Излучение что это физика

Излучение

Излучение — процесс испускания и распространения энергии в виде волн и частиц.

В подавляющем большинстве случаев под излучением понимают электромагнитное излучение, которое в свою очередь можно разделить по источникам излучения на тепловое излучение, излучение Вавилова-Черенкова, люминесценцию и т. д. Однако к данному понятию также относятся, например, гравитационное излучение — излучение гравитационных волн неравномерно движущимися массами; излучение Хокинга — испускание различных элементарных частиц чёрной дырой; бета-излучение — излучение электронов или позитронов при бета-распаде; альфа-излучение — ионизирующее излучение, состоящее из альфа-частиц, а также волны другой природы, например, ультразвук.

См. также

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Полезное

Смотреть что такое «Излучение» в других словарях:

ИЗЛУЧЕНИЕ — электромагнитное, в классич. электродинамике образование эл. магн. волн ускоренно движущимися заряж. ч цами (или перем. токами); в квант. теории рождение фотонов при изменении состояния квант. системы; термин «И.» употребляется также для… … Физическая энциклопедия

излучение — изливание, излитие, источение, свет, испускание, эманация, радиация, лучеиспускание, сноп, фонирование Словарь русских синонимов. излучение эманация (книжн.) Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е.… … Словарь синонимов

ИЗЛУЧЕНИЕ — ИЗЛУЧЕНИЕ, излучения, ср. (книжн.). Действие по гл. излучить излучать и излучиться излучаться. Излучение солнцем теплоты. Тепловое излучение. Нетепловое излучение. Радиоактивное излучение. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ИЗЛУЧЕНИЕ — электромагнитное, процесс образования свободного электромагнитного поля, а также само свободное электромагнитное поле, существующее в форме электромагнитных волн. Излучения испускают ускоренно движущиеся заряженные частицы, а также атомы,… … Современная энциклопедия

ИЗЛУЧЕНИЕ — электромагнитное процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (напр., тормозное излучение, синхротронное излучение,… … Большой Энциклопедический словарь

Излучение — электромагнитное, процесс образования свободного электромагнитного поля, а также само свободное электромагнитное поле, существующее в форме электромагнитных волн. Излучения испускают ускоренно движущиеся заряженные частицы, а также атомы,… … Иллюстрированный энциклопедический словарь

ИЗЛУЧЕНИЕ — ИЗЛУЧЕНИЕ, перенос энергии ЭЛЕМЕНТАРНЫМИ ЧАСТИЦАМИ ИЛИ ЭЛЕКТРОМАГНИТНЫМИ ВОЛНАМИ. Любое ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ проходит через ВАКУУМ, что отличает его от таких явлений как ТЕПЛОПРОВОДНОСТЬ, КОНВЕКЦИЯ и передача звука. В вакууме… … Научно-технический энциклопедический словарь

излучение — работающей радиоэлектронной аппаратуры. [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=23] Тематики защита информации EN emanation … Справочник технического переводчика

излучение — ИЗЛУЧАТЬ, аю, аешь; несов., что. Испускать лучи, выделять лучистую энергию. И. свет И. тепло. Глаза излучают нежность (перен.). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

ИЗЛУЧЕНИЕ — лучеиспускание, радиация (Radiation, emanation) отдача телом в пространство заключенной в нем энергии в виде электромагнитных волн. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

Источник

Излучение

Содержание

В прошлых уроках вы познакомились с такими видами теплопередачи, как тепловодность и конвекция. И в одном, и во втором случае перенос энергии происходил за счет движения частиц или их групп. Значит, если нет вещества, то эти виды теплопередачи невозможны.

Изучение – вот ответ на наш вопрос. В данном уроке мы познакомимся с процессом излучения на опыте, узнаем его свойства и применение.

Выявление процесса излучения

Рассмотрим следующий опыт (рисунок 1). У нас есть жидкостный манометр и теплоприемник. Соединим их резиновой трубкой между собой.

Нагреем до высокой температуры небольшой кусок металла. С помощью пинцета аккуратно поднесем его к темной стороне теплоприемника (рисунок 1, а).

Уровень жидкости в колене, соединенном с теплоприемником, снизился. Это значит, что воздух в теплоприемнике нагрелся и расширился.

Мы не воздействовали на теплоприемник никаким другим образом. Очевидно, что ему была передана энергия от нагретого куска металла.

Теплопроводность? Нет. Ведь мы не докасались куском металла до теплоприемника. Конвекция? Тоже нет. Нагретое тело находилось рядом с теплоприемником, но не под ним. Передача энергии в данном случае осуществлялась путем излучения.

Излучение – это вид теплопередачи, при котором перенос энергии происходит преимущественно без переноса вещества.

Свойства излучения

Излучение может осуществляться в полном вакууме.

Чем выше температура тела, тем больше энергии оно передаёт путем излучения.

Вернемся к нашему опыту (рисунок ). Сначала мы повернули теплоприемник к куску металла темной стороной. Теперь повернем его светлой стороной (рисунок 1, б). Теперь столбик жидкости в колене манометра повысился.

Тела с темной поверхностью лучше поглощают энергию, чем тела со светлой поверхностью.

Тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью.

Например, в белом чайнике горячая вода дольше сохранит высокую температуру, чем в черном.

Применение

Солнечное излучение используют для того, чтобы добыть использовать солнечную энергию. Солнечные батареи (рисунок 3) позволяют аккумулировать солнечную энергию, преобразовывать ее для дальнейшего использования человеком.

Крылья самолетов, поверхности воздушных метеозондов красят серебристой краской (рисунок 4). Так используют способность тел по-разному поглощать энергию. Делают это для того, чтобы уменьшить нагрев.

Излучение применяют для сушки и нагрева материалов, в приборах ночного видения, в медицине. Далее во время обучения вы более подробно рассмотрите природу этого явления.

Источник

Излучение

Конспект по физике для 8 класса «Излучение». ВЫ УЗНАЕТЕ: Что такое излучение. ВСПОМНИТЕ: Что такое теплопроводность? Что такое конвекция?

Излучение

Основным источником тепла на нашей планете является Солнце, которое находится на расстоянии 150 млн. км от Земли. Как же осуществляется теплопередача от Солнца?

ИЗЛУЧЕНИЕ

За пределами земной атмосферы пространство между Землёй и Солнцем содержит очень разреженное вещество. В вакууме перенос энергии путём теплопроводности практически невозможен. Нельзя здесь говорить и о конвекции. Говоря о переносе энергии от Солнца к Земле, мы сталкиваемся с новым видом теплопередачи, который называется излучением. Испускание и поглощение излучения играют огромную роль в нашей жизни. Это излучение называется электромагнитным излучением или электромагнитными волнами и будет изучаться в курсе физики 9 класса. Сейчас же надо отметить, что электромагнитные волны являются одним из видов материи, о котором мы ещё не говорили.

Хорошо нам знакомый солнечный свет также является электромагнитным излучением. Существуют различные технические устройства, которые являются источниками электромагнитного излучения, например микроволновые печи.

При изучении природы излучения были сделаны важные открытия. Одно из них — давление света, т. е. давление, производимое светом на тела, впервые было экспериментально открыто и измерено выдающимся российским физиком П. Н. Лебедевым. Величина этого давления даже для самых сильных источников света ничтожно мала в земных условиях. Для обнаружения давления света Лебедев изготовил специальные приборы и проделал опыты, представляющие замечательный пример искусства эксперимента.

Излучение — третий вид теплопередачи (кроме теплопроводности и конвекции), при котором энергия передаётся не только при наличии вещества, но и в вакууме. Именно излучение является причиной того, что рядом с горящей электрической лампочкой тепло ощущается даже снизу, хотя из-за конвекции потоки тёплого воздуха устремляются вверх.

ТЕРМОСКОП

Рассмотрим работу простого прибора, который называют термоскопом. Он состоит из небольшой колбы, одна сторона которой блестящая, а другая — чёрная или матовая. Если прибор делать самостоятельно, то одну сторону колбы можно просто закоптить. В колбу через пробку вставлена изогнутая трубка, в которую введена небольшая капля подкрашенной жидкости. К трубке прикреплена шкала, позволяющая обнаружить любое нагревание воздуха в колбе, даже если оно мало.

Поднесём к закопчённой поверхности термоскопа нагретое до высокой температуры тело. При этом столбик подкрашенной жидкости переместится на несколько делений вправо. Это означает, что воздух в колбе нагрелся и расширился. Причиной нагревания воздуха в термоскопе может быть только передача ему энергии от нагретого тела.

Энергия в описанном опыте передавалась не в результате теплопроводности, так как между нагретым телом и термоскопом находится воздух — плохой проводник тепла. Конвекция здесь тоже не происходила, так как термоскоп находится рядом с нагретым телом, а не над ним. В данном случае энергия передавалась путём излучения.

ЗАВИСИМОСТЬ ХАРАКТЕРА ИЗЛУЧЕНИЯ ОТ ТЕМПЕРАТУРЫ

Все тела окружающего нас мира излучают энергию независимо от их температуры. Но чем выше температура тела, тем больше энергии передаёт оно путём излучения.

Пока температура тела невысока, оно излучает энергию, но не светится, т. е. испускает только тепловые волны, невидимые для глаза. При повышении температуры оно начинает светиться сначала красным, затем оранжевым, жёлтым и т. д. цветом. Например, при температуре 6000 °С больше всего излучается жёлтых лучей. Именно по этому признаку определили температуру поверхности Солнца.

ОТРАЖЕНИЕ И ПОГЛОЩЕНИЕ ИЗЛУЧЕНИЯ

Когда излучение, распространяясь от тела-источника, достигает других тел, часть его отражается, а часть поглощается.

При поглощении энергия излучения превращается во внутреннюю энергию тел, и они нагреваются.

Светлые и тёмные поверхности тел поглощают излучение по-разному. Этот факт легко проверить с помощью термоскопа.

Повторим описанный выше опыт, но в этот раз поднесём нагретое тело к светлой стороне колбы. Столбик жидкости в этом случае переместится на гораздо меньшее расстояние.

Таким образом, тела со светлой поверхностью хуже нагреваются при теплопередаче путём излучения, чем тела с тёмной поверхностью. Происходит это вследствие того, что тёмные тела лучше поглощают энергию, а тела, имеющие светлую или блестящую поверхность, лучше отражают.

Способность тел по-разному поглощать и отражать энергию излучения часто используется в быту и технике. Самолёты красят серебристой краской для того, чтобы они меньше нагревались солнечными лучами.

Если используют солнечную энергию для нагревания, то соответствующие части приборов окрашивают в тёмный цвет. Это касается таких приборов, как солнечные батареи и ёмкость для воды в летнем душе.

Излучение тел даже с низкой температурой может быть зарегистрировано специальными приборами, называемыми тепловизорами. Эти приборы также называются приборами ночного видения и широко применяются для навигации, в медицине и в военном деле.

В быту часто используется термос. Он применяется для сохранения пищевых продуктов при определённой температуре.

Термос состоит из сосуда с двойными стенками, поверхность которых покрыта блестящим металлическим слоем. Из пространства между стенками выкачан воздух, что предотвращает и конвекцию, и теплопроводность. Металлический слой, отражая излучение, препятствует передаче энергии.

Вы смотрели Конспект по физике для 8 класса «Излучение».

Источник

Излучение что это физика

Тепловое излучение излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Схема устройства призменного спектрографа

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году — рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Излучение что это физика. Смотреть фото Излучение что это физика. Смотреть картинку Излучение что это физика. Картинка про Излучение что это физика. Фото Излучение что это физика

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Источник

Физика. 11 класс

Конспект урока

Урок 19. Излучение и спектры

Перечень вопросов, рассматриваемых на уроке:

1) виды излучения и их источники;

2) спектры химических веществ, спектральный анализ;

3) практическое применение спектрального анализа;

4) спектральный аппарат;

4) шкала электромагнитных излучений.

Тепловое излучение – это излучение нагретых тел.

Спектры излучения представляют собой набор частот или длин волн, которые содержатся в излучении вещества.

Полосатый спектр представляет собой спектр, состоящий из отдельных полос, разделенных темными интервалами.

Темными линиями на фоне непрерывного спектра являются линии поглощения, которые вместе образуют спектр поглощения.

Шкала электромагнитных волн: низкочастотное излучение; радиоизлучение; инфракрасные лучи; видимый свет; ультрафиолетовые лучи; рентгеновские лучи; γ-излучение.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Чаругин В. М. Физика. Учебник для образовательных организаций М.: Просвещение, 2014. С. 246 – 258.

Рымкевич А.П. Сборник проблем физики. 10-11 класс. – М.: Дрофа, 2014. С.143.

Теоретический материал для самостоятельного изучения

Электромагнитные волны излучаются ускоренно движущимися заряженными частицами. Излучение возникает также, когда атом переходит из возбужденного состояния в основное и во время распада ядра.

Источники излучений делятся на два класса: горячие и холодные.

Энергия атомам для излучения может также поступать и из нетепловых источников; например, переменный ток вызывает появление электромагнитного поля; излучение происходит и при переходе атома из возбуждённого состояния в основное, а также при распаде ядра.

Частотное распределение излучения характеризуется спектральной плотностью потока излучения.

3) Полосатый спектр представляет собой спектр, состоящий из отдельных полос, разделенных темными интервалами. В отличие от линейчатых спектров полосатые спектры образуются не атомами, а молекулами, которые не связаны или слабо связаны друг с другом. Темными линиями на фоне непрерывного спектра являются линии поглощения, которые вместе образуют спектр поглощения.

Атомы любого химического элемента дают спектр, непохожий на спектры всех других элементов: они способны излучать строго индивидуальный набор длин волн. Метод определения химического состава вещества по его спектру называется спектральным анализом. В астрономии с его помощью определяют химический состав звёзд, планет, температуру и индукцию их полей и многие другие характеристики. Он также успешно используется в геологии, археологии, криминалистике, металлургии, атомной индустрии и многих других сферах деятельности.

В настоящее время определены спектры всех атомов и составлены таблицы спектров.

Механизмы образования всех электромагнитных излучений одинаковы, отличаются друг от друга методами получения и регистрации. Огромным достижением электромагнитной теории Максвелла было создание шкалы электромагнитных волн. Различают следующие области шкалы: низкочастотное излучение; радиоизлучение; инфракрасные лучи; видимый свет; ультрафиолетовые лучи; рентгеновские лучи; гамма-излучение.

3) Инфракрасное излучение представляет собой излучение с частотами в диапазоне от 3 ∙ 10ˡˡ до 3,75 ∙ 10ˡ⁴ Гц. Оно было обнаружено в 1800 году английским астрономом У. Гершелем при изучении красного конца спектра. Источником является любое нагретое тело. Применение: получают изображения предметов по излучаемому теплу; в приборах ночного видения (ночной бинокль); используют в криминалистике, медицине, промышленности для сушки цветных изделий, стен зданий, дерева, фруктов и т. д. Свойства: проходит через непрозрачные тела, а также через дождь, туман, снег; производит химическое действие на фотопластинки; нагревает вещество при поглощении.

Оказывается, так называемые черные дыры, которые имеют такое сильное притяжение, что даже легкие частицы света не могут их покинуть, также способны излучать. Под влиянием огромной гравитации в окрестностях черной дыры рождаются реальные частицы (и фотоны) из вакуума. Английский физик Стивен Хокинг установил, что спектр этого излучения такой же, как и у абсолютно черного тела.

Примеры и разбор решения заданий:

1. Ответьте на вопрос и выберите правильный ответ: «Сколько длин волн монохроматического излучения с частотой 500 ТГц укладывается на отрезке 30 см?»

Выражаем частоту излучения в герцах, учитывая, что 1ТГц = l∙10ˡ² Гц, ν = 500ТГц = 5∙10ˡ⁴ Гц. Длину выражаем в метрах: l = 30см = 0,3м. Записываем скорость электромагнитных излучений: c = 3∙10⁸м/с.

Находим длину волны: λ= с/ν = 3∙10⁸м/с /5∙10ˡ⁴ Гц = 6∙10⁻⁷ м.

Чтобы узнать, сколько длин волн укладывается на данном отрезке, надо длину отрезка разделить на длину волны: Ν = l / λ = 0,3м / 6∙10⁻⁷ м = 5∙10⁵ длин волн.

2. Вставьте пропущенные слова в предложения:

«Чем _____ температура тела, тем быстрее движутся в нём атомы. При их столкновении друг с другом часть _____ энергии идёт на возбуждение, затем атомы излучают и переходят в _______ состояние»

Варианты ответов: ниже, потенциальной, выше, основное, кинетической, возбуждённое.

Правильный вариант: Чем выше температура тела, тем быстрее движутся в нём атомы. При их столкновении друг с другом часть кинетической энергии идёт на возбуждение, затем атомы излучают и переходят в основное состояние.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *