какие колебания называют установившимися вынужденными колебаниями
Вынужденные колебания.
Колебания, совершаемые телом под действием внешней периодически изменяющейся силы, называются вынужденными колебаниями.
Внешняя периодически изменяющаяся сила называется вынуждающей силой.
Примерами вынужденных колебаний являются тряска автомобиля, движущегося по неровной дороге, вибрации кормовой части судна, связанные с работой гребного винта, движение качелей, которые кто-то периодически подталкивает.
Особый интерес представляют вынужденные колебания в системе, способной совершать свободные колебания, т. е. обладающие собственной частотой колебаний. Они интересны тем, что их амплитуда может возрастать при соответствующем изменении частоты вынуждающей силы. Например, после начала раскачивания качелей (являющихся маятником) амплитуда вынужденных колебаний будет возрастать, т. е. амплитуда каждого последующего колебания будет больше, чем предыдущего (если раскачивать качели в такт). Увеличение амплитуды прекратится тогда, когда потеря энергии на преодоление сил трения станет равна энергии, получаемой качелями извне (за счет работы вынуждающей силы).
В большинстве случаев постоянная частота вынужденных колебаний тоже устанавливается не сразу, а спустя некоторое время после их начала.
Когда амплитуда и частота вынужденных колебаний перестают меняться, говорят, что колебания установились.
Частота установившихся вынужденных колебаний равна частоте вынуждающей силы. В отличие от свободных колебаний, являющихся затухающими, вынужденные колебания — незатухающие. Они происходят до тех пор, пока действует вынуждающая сила.
Вынужденные колебания
Механические колебания
Механические колебания — это физические процессы, точно или приблизительно повторяющиеся через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Колебания, которые происходят под действием внутренних сил в колебательной системе, называют свободными. Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели — если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку, такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Например, часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T = t/N
N — количество колебаний [-]
Кстати, для математического и пружинного маятника есть свои формулы периода:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Формула периода колебания пружинного маятника
m — масса маятника [кг]
k — жесткость пружины [Н/м]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν = N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
(**) |
где – собственная круговая частота свободных колебаний, – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина определяется выражением:
|
Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты – частоту свободных колебаний и частоту вынуждающей силы.
Амплитуда вынужденных колебаний m и начальная фаза зависят от соотношения частот и и от амплитуды ym внешней силы.
При резонансе амплитуда m колебания груза может во много раз превосходить амплитуду m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.
У колебательных систем с не очень высокой добротностью () резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.
Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.
Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.
Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменена пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.
Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.
Установившиеся вынужденные колебания
В течение некоторого времени после включения синусоидальной внешней силы (на протяжении переходного процесса) осциллятор успевает «забыть» свое начальное состояние, его колебания приобретают стационарный характер, и осциллятор в конце концов совершает незатухающие синусоидальные колебания на частоте внешнего воздействия — установившиеся вынужденные колебания. Эти установившиеся колебания описываются периодическим частным решением неоднородного дифференциального уравнения (4):
ϕ(t) = a sin(ωt + δ). (5)
Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.
Среда называется упругой, если между ее частицами существуют силы взаимодействия, препятствующие какой-либо деформации этой среды. Когда какое-либо тело совершает колебания в упругой среде, то оно воздействует на частицы среды, прилегающие к телу, и заставляет их совершать вынужденные колебания. Среда вблизи колеблющегося тела деформируется, и в ней возникают упругие силы. Эти силы воздействуют на все более удаленные от тела частицы среды, выводя их из положения равновесия. Постепенно все частицы среды вовлекаются в колебательное движение.
Тела, которые вызывают распространяющиеся в среде упругие волны, являются источниками волн (колеблющиеся камертоны, струны музыкальных инструментов).
Упругими волнами называются механические возмущения (деформации), производимые источниками, которые распространяются в упругой среде. Упругие волны в вакууме распространяться не могут.
При описании волнового процесса среду считают сплошной и непрерывной, а ее частицами являются бесконечно малые элементы объема (достаточно малые по сравнению с длиной волны), в которых находится большое количество молекул. При распространении волны в сплошной среде частицы среды, участвующие в колебаниях, в каждый момент времени имеют определенные фазы колебания.
Геометрическое место точек среды, колеблющихся в одинаковых фазах, образует волновую поверхность.
Волновую поверхность, отделяющую колеблющиеся частицы среды от частиц, еще не начавших колебаться, называют фронтом волны В зависимости от формы фронта волны различают волны плоские, сферические и др.
Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.;;
В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны (рис. 15.1). Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня.
В сферической волне волновые поверхности представляют собой концентрические сферы. Сферическую волну может создать пульсирующий в однородной упругой среде шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Лучами являются радиусы сфер (рис. 15.2).
Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, увлекаемые частицы будут отставать по фазе от тех частиц, которые их увлекают.
При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды. Среда рассматривается как сплошная, т.е. непрерывно распределенная в пространстве и обладающая упругими свойствами.
Итак, колеблющееся тело, помещенное в упругую среду, является источником колебаний, распространяющихся от него во все стороны. Процесс распространения колебаний в среде называется волной.
При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице передается лишь состояние колебательного движения и энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.
Волны бывают поперечными (колебания происходят в плоскости, перпендикулярной направлению распространения) и продольными (сгущение и разрежение частиц среды происходит в направлении распространения).
Граница, отделяющая колеблющиеся частицы от частиц еще не начавших колебаться, называетсяфронтом волны.
В однородной среде направление распространения перпендикулярно фронту волны (рис. 5.1). Рис. 5.1 Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l:
| (5.1.1) |
где υ – скорость распространения волны, – период, ν – частота. Отсюда скорость распространения волны можно найти по формуле:
| (5.1.2) |
Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью.Волновую поверхность можно провести через любую точку пространства, охваченную волновым процессом, т.е. волновых поверхностей бесконечное множество. Волновые поверхности остаются неподвижными (они проходят через положение равновесия частиц, колеблющихся в одинаковой фазе). Волновой фронт только один, и он все время перемещается. Волновые поверхности могут быть любой формы. В простейших случаях волновые поверхности имеют форму плоскости илисферы, соответственно волны называются плоскими или сферическими. В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, в сферической волне – систему концентрических сфер.
Волновое уравнение, дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде. В случае малых возмущений и однородной изотропной среды В. у. имеет вид:
где х, у, z — пространственные переменные, t — время, u = u (х, у, z) — искомая функция, характеризующая возмущение в точке (х, у, z) в момент t, а — скорость распространения возмущения. В. у. является одним из основных уравнений математической физики и широко используется в приложениях. Если u зависит только от двух (одной) пространственных переменных, то В. у. упрощается и называется двумерным (одномерным). В. у. допускает решение в виде «расходящейся сферической волны»:
где f — произвольная функция, a
СКОРОСТЬ РАСПРОСТРАНЕНИЯ УПРУГИХ ВОЛН
(V) — скорость распространения фазы упругого возмущения в разл. упругих средах. В неограниченных изотропных средах упругие волны распространяются адиабатически, без дисперсии. В анизотропных средах могут возникать волны с разл. частотой. В твердых телах (г. п., м-лы) могут распространяться продольные волны Vp,обусловленные деформациями сжатия-растяжения; поперечные волны Vs,вызываемые деформациями сдвига, и поверхностные волны Релея. В жидкостях поперечные волны не возникают. Для идеально упругих сред, к которым относится большинство м-лов и т.п., установлена связь V с плотностью о и др. упругими параметрами—модулем Юнга Е и Пуассона коэф.ц:
Единицы измерения V : в СИ — м/сек, в СГС — см/сек, на практике км/сек.
- какие колебания называют собственными
- какие колебания называют электромагнитными