какие колебания называют собственными
СОБСТВЕННЫЕ КОЛЕБАНИЯ
Смотреть что такое «СОБСТВЕННЫЕ КОЛЕБАНИЯ» в других словарях:
Собственные колебания — (свободные колебания), колебания, которые совершаются за счет энергии, сообщенной системе в начале колебательного движения (например, в механической системе через начальное смещение тела или придание ему начальной скорости, а в электрической… … Иллюстрированный энциклопедический словарь
СОБСТВЕННЫЕ КОЛЕБАНИЯ — (свободные колебания) колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота собственных колебаний определяются массой и упругостью для механических собственных колебаний и индуктивностью и… … Большой Энциклопедический словарь
СОБСТВЕННЫЕ КОЛЕБАНИЯ — (Oscillations) свободные колебания тела или колебательного контура по инерции, когда на них не действует периодическая внешняя сила. С. К. имеют вполне определенный период (собственный период); напр. колебания корабля после того, как его… … Морской словарь
собственные колебания — Свободные колебания по одной из собственных форм. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики строительная механика, сопротивление материалов EN … Справочник технического переводчика
собственные колебания — (свободные колебания), колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота механических собственных колебаний определяются массой и упругостью, а электромагнитных индуктивностью и… … Энциклопедический словарь
собственные колебания — savieji virpesiai statusas T sritis fizika atitikmenys: angl. eigen oscillations; natural oscillations; self oscillations vok. Eigenschwingungen, f rus. собственные колебания, n pranc. oscillations propres, f … Fizikos terminų žodynas
СОБСТВЕННЫЕ КОЛЕБАНИЯ — свободные колебания, колебания, совершающиеся в динамич. системе при отсутствии внешнего воздействия при сообщении ей в начальный момент внешнего возмущения, выводящего систему из состояния равновесия. Характер С. к. в основном определяется… … Математическая энциклопедия
собственные колебания — ▲ физические колебания ↑ независимый собственные [свободные] колебания возникают под действием начального толчка. автоколебания. самовозбуждение самопроизвольное возникновение колебаний в системе под влиянием внешних воздействий. спектр. триплет … Идеографический словарь русского языка
Собственные колебания — свободные колебания, колебания в механической, электрической или какой либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или … Большая советская энциклопедия
Свободные колебания.
Свободные колебания (или собственные колебания) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинетической) при отсутствии внешних воздействий.
Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.
Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая называется колебательной системой.
Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.
Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.
Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называются силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свободные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.
Условиями возникновения свободных колебаний являются:
1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;
2) отсутствие трения в системе.
Динамика свободных колебаний.
.
Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени (ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.
Знак минус появился потому, что сила и угол отклонения от положения равновесия α имеют противоположные знаки. Для малых углов отклонения sin α ≈ α. В свою очередь, α = s/l, где s — дуга OA, I — длина нити. Учитывая, что аτ = s», окончательно получим:
.
Вид уравнения аналогичен уравнению
. Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).
Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.
Решением уравнений и
является функция вида:
То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими:
В уравнении x = xm cos ω0 t (или x = xm sin ω0 t), хm — амплитуда колебания, ω0 — собственная циклическая (круговая) частота колебаний.
Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:
.
Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.
Для математического маятника выполняются равенства:
.
Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).
Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.
Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятника, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.
Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции (x = xm cos ω0 t (или x = xm sin ω0 t)), получим выражение для скорости:
где am = ω 2 0 xm — амплитуда ускорения. Таким образом, амплитуда скорости гармонических колебаний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.