Импульсный или трансформаторный блок питания что выбрать

Лабораторный блок питания: импульсный или линейный какой выбрать? Устройство, схемы и их сравнение.

Лабораторный блок питания представляет собой востребованное среди профессионалов оборудование, которое активно используется инженерами, занимающимися разработкой и ремонтом различных электронных устройств. В настоящий момент существует огромное количество лабораторных источников питания. Число самых разных вариаций столь велико, что новичку будет непросто сориентироваться в таком многообразии оборудование. Чтобы выбрать оптимальный источник питания для определенных целей, рекомендуется разобраться в особенностях различных типов блоков, а уже после принимать решение о покупке.

Классификация лабораторных источников питания

Лабораторные источники питания можно классифицировать по самым разным параметрам. Наиболее популярный метод классификации – по принципу действия, в соответствии с которым все источники питания можно разделить на импульсные и линейные. Последние также называют трансформаторными.

Каждый из типов блоков имеет свои преимущества. Так, к примеру, импульсный блок питания характеризуется высоким коэффициентом полезного действия и значительно большей мощностью по сравнению с трансформаторными агрегатами. В тоже время линейный источник питания обладает такими достоинствами как простота и надежность конструкции, а также низкая стоимость ремонта и ценовая доступность запчастей.

Линейный блок питания

Традиционным блоком питания является линейный блок. Его конструкция состоит из автотрансформатора и понижающего трансформатора. Также имеется выпрямитель, который преобразует переменное напряжение в постоянное. Преимущественное большинство моделей укомплектовано выпрямителем, состоящим из одного или четырёх диодов, составляющих так называемые диодный мост. При этом есть и другие конструкционные схемы, но они используются гораздо реже. В некоторых моделях после выпрямителя может быть инсталлирован специальный фильтр, который стабилизирует колебания в сети. Как правило, эту функцию выполняет высокоемкостный конденсатор. В некоторых моделях предусмотрены фильтры высокочастотных помех, стабилизаторы тока и напряжения и многое другое. Простейший линейный блок питания, возможно, сделать своими руками, при этом, основным и самым дорогим компонентом является понижающий трансформатор – Т1.

Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Схема линейного блока питания

Импульсный блок питания

В наши дни преимущественное большинство используемых блоков питания – это агрегаты импульсного типа. Эти блоки представляют собой фактически инверторную систему. Принцип их работы прост – происходит предварительное выпрямление входного напряжения, после чего оно преобразуется в импульсы с увеличенной частотой и необходимыми параметрами скважности. В импульсных блоках питания используются небольшие трансформаторы, которых более чем достаточно, поскольку увеличение частоты повышает эффективность трансформатора, а значит нет необходимости в больших габаритах. Нередко сердечник трансформатора изготавливается из ферромагнитных материалов, что, помимо всего прочего, существенно облегчает конструкцию.

Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Схема простого импульсного блока питания

Наиболее востребованным среди профессионалов импульсным агрегатом, который пользуется спросом и среди любителей, и среди профессионалов, считается импульсный блок питания MAISHENG MS305D – эталон компактности и удобства. Этот лабораторный источник импульсного типа идеально подходит для стабильной работы самых разных электронных схем и устройств. Конструкцией предусмотрена возможность настраивать параметры переменного тока в диапазоне от 0 до 5 А и напряжения от 0 до 30 В, защита от кз, перегрева и перегрузки по току. Данная модель укомплектована плавными регуляторами, которые облегчают точный подбор напряжения и тока. Прибор оснащен удобным цифровым дисплеем, на котором в реальном времени отображаются параметры напряжения и переменного тока.

Что же выбрать? Преимущества и недостатки линейных и импульсных блоков питания.

К достоинствам импульсных агрегатов нужно отнести:
• Высокий коэффициент стабилизации;
• Высокий коэффициент полезного действия;
• Более широкий диапазон входных напряжений;
• Более высокая мощность по сравнению с линейными устройствами.
• Отсутствие чувствительности к качеству электропитания и частоте входного напряжения;
• Небольшие габариты и достойная транспортабельность;
• Доступная цена.

К явным недостаткам импульсных источников питания стоит отнести:
• Наличие импульсных помех;
• Сложность схем, что негативно сказывается на надежности;
• Ремонт далеко не всегда удается произвести своими руками.

Трансформаторные блоки питания также имеют ряд плюсов, среди которых:
• Простота и надежность конструкции;
• Высокая ремонтопригодность и дешевизна запчастей;
• Отсутствие радиопомех;

Как вы понимаете, у трансформаторных блоков питания есть и недостатки, среди которых:
• Большой вес и габариты, что часто делает транспортировку очень неудобной;
• Обратная зависимость между КПД и стабильностью выходного напряжения;
• Металлоемкость конструкции.

Лабораторные блоки питания на сегодняшний день представлены огромным ассортиментом агрегатов. Спросом пользуются и импульсные, и трансформаторные блоки. Удачный выбор оборудования напрямую зависит от того, какие цели вы преследуете, приобретая блок питания. Если вы хотите всегда иметь под рукой надежный агрегат с отсутствием радиопомех, который редко ломается и легко поддается ремонту, тогда стоит обратить внимание на трансформаторные блоки питания. Если же для вас важна мощность и коэффициент полезного действия, тогда вам стоит подробнее изучить импульсные устройства.

Наиболее мощные лабораторный блоки питания представлены импульсными моделями:

Источник

Отличия импульсного блока питания от обычного

Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Практически все современные электроустройства работают на импульсных источниках питания. Аналоговые (трансформаторные) БП почти не используются, потому что технически и морально устарели. Перед тем как сделать выбор, нужно подробно рассмотреть, какие есть преимущества ИБП. Понять, в чем их отличие от аналоговых и почему их применяют только в старых электроприборах.

Принцип работы ИБП

Основной функцией любого ИП, в том числе и импульсного БП является стабилизация напряжения в электросетях. ИБП — это прибор для выпрямления сетевого напряжения с последующим формированием электрического высокочастотного импульса.

Аналоговый БП трансформаторного типа, для изменения напряжения в сети использует трансформатор, который питается от электросетей в 220В. ТБП предназначен для понижения напряжения в сети.

ТБП сейчас практически не используются в электро-устройствах ввиду непрактичности и больших габаритов.

Отличия импульсного БП от аналогового представлены в таблице сравнительной характеристики:

Компактные размеры, как правило размещен внутри электроустройстваВнешний источник питания, большие габариты и весПринцип действияВыпрямляет первично поступающее напряжения путем преобразования в электрический импульс определенной частотыПонижает напряжение на входе, может преобразовывать пульсирующее напряжение одного направления в постоянноеКПД

Около 98%, в процессе преобразования напряжения потери энергии минимальны

До 80%, довольно серьезные энергопотери в связи с большим потреблением электроэнергии для работыПотери электричества при работеНебольшиеВысокиеНаличие защитыЕсть в большинстве существующих моделейВ большинстве моделей отсутствуетЦенаНизкая, ввиду массового распространения и доступности комплектующих

Высокая. Большинство моделей устарели и сняты с производства, поэтому есть дефицит запчастей

Из таблицы видно, что преимущества импульсного блока питания перед трансформаторным очевидны.

Структуры и схемы блоков питания

Выделяют два типа ИБП: без трансформаторов; БП с трансформатором. В бестрансформаторных БП импульсный ток напрямую идет на выпрямитель напряжения. Его схема проста и состоит из минимального набора элементов: специальная интегральная микросхема и широт-импульсный генератор. Бестрансформаторные БП имеют небольшую мощность. Так как в их схеме отсутствует гальваническая связь с сетью питания, то есть вероятность поражения электричеством.

БП с трансформатором более безопасны и надежны. Кроме того, они при малых размерах за счет количества витков обмотки способны увеличивать мощность блока питания.

Каждый виток обмотки имеет свой выпрямитель напряжения, таким образом обеспечивая его стабильность на выходе. В большинстве настольных ПК используются БП с силовыми трансформаторами.

Типичная схема БП с трансформатором состоит из:

Блок питания с силовым трансформатором

Силовые трансформаторы для ИБП бывают двух типов: с косой и без косы. Оба типа могут использоваться для установки в импульсные блоки питания.

Трансформатор с косой состоит из трех обмоток, первичная цепь — 1 обмотка, состоящая из двух полуобмоток по 20-ть витков и вторичная цепь — состоит тоже из 2-х полуобмоток, которые соединяются в косе. Каждая полуобмотка состоит из семи витков, последовательно соединенных между собой по электросхеме, каждый виток равен 1 Вольт. Последовательное соединение между собой обмоток увеличивает мощность.

Применение силовых трансформаторов для блока питания импульсного типа обусловлено рядом преимуществ:

У силовых трансформаторов есть такие недостатки:

Алгоритм работы ИБП

Принцип действия ИБП прост: напряжение на входе выпрямляется и преобразуется в электронные высокочастотные импульсы. На выходе электроцепь формирует сигнал ООС, которым осуществляется регулировка импульсов.

Преимущества использования импульсного БП очевидны:

К минусам применения ИБП относят наличие электромагнитных помех ввиду их работы на импульсах высокой частоты.

В персональных стационарных компьютерах, как правило, применяют ИБП с силовым трансформатором. Для работы силовой прибор использует свойства и принципы электромагнитной индукции. Это дает возможность передавать ток без существенных потерь на большие расстояния.

Источник

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.

Отличия импульсного блока питания от обычного

Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Трансформаторные блоки питания

Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность — понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра.

Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.

Достоинства трансформаторных блоков питания

● Простота в конструировании
● Высокая надежность
● Доступность составляющих компонентов
● Отсутствие паразитных радио-волновых помех (Отличия блоков питания от импульсных блоков питания, которые создают помехи в виде напряжений и токов синусоидальной формы, которые во много раз выше частоты электросети)
● Имеющиеся недостатки трансформаторных блоков питания
● Солидный вес и размеры, особенно высокомощные
● Для изготовления требуется много железа
● Компромиссное решение относительно уменьшения КПД и высокой стабильностью напряжения на выходе: для получения стабильного напряжения необходим стабилизатор, с применением которого появляются дополнительные потери.

Импульсные блоки питания

Отличия импульсного блока питания от обычного — импульсные источники питания это инверторное устройство и является составляющей частью аппаратов бесперебойного электрического питания. В импульсных блоках переменное напряжение на входе вначале выпрямляется, а потом формирует импульсы определенной частоты. Преобразованное выходное постоянное напряжение имеет импульсы прямоугольной формы высокой частоты поступающее на трансформатор или сразу на выходной фильтр нижних частот.

В импульсных блоках питания часто используются небольшие по размерам трансформаторы — это вызвано тем, что при возрастании частоты увеличивается эффективность работы устройства, тем самым становятся меньше требования к размерам магнитопровода, необходимого для отдачи равнозначной мощности. В основном такой магнитопровод изготавливается из ферромагнитных материалов служащих проводниками магнитного потока. Отличия источников питания в частности от сердечника трансформатора низкой частоты, для изготовления которых применяется электротехническая сталь.

Отличия импульсного блока питания от обычного — происходящая в импульсных источниках питания стабилизация напряжения возникает за счет цепи отрицательной обратной связи. ООС дает возможность обеспечивать выходное напряжение на достаточно устойчивом уровне не взирая на периодические скачки входящего напряжения и значение сопротивления нагрузки.

Отрицательную обратную связь также можно создать иными способами. Относительно импульсных источников питания имеющих гальваническую развязку от электрической сети, наиболее применяемый в таких случаях способ — это образование связи с помощью выходной обмотки трансформатора либо воспользоваться оптроном.

С учетом значения величины сигнала отрицательной обратной связи, которое зависит от напряжения на выходе, меняется скважность импульсных сигналов на выходном выводе ШИМ-контроллера. Если можно обойтись без гальванической развязки то, в таком случае, применяется обычный делитель напряжения собранный на постоянных резисторах. В конечном итоге, источник питания обеспечивает выходное напряжение стабильного характера.

