Ионизирующие излучения применяют для исследования чего

Что такое ионизирующее излучение?

Виды, источники и влияние ионизирующего излучения на человека

Ионизирующее излучение – это электромагнитное излучение (рентгеновское, гамма) и излучение частиц (альфа, бета), сопровождающиеся выделением энергии. Ионизирующее излучение появляется только при наличии источника излучения (изотопа радиоактивного элемента или рентгеновской трубки). Оно известно в медицине в форме рентгеновского излучения. Используется при диагностике заболеваний сердца и легких, а также при диагностике травм.

Виды ионизирующего излучения

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

Ионизирующее излучение можно разделить на два вида:

Электромагнитное ионизирующее излучение используется при проведении радиологических исследований (в просторечии рентгеновских исследований), таких как рентген или КТ (компьютерная томография). С его помощью врач может:

Ионизирующее излучение частиц можно разделить на:

По типу частиц ионизирующее излучение может быть альфа, бета, нейтронное и протонное.

Источники ионизирующего излучения

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

Источниками ионизирующих излучений являются искусственные и естественные явления, объекты:

Рассматриваемое излучение всегда сопровождало человека. Каждый день население поглощает радиацию, которая приходит из космоса и исходит от камней и почвы. Источником естественного ионизирующего излучения, среди прочего, является космическое пространство.

Космические лучи, которые состоят из ядер высокоэнергетических атомов (в основном протонов), были открыты в начале 20 века. Человечество и все живое на планете частично защищены от космических лучей атмосферой Земли, которая поглощает энергию падающих частиц. В результате столкновений молекул с ядрами газа (азота, кислорода) в атмосферу испускается вторичное излучение.

Чем толще слой атмосферы, через который проходит излучение, тем слабее оно становится. Следовательно, люди получают гораздо меньшую дозу радиации на уровне моря, чем люди, поднимающиеся в высокие горы.

Важно знать! Люди, летающие по трансконтинентальным маршрутам, получат дозу радиации, примерно равную дозе, связанной с рентгеновским снимком легких.

Источником ионизирующего излучения также являются поверхность и внутренние части Земли, которые содержат богатые ресурсы радиоактивных элементов. В частности, во второй половине XX века в разных регионах планеты началась добыча урановых руд.

Помимо естественных источников ионизирующего излучения, существуют также искусственные источники. Техногенное ионизирующее излучение возникает в результате изменений, происходящих внутри атомных ядер. Эти изменения сопровождаются изменением энергии ядер, а часто и числа нуклонов. Этому особенно подвержены изотопы элементов, содержащие несоответствующее количество нейтронов.

Источники искусственного ионизирующего излучения:

Для справки! Искусственные радиоактивные изотопы, являющиеся источником радиации, широко используются в медицине, промышленности и науке.

Влияние ионизирующего излучения на организм человека

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

Эффект зависит в основном от нескольких факторов:

Действие ионизирующего излучения на организм человека становится причиной специфических биологических эффектов. В силу основных механизмов образования их можно разделить на детерминированные и стохастические.

Детерминированные эффекты являются следствием поглощения человеческим организмом такой большой дозы ионизирующего излучения, что оно вызывает разрушение или необратимое повреждение определенного количества клеток. Проявление детерминированных эффектов – лучевая болезнь.

Стохастические (случайные) эффекты возникают в результате повреждения генетического материала отдельной клетки и проявляются в виде рака или наследственных заболеваний. Доза, вызывающая эти заболевания, может быть сколь угодно низкой, и их начало определяется случайностью.

Если ионизирующее излучение поражает живую ткань, оно может вызвать:

Естественные и искусственные источники ионизирующего излучения могут привести к прямой или косвенной ионизации материальной среды. Чтобы снизить вред, ученные разрабатывают и внедряют разные способы защиты от ионизирующего излучения – от защитных костюмов, правил использования специальной техники, до восстановления озонового слоя. Последний естественным образом защищает планету от космических лучей.

Источник

Излучение в медицине

Медицинские процедуры и методы лечения, которые связаны с применением радиоактивного излучения, вносят основной вклад среди техногенный источников радиации. Различают три самостоятельных направления применения радиации в медицине.

1. Использование излучения в диагностических целях. Наиболее распространенным из них являются рентгеновские лучи. Принцип рентгенографии основан на способности рентгеновских лучей проходить сквозь человеческий организм. Как правило, они легче проходят сквозь мягкие ткани и труднее сквозь кости. Результат фиксируется на фотопленке или на мониторе компьютера.

В настоящее время разработан новый метод диагностики на основе ядерно-магнитного резонанса. В таких установках используют не рентгеновское излучение, а очень интенсивное магнитное поле и электрические волны радиочастотного диапазона, этот вид диагностики особенно важен в условиях чернобыльского фактора, так как не дает дополнительной дозовой нагрузки.

2. Введение радиоактивных изотопов в организм человека. Метод основан на регистрации излучения снаружи организма после того, как изотопы сконцентрируются в определенном органе, расположенном в глубине тела.

Область использования радиоактивных веществ для диагностики или лечения называют радиоизотопной медициной. Величину излучения оценивают с помощью счетчиков и определяют локализацию, количество и характер распределения введенного изотопа. Такая информация очень важна для диагностики ряда медицинских нарушений. Благодаря высокой чувствительности счетчиков, определяющих излучение, в организме человека вводят очень небольшое количество радиоактивных веществ, что не нарушает нормального равновесия веществ. Годовая эффективная эквивалентная доза данных видов исследований составляет 20 мкЗв на человека.

3. Ионизирующие излучения используют для борьбы со злокачественными болезнями.

Лучевая терапия основана на способности рентгеновских лучей воздействовать на клетки биологической ткани посредством устранения их способности к делению и размножению. Успешное лечение зависит от точного направления луча и обеспечения строгого режима облучения дозами, распределенными в течение длительного периода времени. Суммарные дозы для каждого человека довольно велики, однако их получает небольшое количество людей. Поэтому их вклад в коллективную дозу незначителен.

Средняя эффективная эквивалентная доза, получаемая от всех источников облучения в медицине около 1мЗв на каждого жителя, т.е. примерно половина средней дозы от естественных источников. Этот показатель неодинаков в различных странах и определяется уровнем социального развития страны, доступностью медицинской помощи и охвата населения медицинскими мероприятиями, материально-технической базой рентгеновской службы, т.е. качеством и конструктивными особенностями рентгеновской аппаратуры.

Источник

Дозиметрия ионизирующих излучений

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

Содержание

В любом медицинском учреждении, где проводятся рентгенодиагностика и лучевая терапия, обязательны к неукоснительному соблюдению все нормативы радиационной безопасности. В их числе осуществление во время облучения корректного учёта поглощаемой пациентами и медперсоналом энергии излучения.

Дозиметрия ионизирующих излучений предполагает проведение регулярных замеров мощности дозы радиационного фона используемых в учреждении рентген-аппаратов, а также: стен и перекрытий здания, воздуха в помещении и за его пределами, почвы и воды в ближайших окрестностях.

Основные понятия клинической дозиметрии

Для точного определения количественных показателей ионизирующего излучения в научный обиход было введено такое понятие, как «доза». Оно подразумевает соотношение объёма или массы облучаемого вещества и энергии излучения.

Количественный процесс распада атомов в течение одной временной единицы определяется активностью радиоактивного вещества. При обозначении уровня активности в интернациональной системе используется общепринятая единица – Беккерель. Его характеристика – 1 распад в течение 1-й секунды. Внесистемный аналог Беккереля – Кюри. Предполагает 3,7.1010 распадов за идентичную единицу времени.

Классификация доз излучения

Существует несколько разновидностей доз излучения. Для каждой из них характерны особые условия замера и свои сферы применения. Основные разновидности:

В современной медицине при проведении дозиметрического замера мощности ионизирующего излучения принято использовать системные единицы измерения. Но поскольку внесистемные единицы измерения активно применялись на протяжении достаточно долгого времени, с их использованием было выпущено большое количество тематической литературы и дозиметрических приборов. Поэтому актуальным остаётся навык соотношения обеих типов единиц.

Способы дозиметрии ионизирующих излучений

Ионизирующее излучение невозможно определить по запаху, на вкус или благодаря иным человеческим рецепторам. Для фиксации наличия излучения, а также определения его качественных и количественных характеристик, необходимо обеспечить плотное взаимодействия ИИ с облучаемым веществом. Фиксация полученных эффектов достигается с помощью дозиметра.

Дозиметры позволяют определить мощность дозы ионизирующего излучения, а также инициализировать химические, фотографические, сцинтилляционные, ионизационные и другие эффекты, возникающие вследствие взаимодействия ионизирующего излучения с облучаемым веществом. Они бывают трёх типов:

Применяемые в международной практике способы дозиметрии ионизирующих излучений бывают следующих типов:

Цель проведения регулярных дозиметрических измерений

Плановые дозиметрические мероприятия проводятся для предотвращения возможности получения сотрудниками медицинского учреждения критической дозы облучения. В первую очередь регулярный мониторинг поглощенной дозы облучения распространяется на медперсонал группы А, представители которой осуществляют ежедневный контакт с источником радиационного излучения.

Также осуществление дозиметрического контроля за радиационным фоном в основных рабочих помещениях медицинского учреждения и смежных с ним территориях позволяет защитить пациентов клиники и обитающих в её окрестностях жителей от необоснованного радиационного облучения. При выявлении повышенных рисков возникновения внештатных ситуаций – дает возможность принять превентивные меры по их устранению.

Источник

Ионизирующие излучения применяют для исследования чего

Выделяют 2 разновидности излучения — ионизирующее и неионизирующее. При первом реализуется возможность физического нарушения целостности нейтрально заряженного атома за счет смещения электронов с их орбиталей с образованием ионной пары, представленной выбитым электроном и остальной частью атома.

Ионные пары химически активны и способны оказывать вредное повреждающее действие на клетку (примером могут служить свободные радикалы, образующиеся из воды). Второе, не приводящее к ионизации излучение, напротив, не вызывает перемещения электронов с орбитали на орбиталь и не нарушает физической целостности атома, на который было оказано воздействие.

Ионизирующее излучение:
— Острая лучевая болезнь
— Злокачественные опухоли вторичного генеза
— Чернобыль
— Диагностические лучевые методы исследования
— Излучение низкой интенсивности
— Аварии на атомных реакторах
— Лучевая терапия
— Радионуклиды
— Радон
— Коротковолновое электромагнитное излучение:
Гамма-лучи
Рентгеновские лучи

— Корпускулярные виды излучения:
Альфа-частицы
Бета-частицы
Нейтроны
Протоны

Неионизирующее излучение:
I. Электромагнитное поле:
— Микроволновое
— Радиочастотное
— Низкочастотное
II. Оптическое излучение:
— Ультрафиолетовое
— В видимом спектре
— Инфракрасное
III. Лазерное IV. ЯМР
V. Ультразвуковое
VI. Ультрафиолетовое
VII. Мониторы с электронно-лучевыми трубками

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

а) Источники ионизирующего излучения. Ионизирующее излучение — это естественный процесс, происходящий в окружающей человека среде. После открытия рентгеновских лучей и радиоактивности оно стало и составной частью производственной среды.

б) Радиационный фон:
1. Годовая доза фоновой радиации колеблется от 1 до 10 мГр (от 100 до 1000 мрад).
2. Максимальная допустимая доза облучения всего тела за год для общей популяции составляет 5 мГр (500 мрад). Для работающих с радиацией за год допускается доза, в 10 раз более высокая — около 50 мГр (5000 мрад).
3. Уровень воздействия на организм человека телевизоров, люминесцирующих циферблатов часов и реакторов на несколько порядков меньше, чем фоновое облучение.

в) Основные понятия. Уровни радиации измеряются и определяются следующим образом (единицы СИ приведены в качестве основных):

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

Соотношения между старыми и новыми единицами измерения радиоактивности отражены в таблице ниже.

г) Виды излучения. Различные виды ионизирующего излучения отличаются друг от друга по проникающей способности, а также по тому, насколько активно они вызывают образование ионов при прохождении через среду. Ионизирующая радиация происходит естественным путем в результате распада радиоактивных элементов или продуцируется искусственно с помощью специальных приборов, например рентгеновских аппаратов.

Радиоактивным следует считать такой элемент, который обладает свойством спонтанно переходить в состояние, характеризующееся меньшим запасом энергии, испуская при этом из своего ядра частицы или гамма-лучи. К разряду частиц относятся альфа- и бета-частицы. Рентгеновские лучи возникают, когда электроны, обладающие высокой энергией, бомбардируют ядра соответствующей мишени, например тагстена. Такие разогнанные электроны, контактируя с окружающим ядро электрическим полем, отклоняются от своей траектории и испускают мощное электромагнитное излучение — рентгеновские лучи.

Альфа-частицы обычно заряжены энергией, равной примерно 4—8 млн электрон-вольт (МэВ). В воздухе они способны распространиться лишь на несколько сантиметров, а в ткани проникают на глубину до 60 микрон. Большой запас энергии наряду с очень малой протяженностью траектории обусловливает то, что ионизирующий эффект на пути следования частицы в ткани оказывается чрезвычайно мощным. Кожный эпидермис выступает надежным барьером, предотвращающим внешнее (чрескожное) воздействие альфа-частиц на организм.

Однако если элемент, испускающий альфа-частицы, попадает внутрь организма ингаляционно, через рот или открытую рану, то возникает опасность развития тяжелых нарушений, в том числе развития злокачественных новообразований. Имплантаты с радием (радий-226 и радий-222) являются примером излучателей альфа-частиц, которые используются в клинических условиях.

Бета-частицы намного слабее взаимодействуют со средой и поэтому способны проникать в живые ткани на глубину нескольких сантиметров и распространяться в воздухе на много метров. Внешнее облучение бета-частицами в определенной мере опасно, но гораздо больший вред причиняет воздействие излучения изнутри. Примерами источников бета-частиц являются такие изотопы, как углерод-14, золото-198, йод-131, радий-226, кобальт-60, селен-75 и хром-51.

Гамма-лучи представляют собой электромагнитное волновое излучение (как и рентгеновское), испускаемое ядром. В воздушной среде они проходят очень большие расстояния, распространяются на много метров и глубоко проникают в ткани, как и бета-частицы, биологически опасны и при внешнем, и при внутреннем облучении.

Медицинский персонал, занимающийся оказанием экстренной помощи, имеет наибольшую вероятность контакта с радиоактивностью в виде бета- и гамма-излучения. Альфа-излучатели — это главным образом трансурановые изотопы, и с ними, как правило, имеют дело только в лабораториях ядерной химии и на предприятиях, вырабатывающих изотопы. Примерами гамма-излучателей служат кобальт-60, цезий-137, иридий-192 и радий-226.

Однако следует иметь в виду, что при измерении радиоактивности и больного можно проконтролировать лишь уровень альфа-, бета- и гамма-излучения.

Протоны с энергетическим потенциалом в несколько МэВ образуются в мощных ускорителях и весьма активно ионизируют биологическую среду. Глубина распространения протонов в живых тканях немного больше, чем альфа-частиц с эквивалентной энергией.

Рентгеновские лучи характеризуются большей длиной волны, меньшими частотами и, следовательно, меньшей энергией, чем гамма-лучи. Биологические эффекты рентгеновского и гамма-излучения изучены лучше, чем других виды радиации. Воздействие рентгеновского изучения на организм возможно при работе с электроннолучевыми трубками и электронными микроскопами.

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

д) Применение. В клинической практике ионизирующее излучение применяется (а) в диагностических целях при рентгенологических исследованиях, флюороскопии, ангиографии, в стоматологической практике и компьютерной аксиальной томографии (КТ-сканировании); (б) в лучевой терапии; (в) дерматологии; (г) при радиологическом обследовании и лечебных вмешательствах; (д) в радиофармакологии. Опасность лучевого поражения существует там, где хранятся или утилизируются радиоактивные материалы.

Радиационная безопасность в отделениях радиологической диагностики и терапии обычно поддерживается на достаточно высоком уровне отвечающими за это сотрудниками. Неизбежно облучению подвергается персонал, проводящий рентгенологические исследования портативными рентгеновскими аппаратами (в операционных, приемных отделениях и блоках интенсивной терапии). При этом контроль на предмет радиационного воздействия зачастую недостаточен.

е) Предельно допустимые дозы. Рекомендации, касающиеся ионизирующего излучения для работающих на соответствующих производствах и населения в целом, кратко отражены в таблице ниже.

ж) Радиологические диагностические методы исследования. Данные по лучевой нагрузке представлены в таблицах ниже. Максимальный риск для здоровья при выполнении отдельных рентгенологических исследовании в зависимости от вида воздействия отражен в таблице ниже.

з) Беременность. Любое медицинское вмешательство нужно проводить таким образом, чтобы обследуемый получил минимальную дозу облучения. Всегда, когда речь идет о женщине детородного возраста, необходимо иметь в виду ее вероятную беременность. В течение 10 сут после менструации мала возможность зачатия и невелик риск. Он довольно мал и на протяжении остальной части цикла: в этот период также нет ограничений на диагностические исследования. Второй месяц беременности сопряжен с опасностью неправильной закладки отдельных органов.

Это доказано в экспериментах на животных, подвергаемых облучению. Воздействие радиации на передний мозг в сроки от 8 до 15 нед после оплодотворения чревато замедлением умственного развития в последующем, причем нет никаких подтверждений подобному эффекту в сроки до 8 нед. Риск возникновения злокачественных новообразований возрастает до уровня, сопоставимого с тем, что характерен для взрослых при лучевой нагрузке до нескольких десятков миллигрэй, или даже превышающего его. Яйцеклетка восприимчива к действию радиации в течение по крайней мере 7 нед до овуляции.

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

и) Практические рекомендации:

1. Относитесь к любой женщине детородного возраста, как к беременной, если нет оснований утверждать обратное. В последнем случае критериями исключения беременности можно считать следующие: начало менструации не позднее чем за 10 сут до исследования, прием пероральных контрацептивов, применение внутриматочных противозачаточных средств или перенесенная в прошлом хирургическая стерилизация.

2. Если не исключен факт, что женщина находится в I триместре беременности, то постарайтесь исключить облучение области таза.

3. Во время диагностических рентгенографических исследований по возможности всегда защищайте экраном область таза и живота женщины.

4. Если имеются серьезные медицинские показания для проведения обследования беременной женщины с использованием радиации, то они должны перевесить по значимости возможные отдаленные последствия как для самой больной, так и для плода. 5. Облучение области таза женщины относительно высокой дозой (от 5 до 15 рад) в I триместре беременности увеличивает риск врожденных аномалий у плода с 1 до 3 %. Такой риск может считаться основанием для искусственного прерывания беременности.

С другой стороны, если родители психологически имеют в себе силы смириться с небольшим увеличением риска возникновения врожденных недостатков у будущего ребенка, то можно рекомендовать сохранить беременность.

Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чегоИонизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего Ионизирующие излучения применяют для исследования чего. Смотреть фото Ионизирующие излучения применяют для исследования чего. Смотреть картинку Ионизирующие излучения применяют для исследования чего. Картинка про Ионизирующие излучения применяют для исследования чего. Фото Ионизирующие излучения применяют для исследования чего

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *