Известно что около четырехугольника abcd можно описать окружность
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AD и BC четырёхугольника пересекаются в точке K. Докажите, что треугольники KAB и KCD подобны.
Поскольку четырёхугольник ABCD вписанный, сумма углов ABC и ADC равна 180°.
Получаем, что в треугольниках KAB и KCD углы ABK и CDK равны, угол K общий, следовательно, эти треугольники подобны.
Аналоги к заданию № 333322: 333348 401596 Все
Известно, что около четырёхугольника можно описать окружность и что продолжения сторон и четырёхугольника пересекаются в точке . Докажите, что треугольники и подобны.
Известно что около четырехугольника abcd можно описать окружность
В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.
а) Докажите, что вокруг этого четырёхугольника можно описать окружность.
Найдём косинусы углов ABC и ADC в треугольниках ABC и ADC соответственно:
Далее,
Тем самым сумма противоположных углов четырехугольника равна 180°, поэтому вокруг него можно описать окружность. Для вписанного четырёхугольника справедлива теорема Птолемея: произведение диагоналей четырёхугольника равно сумме произведений его противоположных сторон. Тогда то есть откуда
Ответ: б)
Приведем решение пункта б) Тофига Алиева без использования теоремы Птолемея.
Заметим, что поскольку Пусть тогда в треугольнике BAD по теореме косинусов
В треугольнике BCD по теореме косинусов
Приведем идею решения Юрия Зорина.
Углы BAC и BDC равны как вписанные углы, опирающиеся на дугу BC. По теореме косинусов найдём косинус угла BAC (он равен 11/14). Далее, зная, что косинусы равных углов равны, из треугольника BDC найдем по теореме косинусов искомый отрезок BD.
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Известно что около четырехугольника abcd можно описать окружность
Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC. Также известно, что в ABCD можно вписать окружность.
а) Докажите, что отрезки AC и BD перпендикулярны.
б) Найдите радиус вписанной окружности четырёхугольника ABCD, если AC = 26 и BD = 10.
а) Пусть BD и AC пересекаются в точке M. Так как ABCD — описанный четырёхугольник, Будем считать, что и Углы ABC и ADC прямые, так как AC — диаметр. По теореме Пифагора получаем и Отсюда следует, что то есть и Это значит, что треугольники ABC и ADC равны по третьему признаку равенства треугольников, поэтому Следовательно, CM — биссектриса треугольника DBC, а также его высота и медиана.
б) Пусть O — центр окружности, описанной около четырёхугольника ABCD. Тогда её радиус поэтому Допустим, что тогда и Рассматривая прямоугольные треугольники AMB и ABC, можем записать следовательно, Аналогично поэтому полупериметр четырёхугольника ABCD равен Площадь же четырёхугольника ABCD равна Искомый радиус вписанной окружности равен
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Известно что около четырехугольника abcd можно описать окружность
В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин — точка O.
а) Докажите, что около четырёхугольника ABCD можно описать окружность.
б) Найдите радиус вписанной окружности, если AC = 10, BD = 26.
а) Рассмотрим треугольники ABO и COD: углы ABD и BDC при секущей BD не равны. Тогда, так как треугольники ABO и COD подобны, следовательно, углы ABO и DCO, а также BAO и CDO равны. Аналогично для треугольников AOD и BDC. Сумма углов ABO и OBC не равны 90°, тогда имеем конфигурацию как на рисунке справа.
Заметим, что сумма углов BAD и BCD равна:
Следовательно, вокруг четырехугольника ABCD можно описать окружность.
б) Обозначим сторону BO буквой a, сторону OC буквой b, тогда:
Из этого следует, что стороны AO и OC равны.
Пусть OB равно x, тогда
при
С учетом симметрии, можно выбрать любое значение для x. Пусть OB равно 1, а OD — 25, тогда:
Найдем полупериметр четырехугольника ABCD:
Найдем площадь четырехугольника ABCD:
Вычислим искомый радиус:
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Известно что около четырехугольника abcd можно описать окружность
Параллелограмм и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.
а) Докажите, что около четырехугольника ABQP можно описать окружность.
б) Найдите длину отрезка DQ, если известно, что AP = a, BC = b, BQ = c.
а) Четырехугольник CDPQ вписан в окружность и его стороны PD и CQ параллельны, следовательно, CDPQ ― либо прямоугольник, либо равнобедренная трапеция, откуда PQ = CD, но CD = AB, значит, и четырехугольник ABQP ― также прямоугольник или равнобедренная трапеция и, следовательно, около него можно описать окружность, что и требовалось доказать.
б) Поскольку AK ― касательная к данной окружности, а AD ― секущая, имеем: Аналогично находим откуда и тогда
Пусть QH ― высота равнобедренной трапеции CDPQ. Тогда:
Таким образом,
Ответ:
Замечание. Учащиеся, знающие теорему Птолемея для вписанного четырехугольника, могут привести более короткое решение, сразу написав
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,