какие колебания называют собственными

СОБСТВЕННЫЕ КОЛЕБАНИЯ

Смотреть что такое «СОБСТВЕННЫЕ КОЛЕБАНИЯ» в других словарях:

Собственные колебания — (свободные колебания), колебания, которые совершаются за счет энергии, сообщенной системе в начале колебательного движения (например, в механической системе через начальное смещение тела или придание ему начальной скорости, а в электрической… … Иллюстрированный энциклопедический словарь

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (свободные колебания) колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота собственных колебаний определяются массой и упругостью для механических собственных колебаний и индуктивностью и… … Большой Энциклопедический словарь

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (Oscillations) свободные колебания тела или колебательного контура по инерции, когда на них не действует периодическая внешняя сила. С. К. имеют вполне определенный период (собственный период); напр. колебания корабля после того, как его… … Морской словарь

собственные колебания — Свободные колебания по одной из собственных форм. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики строительная механика, сопротивление материалов EN … Справочник технического переводчика

собственные колебания — (свободные колебания), колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота механических собственных колебаний определяются массой и упругостью, а электромагнитных индуктивностью и… … Энциклопедический словарь

собственные колебания — savieji virpesiai statusas T sritis fizika atitikmenys: angl. eigen oscillations; natural oscillations; self oscillations vok. Eigenschwingungen, f rus. собственные колебания, n pranc. oscillations propres, f … Fizikos terminų žodynas

СОБСТВЕННЫЕ КОЛЕБАНИЯ — свободные колебания, колебания, совершающиеся в динамич. системе при отсутствии внешнего воздействия при сообщении ей в начальный момент внешнего возмущения, выводящего систему из состояния равновесия. Характер С. к. в основном определяется… … Математическая энциклопедия

собственные колебания — ▲ физические колебания ↑ независимый собственные [свободные] колебания возникают под действием начального толчка. автоколебания. самовозбуждение самопроизвольное возникновение колебаний в системе под влиянием внешних воздействий. спектр. триплет … Идеографический словарь русского языка

Собственные колебания — свободные колебания, колебания в механической, электрической или какой либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или … Большая советская энциклопедия

Источник

Свободные колебания.

Свободные колебания (или собственные колебания) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети­ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра­зуют систему тел, которая называется колебательной системой.

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными

Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называют­ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод­ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными.

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени (ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Знак минус появился потому, что сила и угол отклонения от положения равновесия α име­ют противоположные знаки. Для малых углов отклонения sin α ≈ α. В свою очередь, α = s/l, где s — дуга OA, I — длина нити. Учитывая, что аτ = s», окончательно получим:

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными.

Вид уравнения какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственнымианалогичен уравнению какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными. Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственнымии какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственнымиявляется функция вида:

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими:

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными

В уравнении x = xm cos ω0 t (или x = xm sin ω0 t), хm — амплитуда колебания, ω0 — собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными.

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

какие колебания называют собственными. Смотреть фото какие колебания называют собственными. Смотреть картинку какие колебания называют собственными. Картинка про какие колебания называют собственными. Фото какие колебания называют собственными.

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятни­ка, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции (x = xm cos ω0 t (или x = xm sin ω0 t)), получим выражение для скорости:

где am = ω 2 0 xm — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле­баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *