учеников у меня будет, тем большему я смогу научиться, читая обсуждения и наблюдая статистику решения задач. Ведь учиться учить тоже никогда не поздно!
Какие знания потребуются
Для прохождения первых двух модулей потребуются только школьные знания. Третий модуль потребует знание основ математического анализа на уровне «что такое предел» и «какая из функций x 20 или 2 x растёт быстрее (чему равны производные функций)». Для последних трёх модулей понадобится представление о том, что такое вероятность, условная вероятность, математическое ожидание, дисперсия. Также хорошо бы знать, что такое базис и размерность линейного пространства. Если с вероятностью и линейной алгеброй вы не знакомы, можно записаться заодно на эти вводные курсы. Тогда как раз, к моменту, когда нам потребуются эти знания, они у вас будут.
Post scriptum
Меня можно было бы упрекнуть в конфликте интересов, всё-таки я математик, и, естественно, хочу приобщить к своей секте как можно больше завсегдатаев Хабра. В своё оправдание могу сослаться на этот ответ на Quora. Под большей частью тем, перечисленных в этом ответе, я готов лично подписаться, в онлайн-курс многие из них вошли. Ещё сошлюсь на подборку мнений яндексоидов.
Основы дискретной математики
Привет, хабр. В преддверии старта базового курса «Математика для Data Science» делимся с вами переводом еще одного полезного материала.
Об этой статье
Эта статья содержит лишь малую часть информации по заявленной теме. Рассматривайте ее как вводный курс перед началом всестороннего изучения предмета. Надеюсь, вы найдете в ней полезную информацию. Знание дискретной математики помогает описывать объекты и задачи в информатике, особенно когда дело касается алгоритмов, языков программирования, баз данных и криптографии. В дальнейшем я планирую подробнее раскрыть темы, затронутые в этой статье. Приятного чтения!
ЧТО ТАКОЕ ДИСКРЕТНАЯ МАТЕМАТИКА?
Это область математики, изучающая объекты, которые могут принимать только уникальные отдельные значения.
Мы рассмотрим пять основных разделов в следующем порядке.
ЛОГИКА
Что такое логика?
Это наука о корректных рассуждениях. Мы будем использовать приемы идеализации и формализации. Неформальная логика изучает использование аргументов в естественном языке.
Формальная логика анализирует выводы с чисто формальным содержанием. Примерами формальной логики являются символическая логика и силлогистическая логика (о которой писал Аристотель).
Начнем с азов. Рассмотрим следующее высказывание на естественном языке:
«Если я голоден, я ем».
Пусть «голоден» будет посылкой A, а «ем» — следствием B. Попробуем формализовать:
A => B (то есть из A следует B)
NB. Посылка и следствие являются суждениями.
Логические выражения
Для нас важна форма, а НЕ содержание. Значение будет истинным, если оно соответствует форме.
Например, 10 4 — ИСТИНА.
Логические операции
Суждение P — это утверждение, которое может быть как истинным, так и ложным.
Обозначим истинное значение P единицей (1), а ложное значение P нулем (0).
Существует другое суждение; обозначим истинное значение Q единицей (1), а ложное значение Q нулем (0).
Рассмотрим логические операции с суждениями, значение которых истинно. Они могут сами образовывать истинные значения путем выполнения соответствующих операций над истинными значениями.
Дискретная математика
В контексте математики в целом дискретная математика часто отождествляется с конечной математикой — направлением, изучающим конечные структуры — конечные графы, конечные группы, конечные автоматы. И при этом можно выделить некоторые особенности, не присущие разделам, работающим с бесконечными и непрерывными структурами. Так, в дискретных направлениях как правило обширнее класс разрешимых задач, так как во многих случаях возможен полный перебор вариантов, тогда как в разделах, имеющих дело с бесконечными и непрерывными структурами, для разрешимости обычно требуются существенные ограничения на условия. В этой же связи в дискретной математике особо важную роль играют задачи построения конкретных алгоритмов, и в том числе, эффективных с точки зрения вычислительной сложности. Ещё одна особенность дискретной математики — невозможность применения для её экстремальных задач техник анализа, существенно использующих недоступные для дискретных структур понятия гладкости. В широком смысле, дискретной математикой могут считаться охваченными значительные части алгебры, теории чисел, математической логики.
В рамках учебных программ дискретная математика обычно рассматривается как совокупность разделов, связанных с приложениями к информатике и вычислительной технике: теория функциональных систем, теория графов, теория автоматов, теория кодирования, комбинаторика, целочисленное программирование.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством.
Иные значения см. разделе в Компьютерное моделирование.Теория вычислимости и теория сложности вычислений трактует модель вычисления (англ. model of computation) не только как определение множества допустимых операций, использованных для вычисления, но также и относительных издержек их применения. Охарактеризовать необходимые вычислительные ресурсы — время выполнения, объём памяти, а также ограничения алгоритмов или компьютера — можно только в том случае, если выбрана определённая модель вычислений.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.