Принципиальная схема простейшего однотактного импульсного БП

Достоинства импульсных блоков питания

● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.
● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.

Источник

Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Импульсный или линейный блок питания: отличия, характеристики. Что лучше?

Наверное ни для кого не секрет, что большинство специалистов, радиолюбителей Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбратьи просто технически грамотных покупателей блоков питания с опаской относятся к импульсным источникам питания, оставляя предпочтение линейным.

Причина проста и понятна. Репутация импульсных блоков питания серьезно подорвана еще в 80-х годах, во времена массовых отказов отечественных цветных телевизоров, низкокачественной импортной видеотехники, оснащенных первыми импульсными модулями питания.

Что мы имеем на сегодняшний день? Практически во всех современных телевизорах, видеоаппаратуре, бытовой технике, компьютерах используются импульсные источники питания. Все меньше и меньше сфер применения линейных (аналоговых, параметрических) источников питания. Линейный источник питания сегодня в бытовой аппаратуре практически не найдешь. А стереотип остался. И это не консерватизм, несмотря на бурный прогресс электроники, преодоление стереотипов происходит очень медленно.

Недостатки источников питания

Давайте попробуем объективно посмотреть на сегодняшнее положение и попробуем изменить мнение специалистов. Рассмотрим «стереотипные» и присущие импульсным источникам питания недостатки: сложность, ненадежность, помехи. Импульсный или трансформаторный блок питания что выбрать. Смотреть фото Импульсный или трансформаторный блок питания что выбрать. Смотреть картинку Импульсный или трансформаторный блок питания что выбрать. Картинка про Импульсный или трансформаторный блок питания что выбрать. Фото Импульсный или трансформаторный блок питания что выбрать

Да, они сложные, точнее сказать сложнее аналоговых, но намного проще компьютера или телевизора. Вам не нужно разбираться в их схемотехнике, так же как и в схемотехнике цветного телевизора. Оставьте это профессионалам. Для профессионалов там нет ничего сложного.

Элементная база импульсных источников питания не стоит на месте. Современная комплектация, применяемая в источниках питания, позволяет сегодня с уверенностью сказать: ненадежность – это миф. В основном надежность блоков питания, как и любого другого оборудования, зависит от качества применяемой элементной базы. Чем дороже блок питания, тем дороже элементная база в нем. Высокая интеграция позволяет реализовать большое количество встроенных защит, которые порой недоступны в линейных источниках.

В схемотехнике импульсных источников питания заложено формирование мощных импульсов и затухающих колебаний в обмотках трансформатора. Эти коммутационные процессы предопределяют широкий спектр паразитного излучения.
Поэтому корпус и соединительные провода источника могут стать антенной для излучения радиопомех. Но если конструкция источника тщательно проработана, о помехах можно забыть.

Кроме этого, благодаря современным технологиям импульсные источники позволяют существенно сгладить пульсации сетевого напряжения.

А какие достоинства источников питания?

Высокий КПД связан с особенностью схемотехники. Основные потери в аналоговом источнике это сетевой трансформатор и аналоговый стабилизатор (регулятор). В импульсном источнике нет ни того ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора – ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии минимальны.

КПД аналогового источника может быть порядка 50%, то есть половина его энергии (и ваших денег) уходит на нагрев окружающего воздуха, проще говоря, улетают на ветер.

Меньший вес за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса импульсного источника питания в разы меньше аналогового.

Спрос рождает предложение. Благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности сегодня мы имеем низкие цены силовой базы импульсных источников питания. Чем больше выходная мощность импульсного источника питания, тем дешевле стоит источник по сравнению со стоимостью аналогичного линейного источника.

Кроме того, главные компоненты аналогового источника (медь, железо трансформатора, радиаторы из алюминия) постоянно дорожают.

Вы не ослышались, надежность. На сегодняшний момент импульсные источники питания надежнее линейных за счет наличия в современных блоках питаниях встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания, перегрузки, скачков напряжения, переполюсовки выходных цепей. Высокий КПД обуславливает меньшие теплопотери, что в свою очередь обуславливает меньший перегрев элементной базы источника, что так же является показателем надежности.

Что творится в отечественных электросетях, вы наверно знаете не понаслышке. 220 Вольт в розетке скорее редкость, чем норма. А импульсные источники питания допускают широчайший диапазон питающего напряжения, недостижимого для линейного.

Типовой нижний порог сетевого напряжения для импульсного источника 90-110 Вольт, любой аналоговый источник при таком напряжении в лучшем случае «сорвется в пульсации» или просто отключиться.

Источник

Чем отличается импульсный блок питания от обычного: особенности и отличия

Подавляющее большинство современной электроники работает на постоянном токе с малыми значениями силы и напряжения. Например, роутеры потребляют 12 вольт и 5 ампер, а смартфоны в большинстве случаев – 5 вольт и 2 ампера. Вот только в бытовой сети распространяется совершенно другой ток – переменный, с частотой 60 Гц, напряжением 220 вольт и (обычно) силой до 6 ампер.

Соответственно, для использования электронных приборов в бытовой сети этот ток надо как-то преобразовать. Для этих целей и используются блоки питания. Их задача – трансформация тока для придания ему определённых параметров напряжения, силы, а также частоты (превращения переменного в постоянный).

И если требуется выбрать подходящий блок питания либо соорудить самостоятельно, то чаще всего можно встретить два варианта – обычный, он же трансформаторный, и импульсный. И в чём разница, кроме конструкционной сложности, не всегда понятно. Поэтому в этой статье мы разберёмся, чем отличается импульсный блок питания от обычного, рассмотрим их особенности и отличия.

Обычные блоки питания (трансформаторного типа)

Трансформаторные блоки питания – одни из первых устройств для преобразования электричества. Они относятся к аналоговому типу, отличаются конструкционной простотой и сравнительно высокой надёжностью. Впрочем, и существенные недостатки вроде слишком крупных габаритов у них также имеются.

Основной функциональный элемент таких БП – трансформатор. Он состоит из двух индукционных катушек. На первую подаётся электричество из бытовой 220-вольтовой сети и создаёт электромагнитное поле. Оно, в свою очередь, наводит индукцию и создаёт электродвижущую силу на второй. Таким образом достигается понижение напряжения.

В дальнейшем электрический ток, созданный на понижающей катушке, передаётся на выпрямляющее устройство. Как правило, оно состоит из нескольких силовых диодов, включённых по схеме моста. Для сглаживания пульсирующего напряжения используется конденсатор, подключённый параллельно диодному мосту, а затем силовые транзисторы его стабилизируют.

В итоге на выходе формируется постоянный ток заданного напряжения и силы. Для регулирования параметров его работы используются специальные резисторы подстройки, включаемые в схему стабилизации.

Обычные БП (трансформаторного типа) характеризуются максимальной конструкционной простотой. В принципиальной схеме элементарного устройства – всего три детали: система катушек, диодный мост и конденсатор.

Ключевые достоинства обычных блоков питания:

Простота сборки и конструирования. БП необходимой мощности можно собрать самостоятельно – достаточно лишь понимать принцип работы и точно осознавать, для каких целей планируется использовать аппарат;

Высокая надёжность и долговечность. При правильной эксплуатации срок работы аппаратов практически не ограничен. Так, сегодня ещё можно найти функционирующие модели, выпущенные более нескольких десятилетий назад;

Доступность комплектующих. Все необходимые детали можно приобрести на радиорынках, у радиолюбителей и в специальных магазинах, заказывать какие-то определённые микросхемы из-за рубежа не требуется;

Не создают паразитные радиоволновые токи. Благодаря этому помехи в питающей сети или в конечных потребителях практически не наблюдаются.

Ключевые недостатки обычных блоков питания:

Низкий КПД. При передаче электричества трансформаторным способом огромная часть мощности просто теряется. Кроме того, из-за использования стабилизатора на выходе для получения стабильных параметров работы часть КПД дополнительно теряется;

Крупногабаритные. Причём чем мощнее БП – тем больше его вес и размеры. Как следствие, высокомощные и вовсе могут быть маломобильными;

Создают значительное электромагнитное поле. Тем самым они могут образовывать наводки в других линиях передачи сигнала – например, коаксиальных кабелях или «витой паре».

Все эти недостатки оказываются настолько критическими, что сегодня обычные БП в быту практически не используются. Вместо этого применяются импульсные.

Импульсные блоки питания

Импульсные блоки питания имеют сложную конструкцию и являются устройствами инверторного типа. Их ключевое отличие от обычных заключается в том, что входное напряжение подаётся сразу на выпрямитель. Затем оно формирует импульсы определённой частоты. За это отвечает отдельная подсистема управления, так что импульсные БП являются полноценными цифровыми устройствами.

Поскольку импульсные БП отличаются конструкционной и принципиальной сложностью, рассматривать схему их работы в рамках этой статьи не целесообразно. и

Ток из сети поступает на сетевой фильтр, минимизирующий входящие и исходящие искажения;

Преобразователь трансформирует синусоиду переменного тока в импульсный постоянный ток;

Инвертор, контролируемый через модуль управления, формирует из импульсного постоянного тока прямоугольные высокочастотные сигналы;

Ток поступает на импульсный трансформатор, который подаёт напряжение на различные элементы самого БП, а также на нагрузку;

После этого ток поступает на выходной выпрямитель, а затем сглаживается на выходном фильтре.

Такая система обеспечивает не только высокий коэффициент полезного действия, но и малые размеры устройства. Причём чем выше частота импульсов – тем компактнее БП за счёт уменьшения габаритов трансформатора.

Ключевые достоинства импульсных блоков питания:

Высокий КПД, составляющий, как правило, около 98%. Небольшие потери создаются их-за переходных процессов, возникающих при переключении ключа. Но они слишком незначительны, чтобы брать их в расчёт;

Компактные размеры и малый вес. Это достигается за счёт того, что импульсным БП не требуется массивный трансформатор.

Ключевые недостатки импульсных блоков питания:

Конструкционная сложность. Собрать такое устройство в домашних условиях без знаний в области электроники или электротехники практически невозможно;

Заметный нагрев при работе. Поэтому высокомощные импульсные БП оснащаются дополнительными системами охлаждения, которые приводят к увеличению размера и массы устройства;

Наличие высокочастотных помех. Как следствие, для использования в чувствительной аппаратуре такие блоки питания оснащаются фильтром помех, но и он не даёт 100% защиты от такого «мусорного сигнала»;

Мощность нагрузки должна входить в номинальный диапазон. При превышении или понижении её будут наблюдаться изменения выходного напряжения. Как правило, производители предусматривают это явление и устанавливают защиту от подобных нештатных ситуаций.

Компактные размеры и высокое значение КПД помогли импульсным БП распространиться максимально широко. Сегодня они применяются в зарядных устройствах мобильной электроники, компьютерной и бытовой техники, а также в системах электронного балласта осветительных приборов.

Сравнение импульсного и обычного блоков питания

Сравним эти два типа устройств, определив, какие лучше использовать в той или иной ситуации.

Напряжение сначала понижается, а затем выравнивается

Напряжение сначала преобразуется, а затем понижается

Некоторые высокоточные и чувствительные к ВЧ-помехам устройства

Коэффициент полезного действия

Небольшой, особенно с учётом потерь на стабилизаторе

Как правило, крупные

Высокочастотные помехи в выходном токе

Требование максимальной и минимальной мощностей нагрузки

При прочих равных предпочтительнее использовать импульсные БП. Они обеспечивают больший КПД, а ещё весят от нескольких десятков граммов. Но в некоторых высокоточных, прецизионных устройствах лучше применять обычные (трансформаторные) модели, поскольку они не засоряют выходной сигнал помехами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *