какие классы изоляции применяются для изготовления высоковольтного оборудования

Классы изоляции по нагревостойкости

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. При повышении температуры многие из этих материалов начинают обугливаться и становятся проводниками.

Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью.

Нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально составляет 15—20 лет. Электроизоляционные материалы по нагревостойкости делят на семь классов:

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудованияНиже перечислены материалы, относящиеся к каждому из этих классов: класс Y — текстильные и бумажные материалы, изготовленные из хлопка, натурального шелка, целлюлозы и полиамидов (ленты, бумага, картон, фибра), древесина и пластмассы с органическими наполнителями;

класс А — материалы класса Y, пропитанные изоляционным составом или погруженные в жидкие диэлектрики (натуральные смолы, масляные, асфальтовые, эфирцеллюлозные лаки, трансформаторное масло, термопластичные компаунды); лакоткани, изоляционные ленты, лакобумаги, электрокартон, гетинакс, текстолит, пропитанное дерево, древесные слоистые пластики, некоторые синтетические пленки, изоляция проводов (ПБД, ПЭВЛО, ПЭЛШО и др.) из хлопчатобумажной ткани, шелка и лавсана, эмалевая изоляция проводов (ПЭЛ ПЭМ ПЭЛР и ПЭВД и др.);

класс Е — синтетические пленки и волокна, некоторые лакоткани на основе синтетических лаков, термореактивные синтетические смолы и компаунды (эпоксидные, полиэфирные, полиуретановые, изоляция проводов типов ПЛД, ПЭПЛО из лавсана, эмалевая изоляция проводов типов ПЭВТЛ, ПЭТВ и др. на основе полиуретановых и полиамидных смол);

класс В — материалы на основе слюды (миканиты, микаленты, слюдиниты, слю-допласты), стекловолокна (стеклоткани, стеклолакоткани), асбестовых волокон (пряжа, бумага, ткани) с бумажной, тканевой или органической подложкой; пленкостеклопласт «Изофлекс»; пластмассы с неорганическим наполнителем; слоистые пластики на основе стекловолокнистых и асбестовых материалов; термореактивные синтетические компаунды; эмалевая изоляция проводов типов ПЭТВ, ПЭТВП и др. на основе полиэфирных лаков и термопластических смол. Пропитывающими составами служат битумно-масляно-смоляные лаки на основе природных и синтетических смол;

класс F — материалы, указанные в классе В, из слюды, стекловолокна, асбеста, но без подложки или с неорганической подложкой; пленкостеклопласт «Имидофлекс», стекловолокнистая и асбестовая изоляция проводов типов ПСД, ПСДТ, а также эмалевая изоляция проводов типов ПЭТ-155, ПЭТП-155 на основе капрона. Пропитывающими составами служат термостойкие синтетические лаки и смолы;

класс Н — указанные в классе В материалы из слюды, стекловолокна и асбеста без подложки или с неорганической подложкой, кремнийорганические эластомеры, стекловолокнистая и асбестовая изоляция проводов типов ПСДК, ПСДКТ, эмалевая изоляция проводов типов ПЭТ-200, ПЭТП-200 и др. на основе кремнийорганических лаков; пропитывающими составами служат кремнийорганические лаки и смолы;

класс С — слюда, стекло, стекловолокнистые материалы, электротехническая керамика, кварц, шифер, асбестоцемент, материалы из слюды без подложки или со стекловолокнистой подложкой, полиимидные и полифторэтиленовые пленки. Связующим составом служат кремнийорганические и элементоорганические лаки и смолы.

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза.

Наибольшей нагревостойкостью обладают стекловолокнистые и слюдяные материалы, содержащие кремнийорганические связующие и пропитывающие составы, эмалевая изоляция проводов на основе кремнийорганических лаков и синтетические пленки «Изофлекс», «Имидофлекс» и др.

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудованияс помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Если температура окружающей среды больше или меньше +40 или +25 °С, то стандарт разрешает определенные изменения допустимых превышений температур. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Источник

Классы изоляции

Нагревостойкость изоляции

Нагревостойкость – это показатель, указывающий на способность того или иного материала сохранять свои свойства при повышении их температуры.

При сильном нагреве, многие материалы теряют свои свойства — разрушаются и обугливаются, это так же касается и изоляционных материалов.
Так как работа электрических машин сопровождается выделением тепла, то материалы, применяемые в качестве изоляционных, обязаны выдерживать эти температуры. При этом, важно сохранять изолирующие свойства.
Все изоляционные материалы, применяемые в электроэнергетике, разделяют на семь групп, в зависимости от нагревостойкости:

Разновидности классов изоляции

На рисунке ниже, показаны существующие классы изоляции и предельные температуры для них.

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудования

Класс Y — волокнистые материалы из целлюлозы, хлопка, натурального шёлка. В основном это – различные ткани (хлопковые, шелковые, хлопчатобумажные), бумажные (картон, бумага), пластмассы и древесина.

Класс A – как правило к такому классу относят материалы класса Y только пропитанные или погруженные в специальный жидкий диэлектрик, который усиливает диэлектрическую прочность, а еще повышает нагревостойкость. К этим жидким диэлектрикам относятся – трансформаторное масло, органические или натуральные смола, различные типы лаков и так далее.
При совмещении двух видов диэлектриков, мы получаем: лакобумаги, лакоткани, текстолит, гетинакс.

Класс E — синтетические органические материалы или простые сочетания этих материалов, при испытаниях которых было установлено, что они способны работать да уровня температуры соответствующей этому классу, то есть 120 градусов Цельсия. В основном это синтетические материалы, а также их сочетания.какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудования

Класс B — материалы на основе асбеста, слюды и стекловолокна, которые применяются в сочетании с различными органическими пропитывающими и связующими диэлектрическими составами.
К ним относят: миканиты, слюдиниты, стеклоткани, асбестовые пряжи и ткани.

Класс F – те же материалы, что и в классе B, но уже в сочетании с неорганическими пропитывающими и связующими в роли которых выступают термостойкие смолы и лаки.

Класс H – так же материалы класса B в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические лаки, смолы и эластомеры.

Класс C – материалы с рабочей температурой свыше 180 градусов по Цельсию и к ним относятся: стекловолокнистые материалы, стекло, шифер, керамика, слюда, материалы из слюды, асбестоцемент, а также эти же материалы в сочетании с различными кремнийорганическими смолами и лаками.

Самыми распространенными классами изоляции стали: класс изоляции E, который применяется в электрических машинах малой мощности; классы изоляции F и B применяются в большинстве электрических машин; для изготовления ответственных электрических машин, работающих в тяжелых и сверхтяжелых условиях, применяется класс изоляции H.

При проектировании и выборе электрических машин, важно учитывать классы изоляции. Так как это может послужить причиной преждевременного выхода из строя электрической машины.

Источник

Высоковольтная изоляция

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудования

Изоляция и электричество – два неразрывных понятия. Основным назначением диэлектриков, материалов любой изоляции считается обеспечение прохождения электрического тока исключительно по тем цепям и в том направлении, которое предусматривает схема. Изоляция исключает вероятность:

Главной характеристикой любого диэлектрика принято считать электрическую прочность, характеризующуюся минимальной величиной напряженности электрического поля, при которой происходит пробой диэлектрика. Существуют твердые, жидкие и газообразные диэлектрики, обладающие разной электрической прочностью, например для:

Очевидно, что изоляция высоковольтных цепей достаточно сложная задача.

Два типа высоковольтной изоляции

Условно высоковольтную изоляцию принято делить на два типа: внешнюю и внутреннюю. Внешняя изоляция представлена воздушными промежутками:

Изолируемые проводники расположены на определенном расстоянии друг от друга и заземленных предметов. Изоляция воздушных зазоров и их величины рассчитываются с учетом электрической прочности воздуха и возможных изменений ее величин. При атмосферных изменениях, загрязнениях возможны пробои, однако этот тип изоляции восстанавливает свои свойства после устранения причин пробоя.

Внутренняя изоляция не связана с атмосферой, под ней подразумевают диэлектрические среды:

Данный вид изоляции представлен различными видами диэлектриков, среди которых нашлось место:

Вакуум идеален, но трудно реализуем практически. В качестве газовой изоляции используется воздух, азот или элегаз (шестифтор – SF₆). Последний газ наиболее перспективен, поскольку при повышении давления его электрическая прочность стремится к величине твердых диэлектриков, кроме того для элегаза характерны прекрасные дугогасящие свойства и высокая, на порядок выше нежели у воздуха скорость восстановления изоляционных свойств.

Твердая изоляция бывает неорганического (стекло, электрофарфор, слюда) и органического (бумага, картон, гетинакс) происхождения. Кроме того эта группа представлена синтетическими материалами (фторопласт, полиэтилен, компаунды). Жидкие изоляторы – это в основном углеводороды минерального и растительного происхождения (конденсаторное, трансформаторное, касторовое и другие масла).

Бумажно-масляная изоляция представлена многослойной бумажной изоляцией, пропитанной минеральным маслом (трансформаторным, кабельным, конденсаторным), отличается высокой прочностью, низкими потерями и невысокой ценой. Маслобарьерная изоляция в своей основе имеет минеральное масло, увеличивают электрическую прочность специальные барьеры из электрокартона или бумаги.

Главным недостатком внутренней изоляции считается ее старение, снижение свойств в процессе эксплуатации. Сопротивление изоляции со временем ухудшается, разогрев от диэлектрических потерь повышает риск пробоя изоляции. Пробой твердых и полимерных изоляторов имеет необратимый характер.

Причины старения и способы предупреждения аварий

Основными составляющими причин старения внутренней изоляции можно назвать:

Для предотвращения аварийных ситуаций высоковольтное оборудование нуждается в регулярных высоковольтных испытаниях.

Смотрите также другие статьи :

Основную угрозу для кабеля СПЭ представляют повреждения оболочки, вероятность которых не исключена при работах по прокладке и монтажу кабельных линий. Такие дефекты в силовых кабелях могут не проявлять себя сразу, но существенно снижать их ресурс.

Большинство крупных электрических соединений между потребителями энергии и источниками осуществляется при помощи кабельных линий. Чаще всего это система параллельных друг другу кабелей, муфт и крепежей. Повреждение даже в самой малой степени чревато как минимум экономическими потерями.

Источник

Основные виды и электрические характеристики внутренней изоляции электроустановок

Общие свойства внутренней изоляции электроустановок

Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.

Целесообразность или необходимость применения внутренней изоляции, а не окружающего нас воздуха обусловлена рядом причин.

Во-первых, материалы для внутренней изоляции обладают значительно более высокой электрической прочностью (в 5-10 раз и более), что позволяет резко сократить изоляционные расстояния между проводниками и уменьшить габариты оборудования. Это важно с экономической точки зрения.

Во-вторых, отдельные элементы внутренней изоляции выполняют функцию механического крепления проводников, жидкие диэлектрики в ряде случает значительно улучшают условия охлаждения всей конструкции.

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудованияЭлементы внутренней изоляции в высоковольтных конструкциях в процессе эксплуатации подвергаются сильным электрическим, тепловым и механическим воздействиям. Под влиянием этих воздействий диэлектрические свойства изоляции ухудшаются, изоляция “стареет” и утрачивает свою электрическую прочность.

Тепловые воздействия обусловлены тепловыделениями в активных частях оборудования (в проводниках и магнитопроводах), а также диэлектрическими потерями в самой изоляции. В условиях повышения температуры значительно ускоряются химические процессы в изоляции, которые ведут к постепенному ухудшению ее свойств.

Механические нагрузки опасны для внутренней изоляции тем, что в твердых диэлектриках, входящих в ее состав, могут появиться микротрещины, в которых затем под действие сильного электрического поля возникнут частичные разряды и ускорится старение изоляции.

Особая форма внешнего воздействия на внутреннюю изоляцию обусловлена контактами с окружающей средой и возможностью загрязнения и увлажнения изоляции при нарушении герметичности установки. Увлажнение изоляции ведет к резкому уменьшению сопротивления утечки и росту диэлектрических потерь.

Характеристики изоляции как диэлектрика

Изоляция характеризуется в основном сопротивлением постоянному току, диэлектрическими потерями и электрической прочностью. Электрическая схема замещения изоляции может быть представлена параллельным соединением конденсаторов и резисторов. В связи с этим при приложении к изоляции постоянного напряжения ток в ней уменьшается по экспоненте и, соответственно, возрастает измеряемое значение сопротивления. Установившееся значение сопротивления изоляции Rиз характеризует наружное загрязнение изоляции и наличие в ней путей сквозной утечки тока. Кроме того, увлажнение изоляции может характеризоваться также абсолютным значением емкости и динамикой ее изменения.

Пробой внутренней изоляции электрооборудования

При пробое под воздействием высокого напряжения внутренняя изоляция полностью или частично утрачивает свою электрическую прочность. Большинство видов внутренней изоляции принадлежит к группе несамовосстанавливающейся изоляции, пробой которой означает необратимое повреждение конструкции. Это означает, что внутренняя изоляция должна обладать более высоким уровнем электрической прочности, чем внешняя изоляция, т.е. таким уровнем, при котором пробои полностью исключаются в течение всего срока службы.

Необратимость повреждения внутренней изоляции сильно осложняет накопление экспериментальных данных для новых видов внутренней изоляции и для вновь разрабатываемых крупных изоляционных конструкций оборудования высокого и сверхвысокого напряжения. Ведь каждый экземпляр крупной дорогостоящей изоляции можно испытать на пробой только один раз.

Диэлектрики, используемые для изготовления внутренней изоляции электрооборудования

Диэлектрики, используемые для изготовления внутренней изоляции высоковольтного оборудования должны обладать комплексом высоких электрических, теплофизических и механических свойств и обеспечивать: необходимый уровень электрической прочности, а также требуемые тепловые и механические характеристики изоляционной конструкции при размерах, которым соответствуют высокие технико-экономические показатели всей установки в целом.

Диэлектрические материалы должны также:

обладать хорошими технологическими свойствами, т.е. должны быть пригодными для высокопроизводительных процессов изготовления внутренней изоляции;

удовлетворять экологическим требованиям, т.е. не должны содержать или образовывать в процессе эксплуатации токсичные продукты, а после отработки всего ресурса они должны поддаваться переработке или уничтожению без загрязнения окружающей среды;

не быть дефицитными и иметь такую стоимость, при которой изоляционная конструкция получается экономически целесообразной.

Длительная практика создания и эксплуатации различного высоковольтного оборудования показывает, что во многих случаях весь комплекс требований наилучшим образом удовлетворяется при использовании в составе внутренней изоляции комбинации из нескольких материалов, дополняющих друг друга и выполняющих несколько различные функции.

Так, только твердые диэлектрические материалы обеспечивают механическую прочность изоляционной конструкции; обычно они имеют и наиболее высокую электрическую прочность. Детали из твердого диэлектрика, обладающего высокой механической прочностью, могут выполнять функцию механического крепления проводников.

Высокопрочные газы и жидкие диэлектрики легко заполняют изоляционные промежутки любой конфигурации, в том числе тончайшие зазоры, поры и щели, чем существенно повышают электрическую прочность, особенно длительную.

Использование жидких диэлектриков позволяет в ряде случаев значительно улучшить условия охлаждения за счет естественной или принудительной циркуляции изоляционной жидкости.

Виды внутренней изоляции и материалы, используемые для их изготовления.

В установках высокого напряжения и оборудования энергосистем используется несколько видов внутренней изоляции. Наиболее широкое распространение получили бумажно-пропитанная (бумажно-масляная) изоляция, маслобарьерная изоляция, изоляция на основе слюды, пластмассовая и газовая.

Эти разновидности обладают определенными достоинствами и недостатками, имеют свои области применения. Однако их объединяют некоторые общие свойства:

сложный характер зависимости электрической прочности от длительности воздействия напряжения;

в большинстве случаев необратимость разрушения при пробое;

влияние на поведение в эксплуатации механических, тепловых и других внешних воздействий;

в большинстве случаев подверженность старению.

Бумажно-пропитанная изоляция (БПИ)

Исходными материалами служат специальные электроизоляционные бумаги и минеральные (нефтяные) масла или синтетические жидкие диэлектрики.

Дефект бумаги в бумажно-пропитанной изоляции ограничен пределами одного слоя и многократно перекрывается другими слоями. Тончайшие зазоры между слоями и большое количество микропор в самой бумаге при вакуумной сушке обеспечивает удаление из изоляции воздуха и влаги, а при пропитке эти зазоры и поры надежно заполняются маслом или другой пропиточной жидкостью.

Конденсаторные и кабельные бумаги имеют однородную структуру и высокую химическую чистоту. Конденсаторные бумаги самые тонкие и чистые. Трансформаторные бумаги используются в вводах, трансформаторах тока и напряжения, а также в элементах продольной изоляции силовых трансформаторов, автотрансформаторов и реакторов.

В силовых и измерительных трансформаторах и вводах пропитка осуществляется трансформаторным маслом. В силовых конденсаторах применяется конденсаторное масло (нефтяное), хлорированные дифенилы или их заменители, а также касторовое масло (в импульсных конденсаторах).

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудования

Нефтяные кабельные и конденсаторные масла более тщательно очищены, чем трансформаторные.

Недостатками бумажно-пропитанной изоляции являются невысокая допустимая рабочая температура (не более 90°С) и горючесть.

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудования

Масло-барьерная (маслонаполненная) изоляция (МБИ).

Основу этой изоляции составляет трансформаторное масло. Оно обеспечивает хорошее охлаждение конструкции за счет самопроизвольной или принудительной циркуляции.

Технология изготовления масло-барьерной изоляции включает сборку конструкции, сушку ее под вакуумом при температуре 100-120°С и заполнение (пропитку) под вакуумом дегазированным маслом.

К достоинствам масло-барьерной изоляции относятся сравнительная простота конструкции и технологии ее изготовления, интенсивное охлаждение активных частей оборудования (обмоток, магнитопроводов), а также возможность восстановления качества изоляции в эксплуатации путем сушки конструкции и замены масла.

Недостатками масло-барьерной изоляции являются меньшая, чем у бумажно-масляной изоляции электрическая прочность, пожаро- и взрывоопасность конструкции, необходимость специальной защиты от увлажнения в процессе эксплуатации.

Масло-барьерная изоляция используется в качестве главной изоляции в силовых трансформаторах с номинальными напряжениями от 10 до 1150 кВ, в автотрансформаторах и реакторах высших классов напряжения.

Изоляция на основе слюды имеет класс нагревостойкости В (до 130°С). Слюда имеет очень высокую электрическую прочность (при определенной ориентации электрического поля относительно кристаллической структуры), обладает стойкостью к воздействию частичных разрядов и высокой нагревостойкостью. Благодаря этим свойствам, слюда является незаменимым материалом для изоляции статорных обмоток крупных вращающихся машин. Основными исходными материалами служат микалента или стеклослюдинитовая лента.

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудования

Слюдинитовая лента состоит из одного слоя слюдинитовой бумаги толщиной 0,04 мм и одного или двух слоев подложки из стеклоленты толщиной 0,04 мм. Такая композиция обладает достаточно высокой механической прочностью (за счет подложек) и отмеченными выше качествами, характерными для слюды.

какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть фото какие классы изоляции применяются для изготовления высоковольтного оборудования. Смотреть картинку какие классы изоляции применяются для изготовления высоковольтного оборудования. Картинка про какие классы изоляции применяются для изготовления высоковольтного оборудования. Фото какие классы изоляции применяются для изготовления высоковольтного оборудованияИз слюдинитовых лент и пропитывающих составов на основе эпоксидных и полиэфирных смол изготовляют термореактивную изоляцию, которая при нагреве не размягчается, сохраняет высокую механическую и электрическую прочность. Разновидности термореактивной изоляции, используемые у нас в стране, называют “слюдотерм”, “монолит”, “монотерм” и т.д. Термореактивная изоляция применяется в статорных обмотках крупных турбо- и гидрогенераторов, двигателей и синхронных компенсаторов с номинальными напряжениями до 36 кВ.

Пластмассовая изоляция в промышленных масштабах используется в силовых кабелях на напряжения до 220 кВ и в импульсных кабелях. Основным диэлектрическим материалом в этих случаях является полиэтилен низкой и высокой плотности. Последний имеет лучшие механические характеристики, однако менее технологичен из-за более высокой температуры размягчения.

Пластмассовая изоляция в кабеле располагается между полупроводящими экранами, выполняемыми из наполненного углеродом полиэтилена. Экран на токоведущей жиле, изоляция из полиэтилена и наружный экран наносятся методом экструзии (выдавливания). В некоторых типах импульсных кабелей применяются прослойки из фторопластовых лент. Для защитных оболочек кабелей в ряде случаев используется поливинилхлорид.

Для выполнения газовой изоляции в высоковольтных конструкциях используется элегаз, или шестифтористая сера. Это бесцветный газ без запаха, который примерно в пять раз тяжелее воздуха. Он имеет наибольшую прочность по сравнению с такими инертными газами, как азот и двуокись углерода.

Чистый газообразный элегаз безвреден, химически неактивен, обладает повышенной теплоотводящей способностью и является очень хорошей дугогасящей средой; он не горит и не поддерживает горение. Электрическая прочность элегаза в нормальных условиях примерно в 2,5 раза выше прочности воздуха.

Высокая электрическая прочность элегаза объясняется тем, что его молекулы легко присоединяют электроны, образуя устойчивые отрицательные ионы. Из-за этого затрудняется процесс размножения электронов в сильном электрическом поле, который составляет основу развития электрического разряда.

Для крепления токоведущих частей в комбинации с элегазом используются опорные изоляционные конструкции из литой эпоксидной изоляции.

Элегаз используется в выключателях, кабелях и герметизированных распределительных устройствах (ГРУ) на напряжения 110 кВ и выше и является весьма перспективным изоляционным материалом.

При температурах выше 3000°С может начаться разложение элегаза с выделением свободных атомов фтора. Образуются газообразные отравляющие вещества. Вероятность их появления существует для некоторых типов выключателей, предназначенных для отключения больших токов короткого замыкания. Поскольку выключатели герметически закрыты, появление ядовитых газов не опасно для эксплуатационного персонала и окружающей среды, но при ремонте и вскрытии выключателя необходимо принимать специальные защитные меры.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *