какие методы используют для изучения дальнего космоса

Методы исследования космоса

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

В течение десятилетий ученые отправляли всевозможные космические корабли за пределы Земли для сбора информации о нашей Солнечной системе. Но не каждая космическая миссия была одинакова. Рассказываем о главных методах исследования космоса.

Облет

Суть этого метода заключается в том, что космический корабль проходит мимо небесного объекта, но не удерживается на его орбите. Пролетая мимо, корабль с помощью своих инструментов наблюдает за исследуемым объектом и отправляет полученную информацию на Землю. Этот метод используется как быстрая начальная разведка чего-либо, что может быть в дальнейшем исследовано в более дорогих и технически сложных миссиях.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Орбитальный полет

Этот метод изучения космоса предполагает, что космический корабль выходит на орбиту планеты и остается на ней. Во время нахождения на орбите аппарат делает фотографии и видео, измеряет расстояния и температуру, а также собирает другие данные.

Преимущество орбитального полета заключается в том, что можно собрать гораздо больше данных и получить более подробную информацию об исследуемом космическом объекте. Но корабль не может сесть на поверхность планеты, чтобы провести более серьезные научные эксперименты.

Запуск ровера

Более серьезным методом изучения дальнего космоса является запуск ровера. Ровер или марсоход — это космический аппарат, который может приземлиться на поверхность исследуемого объекта, чтобы делать детальные снимки, собирать образцы почвы и выполнять другие задачи в научных целях.

Как и другие методы изучения космоса запуск ровера имеет свои плюсы и минусы. Преимущество передвижных космических кораблей заключается в том, что они могут делать невероятные вещи, в том числе проводить химические эксперименты, которые могут дать нам очень подробное представление о той или иной планете. Недостатком этого метода является его большая стоимость. Например, миссия Mars Exploration Rover, стартовавшая в 2003 году, была оценена в 2,5 миллиарда долларов.

Источник

Разведка дальнего космоса: редкие и ценные миссии

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса
Космический аппарат Вояджер-2 удаляется от Солнца со скоростью 15,4 км/с. Вояджер-2 весит 722 кг и имеет габариты 3,7×2,2×13 м. Радиосигнал Вояджера-2 летит к Земле 14 часов (фигурка человека рядом с зондом позволяет оценить его размер)

У обоих аппаратов есть топливо и энергия для работы вплоть до 2020-2025 года. За это время Вояджер-1 удалится от Солнца на расстояние около 19 млрд. км, а Вояджер-2 16,9 млрд км. Через 7-12 лет связь с аппаратами почти наверняка прекратится, и они превратятся в мертвые груды металла. Скорее всего, до этого момента ученые смогут засечь момент перехода границы Солнечной системы с помощью датчиков частиц и магнитного поля «Вояджеров». Это даст знания о параметрах межзвездной среды, которые невозможно получить никаким другим образом.

Но даже после этого миссия VIM продолжится. На борту аппаратов находятся золотые пластинки с информацией о нашей цивилизации, так что зонды станут своеобразными «посылками», которые человечество отправило к звездам. Правда, лететь к другим звездам вояджеры будут долго. Только через 40 тыс. лет Вояджер-1 пройдет на расстоянии 1,6 световых года от звезды AC+79 3888 в созвездии Жирафа. Вояджер-2 через 29,6 тыс. лет пройдет на расстоянии 4,3 световых года от Сириуса, самой яркой звезды в нашем небе. Надо отметить, что зонды пролетят слишком далеко от звездных систем, чтобы их обнаружили. По крайней мере, для цивилизации нашего уровня развития это невыполнимая задача.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса
Космический аппарат «Пионер-10» удаляется от нас со скоростью более 12 км/с. Зонд весит 270 кг, имеет габариты 2,7×2,0x6,6 м, оснащен генератором мощностью 40 ватт и параболической радиоантенной диаметром 2,7 м. Радиосигнал от «Пионера-10» к Земле за 15 часов, но, к сожалению, зонд уже давно молчит

Запущенный в 1972 году, «Пионер-10» стал первым космическим аппаратом, преодолевшим пояс астероидов и первым зондом, который сфотографировал Юпитер. «Пионер-11» запустили в 1973 году, он сделал первые снимки Сатурна.

К настоящему времени умолкший «Пионер-11» должен находиться на расстоянии 12,89 млрд. км или 138,7 а.е. от Солнца. Его собрат, «Пионер-10», улетел на 16,1 млрд км или 108 а.е.

Кстати, на борту «Пионеров» находятся алюминиевые пластины весом по 120 грамм с изображением людей и координатами Солнечной системы.

В настоящее время на полпути к Плутону находится еще один дальний разведчик – зонд New Horizons.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса
New Horizons весит 470 кг, имеет габариты 0,7х2,1х2,7 м и мчится к Плутону со скоростью 15 км/с. Радиосигнал от зонда к Земле идет 3 часа 35 мин

Его запустили в январе 2006 года, когда Плутон еще имел статус планеты. Теперь зонд НАСА удалился от Солнца на 3,8 млрд км или 25,8 а.е., пересек орбиту Урана и достигнет Плутона в 2015 году.

New Horizons – это первый космический аппарат, который изучит границы нашей звездной системы. После того, как зонд сделает снимки Плутона, он отправится в Пояс Койпера – скопление «строительного мусора», который остался со времен рождения Солнечной системы. Кроме того, если за нами тайно шпионят инопланетяне, то прячутся они, скорее всего, именно там. Разумеется, миссия New Horizons прежде всего направлена не на поиск инопланетян, а на исследование геологии самого дальнего уголка звездной системы. По сравнению со «старичками» «Пионерами» и Вояджерами, New Horizons является настоящим шедевром технической мысли и оснащен 7 совершенными научными приборами, включая мощную фотокамеру-телескоп для фотографирования с большого расстояния.

Также зонд имеет пассивный радиометр для изучения состава и температуры атмосферы, тепловизор и разнообразные спектрометры. По количеству выдаваемой научной информации New Horizons будет стоить десятка «Пионеров».

Космический аппарат Rosetta не летит за пределы Солнечной системы и, на первый взгляд, выбивается из ряда дальних разведчиков. Тем не менее, миссия Rosetta уникальна тем, что направлена на изучение древнейших небесных тел Солнечной системы – комет и астероидов.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса
Rosetta весит 3000 кг, имеет габариты 2,8×2,1×32 м, движется со скоростью 8 км/с. Радиосигнал от зонда к Земле идет 43 мин.

Этот аппарат был запущен весной 2005 года и в настоящее время находится на расстоянии 774,9 млн. км или 5,1 а.е. – приблизительно на расстоянии орбиты Юпитера.

Зонд Rosetta уже изучил астероиды Стейнс, Лютеция и в данный момент пребывает в режиме гибернации (спячки) для экономии энергии. В январе 2014 года Rosetta «проснется», включит двигатель и выйдет на орбиту кометы C-G, после чего отправит спускаемый аппарат Philae на поверхность кометы. Philae должен совершить мягкую посадку с помощью специальной гарпунной системы сближения, которая буквально подтянет спускаемый аппарат к комете. После этого будут собраны данные о составе кометного вещества. Это будет финалом миссии Rosetta и началом новой страницы в изучении пояса астероидов.

Как видим, совсем немного космических аппаратов посещали дальние закоулки Солнечной системы. Изучение таких удаленных объектов, как Пояс Койпера и тем более Облако Оорта требует серьезных финансовых средств. Пока же ведущие космические агентства и частные компании сосредоточились на более близкой цели: поясе астероидов, который расположен между орбитами Марса и Юпитера. В этот регион в ближайшие десятилетия отправятся множество миссий, таких как OSIRIS-REX, а после сдачи в эксплуатацию космического комплекса с дальним кораблем Orion, НАСА отправит к астероидам и пилотируемые миссии.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса
К сожалению, пока на окраинах Солнечной системы побывало совсем мало зондов…

Основные средства космических программ будут направлены на масштабное освоение ближнего космоса и фундаментальные исследования, включая поиск обитаемых экзопланет.

В целом, к концу столетия ожидается настоящий космический бум, обусловленный выходом в космос многочисленных частных компаний, готовых реализовать самые амбициозные и рискованные проекты. Несмотря на мировой экономический кризис, на банковских счетах находится огромное количество корпоративных денег, которые лежат, что называется мертвым грузом. Это обеспечивает базу для самых разнообразных проектов: от организации реалити-шоу на Марсе до добычи полезных ископаемых из астероидов. Скорее всего, именно коммерческие организации первыми изучат все закоулки нашей звездной системы, а правительственные организации в это время смогут сосредоточить усилия на фундаментальных исследованиях.

Источник

Как человек исследует космос?

Человек постоянно стремился к Небу. Сначала – мыслью, взором и на крыльях, затем – с помощью воздухоплавательных и летательных аппаратов, космических кораблей и орбитальных станций. О существовании галактик еще в прошлом веке никто даже не подозревал. Млечный Путь никем не воспринимался, как рукав гигантской космической спирали. Даже обладая современными знаниями, невозможно воочию увидеть такую спираль изнутри. Нужно удалиться на много-много световых лет за ее пределы, чтобы увидеть нашу Галактику в ее подлинном спиральном обличии.

Впрочем, астрономические наблюдения и математические расчеты, графическое и компьютерное моделирование, а также абстрактно-теоретическое мышление позволяют сделать это, не выходя из дома. Но стало это возможно лишь в результате долгого и тернистого развития науки. Чем больше мы узнаем о Вселенной, тем больше возникает новых вопросов

Эра телескопов

Изучение космоса началось еще с самых древних времен, когда человек только учился считать по звездам, выделяя созвездия. И только всего четыреста лет назад, после изобретения телескопа, астрономия начала стремительно развиваться принося в науку все новые открытия. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

XVII век стал переходным веком для астрономии, тогда начали применять научный метод в исследовании космоса, благодаря которому был открыт Млечный путь, другие звездные скопления и туманности. А с созданием спектроскопа, который способен разложить через призму свет, излучаемый небесным объектом, ученые научились измерять данные небесных тел, такие, как температура, химический состав, масса и другие измерения.

К примеру, гелий был впервые обнаружен на Солнце, именно с помощью спектроскопа, и лишь затем ученые нашли этот химический элемент на Земле!

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет.

По существу, вся история мировой астрономии и космологии делится на две не равные по времени части – до и после изобретения телескопа.

Для регистрации ультрафиолетового и инфракрасного излучения используются телескопы с объективами из мышьяковистого трехсернистого стекла. С помощью этой аппаратуры удалось открыть много ранее не известных объектов, постичь важные и удивительные закономерности Вселенной.

Так, вблизи центра нашей галактики удалось обнаружить загадочный инфракрасный объект, светимость которого в 300 000 раз превышает светимость Солнца. Природа его пока неясна.

В открытый Космос

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

В последние 50 лет люди получили возможность покидать Землю и изучать звезды и планеты не только наблюдая их в телескопы, но и получая информацию прямо из космоса. Запускаемые спутники оснащены сложнейшим оборудованием, с помощью которого были сделаны удивительные открытия, в существование которых астрономы не верили, например, черные дыры и новые планеты.

Со времени запуска в открытый космос первого искусственного спутника в октябре 1957 года за пределы нашей планеты было отправлено множество спутников и роботов-зондов. Благодаря им ученые “посетили” почти все основные планеты Солнечной системы, а также их спутники, астероиды, кометы.

Начиная с конца XIX века астрономия вступила в фазу многочисленных открытий и достижений, главным прорывом науки в XX веке стало:

К границам Солнечной системы

Спутники и космические зонды неоднократно запускались к внутренним планетам: российская «Венера», американские «Маринер» к Меркурию и «Викинг» к Марсу. Запущенные в 1972-1973 гг. американские зонды «Пионер-10» и «Пионер-11» достигли внешних планет — Юпитера и Сатурна. В 1977 г. к Юпитеру, Сатурну, Урану и Нептуну были также запущены «Вояджер-1» и «Вояджер-2». Некоторые из этих зондов до сих пор продолжают летать у самых границ Солнечной системы, а некоторые уже покинули пределы Солнечной системы.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Космический аппарат Вояджер-1

Полеты на Луну

Самая близкая к нам Луна всегда была и остается весьма притягательным объектом для научных исследований. Поскольку мы всегда видим лишь ту часть Луны, которая освещена Солнцем, особый интерес представляла для нас и невидимая ее часть. Первый облет Луны и фотографирование ее обратной стороны осуществлены советской автоматической межпланетной станцией «Луна-3» в 1959 г. Если еще совсем недавно ученые просто мечтали о полетах на Луну, то сегодня их планы идут намного дальше: земляне рассматривают эту планету как источник ценных пород и минералов.

Человечество продолжает изучать Луну, проводя записки зондов для осуществления данной миссии.

Исследования галактик

В прошлом астрономам мало было известно о Галактиках. Далекие туманные объекты привлекли повышенное внимание лишь после изобретения телескопа. Постепенно было открыто более 100 таких объектов, и уже в XVIII в. был составлен первый каталог туманностей (туманность – космические скопления из газа и пыли, могут быть протяженностью в несколько тысяч световых лет.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Интенсивное изучение галактик, в том числе и с помощью радиотелескопов, открытие фонового излучения, новых космических объектов типа квазаров, излучающих в десятки раз больше энергии, чем самые мощные галактики, привело к возникновению новых загадок в изучении Вселенной.

Многими великими открытиями мы обязаны астрономам-любителям, которые часами просиживают в темноте, разглядывая ночное небо.

Именно любителями открыты многие новые звезды и кометы – к примеру, комета Хэйла-Боппа. Она была открыта благодаря случаю. В июле 1995 г. Алан Хэйл и Томас Бопп, наблюдая звездное небо, заметили возле одного из созвездий слабо светящийся объект, который оказался не известной ранее кометой. А в 1997 г. эта комета максимально приблизилась к Земле – она была от нас на расстоянии 200 000 000 км. Комета Хэйла-Боппа – одна из самых крупных в Солнечной системе. Ученые вычислили, что в ближайшие 4000 лет она не вернется.

Информацию о планетах других Галактик, о положении звезд и многих других космических объектах можно получить лишь с космического зонда, находящегося во внешней части Солнечной системы. Среди таких необходимо отметить:

Последние 30 лет исследовательские обитаемые станции (российские «Мир» и «Салют», американская «Скайлэб») играли важную роль в освоении космоса. Работающие на них космонавты проводили различные эксперименты. Эти исследования дали ценную информацию о жизни в космосе

Многие годы астрономы мечтали о том, чтобы поместить в космосе мощный телескоп. Ведь из космоса, где нет воздуха и пыли, звезды будут видны особенно отчетливо. В 1990 г. их мечта сбылась: шаттл вывел на орбиту телескоп Хаббл.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Космический телескоп Хаббл

Изобретения сверхмощных квантовых компьютеров в XX веке также обещают многие новые изучения, как уже известных планет и звезд, так и открытия новых далеких уголков Вселенной.

В 2021 году планируется запуск телескопа «Джеймс Уэбб». Благодаря современнейшим датчикам мы сможем ещё лучше рассмотреть первые звёзды и галактики, сформированные после Большого взрыва, понять, как они формировались, обнаружить новые экзопланеты и даже подробнее изучить нашу Солнечную систему.

За пределами видимого

Человеческий глаз видит далеко не все – например, мы не можем увидеть те излучения, которые, наряду со световыми лучами, испускают звезды и другие космические тела: рентгеновские и гамма-лучи, микро- и радиоволны.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Вместе с лучами видимого света они образуют так называемый электромагнитный спектр. Изучая невидимые части спектра с помощью специальных приборов, астрономы сделали множество открытий, в частности, обнаружили над нашей галактикой огромное облако античастиц, а также гигантские черные дыры, пожирающие все вокруг себя.

К примеру, наиболее мощные в электромагнитном спектре – рентгеновские и гамма-лучи. Их обычно излучает материя, которую поглощают черные дыры. Горячие звезды излучают большое количество ультрафиолета, тогда как микро- и радиоволны – признаки облаков холодного газа.

Недавно установлено, что внезапные выбросы гамма-лучей, причину которых долгое время не могли понять ученые, свидетельствуют о драматических событиях в далеких галактиках.

Изучая ультрафиолетовое излучение небесных тел, астрономы узнают о процессах, происходящих в недрах звезд.

Исследования, проводимые со спутников, выявляющих инфракрасное излучение, помогают ученым понять, что находится в центре Млечного Пути и других галактик.

Чтобы получить подробную картину других галактик, астрономы соединяют радиотелескопы, располагающиеся на противоположных концах Земли.

Почему нужны космические исследования

Защита от астероидов

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

По словам астрономов, занимающихся изучением небесных тел, возможность столкновения Земли с астероидом велика. По их расчетам, раз в 10 тыс. лет такая вероятность может настичь нашу планету.

Небесное тело в виде астероида представляет серьезную угрозу для человечества. Если предположить, что его размеры будут равны габаритам футбольного поля, тогда после столкновения возникнут необратимые последствия. Такая катастрофа приведет к гибели людей на планете. С нами произойдет то, что случилось с динозаврами — вымирание. Поэтому ученые постоянно отслеживают движение астероидов в космическом пространстве. Это позволит сбить такое тело еще на подлете к планете. Конечно, придется использовать ядерные технологии. По крайней мере, мощного заряда хватит, чтобы опасный астероид изменил свою траекторию движения.

Если с Землей столкнется какое-нибудь космическое тело диаметром в 100 м, тогда на планете образуется огромная пылевая буря и погибнут леса. Выжившие люди будут обречены на голод. Поэтому существует большая вероятность полного уничтожения человечества.

Космическое сырье

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Количество ценных металлов на Земле ежегодно уменьшается. Поэтому людям в будущем рано или поздно придется добывать полезные ископаемые на других планетах. Однако для достижения поставленных задач обязательно нужно будет использовать новые технологии. С их помощью придется создать космических корабли, способные доставлять на другие планеты хотя бы роботизированное оборудование, а в обратном направлении — золото, платину, серебро и так далее.

Развитие медицины

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Исследования в области космоса повлияли на появление большого количества медицинских препаратов, использующихся непосредственно на Земле. Особенно много было сделано открытий в области лекарств, помогающих в борьбе против рака. Был также разработан новый способ введения препарата в раковую опухоль. Кроме того, такие исследования помогли изобрести специальную механическую руку-манипулятор, которая осуществляет очень сложные действия внутри томографов.

Изучение космоса также способствовало изобретению лекарства от остеопороза. Оно не только лечит данное заболевание, но и позволяет проводить эффективную профилактику. Появлению способствовала разработка средств, благодаря которым космонавты защищаются от потери мышечной и костной массы, когда на них не действует гравитация. Тестирование изобретенных препаратов проводилось в космосе, так как человек в таких условиях теряет за один месяц примерно полтора процента костной массы.

Колонизация космического пространства

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Ученые все чаще делают вывод, что рано или поздно придется заселять другие планеты. К такому заключению они приходят, потому что число людей на Земле постоянно увеличивается. При этом количество ресурсов планеты регулярно уменьшается. В то же время ухудшается экологическая обстановка. Ученые даже выполнили некоторые расчеты и пришли к выводу, что на Земле нормально может существовать максимум 16 миллиардов людей. Однако ухудшение жизни начнется уже в ближайшем будущем, когда нас с вами станет 8 млрд.

Такие прогнозы дали старт программам по изучению космоса. Научные изыскания направлены на изучение возможности межпланетных путешествий. Одной из рассматриваемых планет является Марс, на котором, предполагается, ранее уже существовала жизнь. К этому космическому телу регулярно запускаются зонды. На его поверхности уже работает марсоход. Он не только делает снимки поверхности планеты, но и изучает ее атмосферу и грунт.

Самые большие проблемы в исследовании Космоса

1. Взлет

Мощные силы сговорились против вас — в частности, гравитация. Если объект над поверхностью Земли хочет летать свободно, он должен буквально выстрелить вверх со скоростью, превышающей 43 000 км в час. Это влечет большие денежные затраты.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Сэкономить деньги поможет многоразовое использование летающих кораблей. Ракеты Spacex Falcon 9 например, разрабатывались для многоразового использования, и как нам известно, уже есть попытки удачного приземления.

2. Полет

Лететь сквозь космос легко. Это — вакуум, в конце концов; ничто не замедляет вас. Но при старте ракеты возникают сложности. Чем больше масса объекта, тем больше силы нужно, чтобы переместить его, и ракеты имеют огромную массу.

Химическое ракетное топливо отлично подходит для первоначального ускорения, но драгоценный керосин сгорает за считанные минуты. Импульсное ускорение позволит долететь до Юпитера за 5-7 лет. Это чертовски много фильмов в полете. Нам нужен радикальный новый метод для развития скорости полета

3. Космический мусор

Проблема космического мусора очень реальна. “Американская Сеть Наблюдения” за космическим пространством обнаружила 17,000 объектов — каждый, размером с мяч — мчащийся вокруг Земли на скоростях больше чем 28 000 км в час; и еще почти 500,000 обломков размером менее 10 см. Адаптеры запуска, крышки для объективов, даже пятно краски могут пробить воронку в критических системах.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Щиты Уиппла — слои металла и кевлара — могут защитить от крохотных частей, но ничто не может спасти вас от целого спутника. Их насчитывается около 4000 на орбите Земли, большинство погибших в воздухе. Управление полетом помогает избежать опасных путей, но не идеально.

Вытолкнуть их из орбиты не реалистично — это займет целую миссию, чтобы избавиться лишь от одного мертвого спутника. Так что теперь все спутники будут падать с орбиты самостоятельно. Они будут выбрасывать за борт дополнительное топливо, а затем использовать ракетные ускорители или солнечный парус, чтобы направиться вниз к Земле и сгореть в атмосфере.

4. Навигация

“Сеть Открытого космоса”, антенны в Калифорнии, Австралии, и Испании, являются единственным навигационным инструментом для космоса. Все, что запускается в космос – от спутников студенческих проектов до зонда “Новые горизонты”, блуждающего через Пояс Копейра, зависит от них.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Но с большим количеством миссий, сеть становится переполненной. Так что в ближайшем будущем, НАСА работает над тем, чтобы облегчить нагрузку. Атомные часы на самих кораблях сократят время передачи в половину, позволяя вычислять расстояния с единственной передачей информации из космоса. И увеличение пропускной способности лазеров будет обрабатывать большие пакеты данных, таких как фотографии или видео-сообщения.

Но чем дальше ракеты отдаляются от Земли, тем менее надежным становится этот метод. Конечно, радиоволны путешествуют со скоростью света, но передачи в глубокий космос по-прежнему занимают несколько часов. И звезды могут указать вам направление, но они слишком далеко, чтобы указать вам, где вы находитесь.

5. Радиация

Вне безопасного кокона атмосферы Земли и магнитного поля, вас ждет космическая радиация, и это смертельно. Кроме рака, это может также вызвать катаракту и возможно болезнь Альцгеймера. Когда субатомные частицы стучат в атомы алюминия, из которого сделан корпус космического корабля, их ядра взрываются, испуская еще больше сверхбыстрых частиц, называемых вторичной радиацией.

Решение проблемы? Одно слово: пластик. Он легкий и крепкий, и он полон водородных атомов, маленькие ядра которых не производят много вторичной радиации. НАСА тестирует пластик, который сможет смягчить радиацию в космических кораблях или космических скафандрах.

6. Питание

В августе прошлого года астронавты на ISS съели несколько листьев салата, который они вырастили в космосе, впервые. Но крупномасштабное озеленение в нулевой гравитации – это сложно. Вода плавает вокруг в пузырях вместо того, чтобы сочиться через почву, поэтому, инженеры изобрели керамические трубы, чтобы направлять воду вниз к корням растений.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Но все это будет зря, если вы исчерпаете всю воду. (На ISS системе переработки мочи и воды необходим периодический ремонт, и межпланетные экипажи не смогут рассчитывать на доукомплектование новых частей.) ГМО здесь тоже могут помочь.

7. Мышцы и кости

Невесомость разрушает тело: определенные иммунные клетки не в состоянии выполнять свою работу, а эритроциты взрываются. Это способствует появлению камней в почках и делает ваше сердце ленивым.

Астронавты на ISS тренируются, чтобы бороться с атрофией мышц и потерей костной массы, но они все еще теряют массу кости в космосе, и те циклы вращения невесомости не помогают другим проблемам. Искусственная гравитация исправила бы все это. Опыты по ее созданию уже ведутся.

8.Исследование

Собаки помогли людям колонизировать Землю, но они не выжили бы на Марсе. Чтобы распространиться в новом мире, нам будет нужен новый лучший друг: робот.

Колонизация планеты требует много трудной работы, и роботы могут весь день рыть, не имея необходимость есть или дышать. Текущие прототипы — большие и громоздкие, они с трудом передвигаются по земле. Таким образом, роботы должны быть не похожи на нас, это может быть лёгкий управляемый бот с клешнями в форме экскаваторного ковша, разработанный НАСА, чтобы вырыть лед на Марсе.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

Однако, если работа требует ловкости и точности, то тут не обойтись без человеческих пальцев. Сегодняшний космический скафандр разработан для невесомости, а не для пеших прогулок по экзопланете. У прототипа НАСА Z-2 есть гибкие суставы и шлем, который дает четкое представление о любой тонкой фиксации потребностей проводки.

9. Космос огромен

Самой быстрой вещью, которую когда-либо строили люди, является зонд по имени Гелиос 2. Он уже не функционирует, но если бы в космосе был звук, то вы услышали бы его крик, поскольку он до сих пор вращается вокруг солнца на скоростях больше чем 157,000 миль в час. Это почти в 100 раз быстрее, чем пуля, но даже в при такой скорости потребовалось бы приблизительно 19,000 лет, чтобы достигнуть ближайшую к нам звезду – Альфа Центавра. Во время такого длительного полета сменилось бы тысячи поколений. И вряд ли кто-то мечтает умереть от старости в космическом корабле.

Чтобы победить время нам нужна энергия – очень много энергии. Теоретически, околосветовых скоростей можно добиться с помощью энергии аннигиляции материи и антивещества, но заниматься подобным на Земле – опасно.

Намного более изящное решение взломать исходный код вселенной — с помощью физики. Теоретический двигатель Мигеля Алькубьерре сжал бы пространство-время перед вашим кораблем и расширил бы позади него, так вы могли бы перемещаться скоростью, превышающую скорость света.

Человечеству будут нужны еще несколько Эйнштейнов, работающих в местах как Большой Адронный Коллайдер, чтобы распутать все теоретические узлы и совершить прорыв в исследовании Космоса.

какие методы используют для изучения дальнего космоса. Смотреть фото какие методы используют для изучения дальнего космоса. Смотреть картинку какие методы используют для изучения дальнего космоса. Картинка про какие методы используют для изучения дальнего космоса. Фото какие методы используют для изучения дальнего космоса

О важности и актуальности исследования Космоса говорит тот факт, что в 2019 году Нобелевскую премию по физике присудили за открытие экзопланет и исследования происхождения Вселенных. Награду получат трое ученых. Одна часть премии уйдет канадско-американскому физику Джеймсу Пиблсу «за теоретические открытия в области физической космологии», а другая швейцарским астрономам — Мишелю Майору и Дидье Келозу «за открытие экзопланеты, вращающейся вокруг звезды солнечного типа».

Видео

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *